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Abstract—The paper presents a systematic numerical approach
to estimate the small-signal stability of power systems with inclu-
sion of periodic time-varying delays. With this aim, the paper first
provides the mathematical background of the proposed approach
and then discusses the numerical implementation of three types
of periodic delays, namely, sinusoidal, sawtooth and square wave.
The case study is based on the IEEE 14-bus system with inclusion
of a power system stabilizer, whose input signal is assumed to
be obtained through a wide-area measurements system. Small-
signal stability analysis and time-domain simulation following a
large disturbance of the system are presented and discussed.

Index Terms—Delay differential algebraic equations (DDAE),
time delay systems, time-varying delays, small-signal stability,
wide-area measurement systems (WAMs).

I. INTRODUCTION

A. Motivation

In recent years, the study of the impact of time delays

on the stability of power systems has become a relevant

research topic. There is a proliferation, in fact, of smart grid

applications with a high penetration of communication systems

where measured quantities are transmitted to remote control

centers. A relevant example of such smart grid solutions

are the Wide-area Measurement Systems (WAMs), which are

well known to introduce time delays with relatively large

magnitudes [1], [2]. Reference [1] indicates that the typical

magnitude of communication time delays of WAMs is about

100 ms. According to [2], the maximum magnitude of the

time-delays can be up to 700 ms due to communication

latency. In this paper, we focus on the small-signal stability

analysis of power systems that include WAMs.

B. Literature Review

References [3], [4] have studied the impact of constant

time-delays on power system stability through eigenvalue-

based approaches and shown that they concern the damping

of electromechanical oscillations, lead to severe inter-area

power oscillations and can even drive the system to collapse.

However, time-delays introduced by WAMs tend to be time-

varying [5], which can introduce the Quenching Phenomenon

(QP) and have thus a different impact on stability than constant

ones.
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QP in delay systems was firstly discussed in [6]. Reference

[7] provides the following definition: QP of a delay system

means that if the system is unstable with inclusion of the

constant delay τ ∈ [τmin, τmax], it may become stable if the

constant delay τ is replaced by time-varying delay τ ′(t) ∈

[τmin, τmax], and vice versa. In other words, assuming that

constant and time-varying delays are within the same range,

they may have different effects on the system stability.

In some references, time varying delays are treated as

stochastic processes [8], [9]. However, according to [5], com-

munication time-delays vary as a periodic (sawtooth) function

due to sampling blocks, discrete controllers and zero-order

holds that compose the WAMs. The period of these communi-

cation delays is around 10 to 20 ms. Since the QP may always

occur, modelling the periodic delay as a stochastic one may

not lead to accurate results with respect to stability analysis.

Hence, a precise time-varying delay model is necessary to fully

capture the impact of time-delays introduced by WAMs.

Conventional approaches to investigate the impact of pe-

riodic time-delays on the stability of dynamic systems are

based on time-domain integration and Lyapunov-Krasovskii

Functionals (LKFs). In the field of power system analysis,

[10]–[13] are relevant references. The LKF has also been

applied for time-varying delays [5], [7], [14]. Frequency-

domain approaches have also been investigated [3], [15]–[18].

To the best knowledge of the authors, however, there is no

frequency-domain approach to analyze the stability of power

systems with inclusion of periodic delays. This paper attempts

to fill this gap.

Current frequency-domain approaches require the transfor-

mation of the original system into a so-called comparison

system with equivalent stability characteristics. Reference [19]

provides a numerical approach to transform a system with fast

time-varying periodic delays into a comparison system with

distributed delays. This paper utilizes the technique discussed

in [19] to define the comparison system of the DDAEs that

describes the power grid.

C. Advantages of the Frequency-Domain Approach

After a careful evaluation of both LKF and eigenvalue-based

approaches, we believe that eigenvalue-based techniques are

more appropriate to evaluate the small-signal stability analysis

of power systems. Relevant remarks are indicated below.

• The LKF theorem provides a sufficient but not necessary

stability condition. Thus, the stability assertions obtained



through LKF-related approaches tend to be conservative.

Although existing fully-fledged LKF approaches [20] can

avoid this issue, these are still not a feasible choice

for the stability analysis of power systems due to the

reasons discussed in the points below. On the other

hand, eigenvalue-based approaches provide sufficient and

necessary (although local) stability conditions and are

thus expected to be more accurate than the LKF. This

fact is crucial to tackle the QP.

• The LKF requires the solution of a Linear Matrix Inequal-

ity (LMI) problem. The complexity and computational

burden of the LMI problem rapidly increase with the

system size. This increase is particularly significant for

fully-fledged LKF. This drawback of the LKF severely

limits its application for real-world realistic-size power

system models. Meanwhile, the numerical complexity

of obtaining the eigenvalues of larger systems does not

increase as much as that of the LMI problem, particularly

if only a reduced number of dominant eigenvalues are

computed.

• Real-world power networks are complex nonlinear sys-

tems and include plenty of uncertain parameters. To make

the problem tractable, most LKF approaches applied in

power system analysis require to linearize the model at

a given operating point [5], [12], [13]. So the main theo-

retical advantage that is provided by LKF with respect to

the eigenvalue analysis, namely, the ability to assert the

global stability of a nonlinear systems, is lost.

• Existing studies have already proved that the eigenvalue-

based approach can efficiently deal with real-world power

systems with inclusion of multiple constant delays [4],

[18]. In this paper, periodic delayed equations are trans-

formed into an equivalent set of equations with inclusion

of multiple constant delays. Hence, the eigenvalue anal-

ysis is expected to be an effective tool to study such

systems.

D. Contribution

This paper aims at defining a systematic numerical approach

to estimate the eigenvalues of power systems with inclusion of

periodic time-varying delays. To this aim, and according to the

remarks above, we use a Chebyshev discretization approach

[18] to solve a comparison constant multi-delay system that

is equivalent to the original equations with periodic delays.

E. Organization

The paper is organized as follows. Section II presents the

proposed approach to transform equations with inclusions of

fast time-varying periodic delays into equivalent equations

with inclusion of multiple constant delays. Section II also out-

lines how to carry out an approximated small-signal stability

analysis of delay systems with inclusion of multiple constant

delays. Section III provides a case study based on the IEEE 14-

bus system. Finally, Section IV briefly discusses the obtained

results, duly draws conclusions, and outlines future work.

II. PROPOSED APPROACH

The transformation from a system with inclusion of periodic

delays (PDS) into a multiple constant delay system (MCDS) is

crucial to enable the small-signal stability analysis carried out

in this paper. To this aim, we proceed in the following way.

First the PDS is transformed into a system with distributed

delays (DDS). Then, the DDS is transformed into an equivalent

MCDS. The sequence of transformations is shown in Fig. 1.

Subsection II-A describes the first step, which is based on the

work proposed in [19]. Subsection II-B describes the second

step, namely, how to transform a DDS into a MCDS. Finally,

Subsection II-C outlines how to evaluate an approximated

solution of the characteristic equation of an MCDS through

the Chebychev discretization.

Delay System
Periodic

(PDS)

Delay System
Distributed

(DDS)

Subsection II.A Subsection II.B

Multiple Constant
Delay System

(MCDS)
Discretization

Chebychev

Subsection II.C

Figure 1: Proposed approach to transform a set of equations

with time-varying delays into an equivalent set of equations

with multiple constant delays, which is finally linearized and

discretized to allow solving the small-signal stability analysis.

A. Transformation of a PDS into a DDS

A key theoretical foundation of the paper is the procedure

that allows transforming a linear system that includes fast

time-varying periodic delays into an equivalent comparison

system with inclusion of distributed delays [19]. This subsec-

tion aims at briefly summarizing the considered transformation

procedure. Detailed mathematical proofs are given in the

appendix of [19].

Theorem 1: Consider a linear system with periodic delays:

ẋ(t) = A0x(t) +
v

∑

i=1

Aix(t− τi(t)) (1)

τi(t) = τ0,i + δifi(Ωit) , i = 1, . . . , N ,

where v ∈ N
+; fi : R → [−1, 1] is a bounded periodic

function with zero mean and period 2π; δi is the amplitude

of the periodic delay; and Ωi is the angular speed of the

periodic function. Note that δi must be smaller than τ0,i,
otherwise negative delays would occur. If all Ωi are large

enough, the small-signal stability of (1) is the same as the

following comparison system:

ẋ(t) = A0x(t) +
v

∑

i=1

Ai

∫ 1

−1

wi(σ)x(t− τ0,i + δiσ)dσ ,

(2)

where wi(.) is the weight function of fi(.), which can be

determined analytically:
∫ 1

−1

α(t)w(t) =
1

2π

∫ 2π

0

α(f(t))dt , (3)



TABLE I: The Weighted Function w(t) and the Characteristic Correction Term g(s) of three types Functions f(t) in (1) [19].

∂(·) is the Dirac Impulse Functions.

f(t) w(t) g(s)

f1(t) =

{

2
π
(t− π

2
), t ∈ [0, π)

2
π
( 3π

2
− t), t ∈ [π, 2π)

(sawtooth) w1(t) =
1
2

g1(s) =

{

sinh(s)
s

, s 6= 0

1, s = 0

f2(t) = sin(t) w2(t) =
1

π
√

1−t2
g2(s) =

1
2π

∫ π
−π

esδ sin(σ)dσ

f3(t) =

{

1, t ∈ [0, π)

−1, t ∈ [π,2π)
(square wave) w3(t) =

∂(t−1)+∂(t+1)
2

g3(s) = cosh(s)

where α : [−1, 1] → R.

Remark 1: A fast-varying PDS can be transformed into DDS

with a known function f(t) that describes its variation.

The characteristic equation of (2) is:

det(sIn −A0 −

N
∑

i

Aie
−sτ0,igi(sδi)) = 0 , (4)

where In is the identity matrix with the same size of A0; gi(s)
is the correction term of fi(t) in the characteristic equation:

gi(s) =

∫ 1

−1

estwi(t)dt . (5)

Reference [19] provides w(t) and g(s) of three different

periodic delays. For clarity, these functions are shown in

Table I.

Remark 2: The bound on Ω, which ensures the stability of

the PDS (1) equivalent to the DDS (2), can be estimated based

on theoretical considerations [21]. Reference [19], however,

states that the theoretical bound is conservative and suggests

to determine the threshold through numerical tests. Based on a

large set of simulations, we have concluded that the threshold

is very sensitive to the definition of f(.) as well as to the

magnitudes of τ0 and δ. The eigenvalue analyses carried out

in the case study discussed in this paper prove to converge

within a range of angular speed values. The correctness of the

results is confirmed through time-domain simulations.

B. Transformation of a DDS into an MCDS

This subsection describes a numerical approach to transform

a system with distributed delays into an equivalent system with

multiple constant delays.

For simplicity, let us consider the following system:

ẋ = F (x,y,xd,u) (6)

0 = G(x,y,u) ,

where F : Rn+m+p 7→ R
n, G : Rn+m+p 7→ R

m, x ∈ R
n

are state variables and y ∈ R
m are algebraic variables, and

u ∈ R
p are discrete variables modelling contingencies, e.g,

line outages and faults; and

xd = x(t− τ(t)) (7)

τ(t) = τ0 + δf(Ωt) .

Linearizing the (6) at a stationary solution yields:

∆ẋ = A0∆x+A1∆x(t− τ(t)) , (8)

where:

A0 = Fx − FyG
−1

y Gx (9)

A1 = Fxd
.

From (4), the characteristic equation of (8) is:

det(sIn −A0 −A1e
−sτ0g(sδ)) = 0 . (10)

Substituting w1(t) =
1
2 , as shown in Table I, into (2) with

v = 1, the system with a single fast time-varying sawtooth

delay can be transformed as follows:

ẋ(t) = A0x(t) +
1

2
A1

∫ 1

−1

x(t− τ0 + δσ)dσ . (11)

Equation (11) describes a DDS, which can be transformed

into a MCDS through the Simpson rule. Common Simpson

rules include Alternative Extended Simpson rule, Composite

Simpson rule and Simpson Second rule [22]. In this paper, we

consider the Simpson Second rule to approximate distributed

delays. However, all the three alternatives above provide

similar results.

The formulation of the Simpson Second rule is:

∫ b

a

p(x)dx ≈
3h

8
[p(x0) + 3p(x1) + 3p(x2) + 2p(x3)+

(12)

· · ·+ 3p(xNt−3) + 3p(xNt−2) + 2p(xNt−1) + p(xNt
)] ,

where:

h =
b− a

Nt

(13)

xj = a+ h , j = 0, 1, 2, . . . , Nt ,

where Nt is the number of sub-intervals of the interval [a, b].
As Nt increases, the accuracy of the approximation also

increases and finally converges to a constant value. Nt has to

be chosen small enough to reduce the computational burden

and big enough to ensure convergence and avoid potential

rounding errors. Based on our simulations, we found that

Nt = 15 is a good trade-off between the computational burden

and the accuracy.



With the utilization of the Simpson Second rule, the im-

plemented comparison system of the (1) with a single fast

time-varying sawtooth delay is:

ẋ(t) = A0x(t) +
3h1A1

16

Nt
∑

j=1

x(t− τ1,j) (14)

h1 =
2

Nt

, τ1,j = τ0 − jhδ , j = 0, 1, 2, . . . , Nt .

For the periodic delays f2(t) and f3(t), directly substituting

the weighted functions w2(t) and w3(t) into (2) leads to

numerical issues. Therefore, a more convenient approach is to

consider their corresponding correction terms g2(s) and g3(s),
respectively.

For example, substituting g2(s) =
1
2π

∫ π

−π
esδ sin(σ)dσ into

(8), we obtain the characteristic equations of the DDS (10)

with a single fast time-varying sinusoidal delay:

∆(s) = sIn −A0 −
A1

2π

∫ π

−π

e−s(τ0−δ sin(σ))dσ . (15)

Finally, considering the delay differential equation with char-

acteristic matrix (15), we obtain:

ẋ(t) = A0x(t) +
A1

2π

∫ π

−π

x(t− (τ0 − δ sin(σ)))dσ , (16)

which provides a comparison system with distributed delay.

This DDS can be transformed into the MCDS through Simpson

Second rule. The resulting final comparison system is shown

in Table II.

Similarly, substituting g3(s) = cosh(s) into (10), we obtain

the characteristic matrix of (8) with a single fast time-varying

square-wave delay:

∆(s) = sIn −A0 −
A1

2
(e−s(τ0−δ) + e−s(τ0+δ)) . (17)

The implemented comparison system deduced from (17) is

also shown in Table II. The characteristic matrix (17) implies

a comparison system with inclusion of two constant delays.

We have reproduced the numerical tests of the scalar cases

given in [19] using the comparison systems shown in Table II.

Our results are consistent with this reference, which confirms

the accuracy of the numerical approach proposed in this

section.

C. Small-Signal Stability Analysis of an MCDS

Reference [18] discusses a systematic numerical approach

to define the small-signal stability of the power system with

inclusion of multiple constant delays, which is based on the

technique presented in [16]. This technique is required to

complete the approach proposed in Section II (see Fig. 1).

Theorem 2: Consider the following set of Delay Differential

Algebraic Equations (DDAEs), which describes the transient

behaviour of a power system with inclusion of time delays:

ẋ = F (x,y,xd,yd,u) (18)

0 = G(x,y,xd,u) ,

where the delayed quantities xd and yd are:

xd = x(t− τi) (19)

yd = y(t− τi) ,

where i = 1, . . . , v and τi are assumed to be constant in the

remainder of this section.

The small-signal stability of (18) can be defined through

the following linear Delay Differential Equations (DDEs), by

linearizing (18) at a stationary solution:

ẋ = A0x(t) +

v
∑

i=1

Ai(t− τi) , (20)

where matrices Ai ∈ R
n×n are obtained based on Fx, Fxd

,

Gxd
, etc., (see [3] and [18] for detail). The characteristic

equation of (20) is:

det∆(s) = 0 , (21)

where:

∆(s) = sIn −A0 −

v
∑

i=1

Aie
−sτi . (22)

The characteristic matrix ∆(s) is transcendental. This means

the system (20) has infinite number of eigenvalues. Fortu-

nately, however, to evaluate of the small-signal stability, one

only requires a finite number of dominant eigenvalues, e.g.,

the eigenvalues closer to the imaginary axis. To this aim, one

can take advantage of the following Theorem 3.

Theorem 3: A finite number of the rightmost eigenvalues

of the characteristic matrix ∆(s) in (21) can be approximated

by its corresponding Chebyshev discretization scheme M ∈

R
(N+1)n×(N+1)n, as shown below:

M =

[

Ψ̂⊗ In

BN

]

, (23)

where ⊗ indicates the tensor product or Kronecker product; In

is the identity matrix of order n; and Ψ̂ is a matrix composed

of the first N − 1 rows of Ψ defined as follows:

Ψ = −2ΞN/τ , (24)

where ΞN is the Chebyshev discretization scheme with N
nodes.

Matrices BN ∈ R
n×(N+1)n is a set of the linear interpola-

tion of matrices Av onto the Chebyshev grid, as following:

BN =
[

Av 0pv−1
Av−1 . . . A1 0p0

A0

]

,
(25)

where 0pi
is the zero matrix with n rows and pi columns. The

positive integers pi are allocated according to the Chebyshev

grid nodes number N , the number of delays v, and the linear

interpolation method.

Remark 3: The Chebyshev discretization scheme is not the

only approach to estimate the rightmost eigenvalues of the

characteristic equation (21). For example, the Padé approx-

imation [23] and Runge-Kutta methods [15] are alternative



TABLE II: Numerical Approximation Method and Implemented Comparison System of the System with a Single Fast Time-

varying Periodic Delay for Small-Signal Stability Analysis. Nt is the number of sub-intervals of the distributed interval,

h1 = 2
Nt

and h2 = 2π
Nt

, j = 0, 1, 2 . . .Nt; τ1,j = τ0 − jhδ and τ2,j = τ0 − δ sin(jh) .

f(t) Approximation of x(t − τ(t)) Implemented Comparison System

f1(t) =

{

2
π
(t− π

2
), t ∈ [0, π)

2
π
(t− π

2
), t ∈ [π, 2π)

(sawtooth) 1
2

∫ 1
−1 x(t − τ0 + δσ)dσ ẋ(t) = A0x(t) +

3h1A1

16

∑Nt
j=1 x(t − τ1,j)

f2(t) = sin(t) 1
2π

∫ π
−π

x(t − τ0 + δ sin(σ))dσ ẋ(t) = A0x(t) +
3h2A1

16π

∑Nt
j=1 x(t − τ2,j)

f3(t) =

{

1, t ∈ [0, π)

−1, t ∈ [π,2π)
(square wave) 1

2
(x(t− τ0 − δ) + x(t − τ0 + δ)) ẋ(t) = A0x(t) +

A1

2
(x(t− τ0 − δ) + x(t− τ0 + δ))

techniques. In this paper, we choose the Chebyshev discretiza-

tion because [18] has proven it can achieve the best ratio

of accuracy/computational burden through comparing a plenty

of approaches. The size of Chebyshev approximation matrix

M impacts such a ratio. The estimated rightmost eigenvalues

converge to the actual values as N and, hence, the size of M

increase. However, [3] and [18] show that N does not need

to be high to obtain an accurate estimation.

III. CASE STUDY

In this section, the IEEE 14-bus system model is utilised

to illustrate the feasibility and accuracy of the numerical

approach discussed above. The topology of the test system

is shown in Fig. 2.
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The IEEE 14-bus system includes automatic voltage reg-

ulators (AVRs) for each synchronous machine and a remote

signal-based power system stabilizer (PSS) connected to the

synchronous machine at bus 1. We assume that the remote

signal feeding the PSS is sent through a WAM, which leads

to non-negligible transmission delay. As a test case, we assume

that the WAM communication network is ideal, i.e., the period

and amplitude of the time-varying delay is stationary [5]. We

considered three cases, namely, the periodical delay varies as

a sawtooth f1(t), a sinusoidal f2(t) and a square wave f3(t).

Kw

ω(t− τ(t)) vs

vmax
s

vmin
s

Tws

Tws+ 1

T1s+ 1

T2s+ 1

T3s+ 1

T4s+ 1

Figure 3: Power system stabilizer control diagram [17].

According to [5], the lower bound of the periodic delays

arising in a typical WAM with ideal communication network

is zero. Therefore, for all the periodic delays considered in this

section, the amplitudes δi of the periodic delays are always

equal to the constant parts τ0,i, namely:

τi(t) = τ0,i + τ0,ifi(Ωit) . (26)

The control diagram of the PSS is shown in Fig. 3. The

input signal to the PSS includes a delayed state variable into

the system xd = ω(t−τ(t)), where τ(t) is in the form of (26).

The dynamic data of the PSS is shown in Table III. The rest

of the system data can be found in [24]. The stabilizer gain

Kf and amplifier gain Ka of the AVR of the bus-1 generator

are modified as Kf = 0.00085 and Ka = 180, in order to

increase the sensitivity to the delay.

TABLE III: Parameters of the PSS included in the IEEE 14-

bus System

Param. Kw T1 T2 T3 T4 Tw vlims

Unit − s s s s s pu

Value 5.0 0.28 0.02 0.28 0.02 10.0 ±0.1

All results in this paper are obtained using DOME [25].

The Dome version utilized in this case study is based on

Python 3.6.2 ( http://www.python.org ), Nvidia Cuda 8.0,

Numpy 1.12.1 ( http://numpy.scipy.org ), CVXOPT 1.1.9 (

http://abel.ee.ucla.edu/cvxopt/ ) and has been executed on a

64-bit Linux Fedora 26 operating system running on a two

Intel Xeon 10 Core 2.2 GHz CPUs, 64 GB of RAM, and a

64-bit NVidia Tesla K20X GPU.

The dominating eigenvalues of the IEEE 14-bus system

with a remote signal-based PSS are estimated applying the

numerical approaches explained in previous Sections. Figure

4 depicts the real part of the rightmost eigenvalues of the

IEEE 14-bus system with 20% load increase as a function of

the τ0 ∈ [0, 750] ms for different types of fast time-varying
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Figure 5: The transient behaviour of bus-1 generator rotor

speed of the IEEE 14-bus system with 20% load increase after

a small disturbance.

delay. The eigenvalues shown in Fig. 4 are obtained with an

integral approximation consisting of Nt = 15 pieces (see

Section II) and the Chebyshev differentiation matrix M of

order 1040× 1040 (see Section II-C). All the settings above

were found to provide accurate numerical results.

Figure 4 shows that time-delays up to about 80 ms do not

have any impact on the stability of the system. Increasing the

mean value τ0, the three time-varying delays generally lead to

higher stability margins than the constant delay case, which

is a typical effect of the QP. This result also indicates that,

if the included delay is time-varying, approximating the delay

as constant can lead to conservative results.

The proposed numerical approach studies the system stabil-

ity through the comparison system (2), which is independent

from frequency Ω of the delay itself. Thus, the results of the

numerical appraisal can be trusted only if the periodic delay

is fast time-varying (see Section II-A). According to the case

discussed in [5], we assume that the delay arising in the WAM

communication system is varying as a sawtooth wave with

period 15 ms, whose corresponding Ω is 418.7 rad/s.

Based on the discussion above, it is worth double-checking

the small-signal stability of the actual system (18) with given

values of Ω through time domain simulations. With this aim,

we consider the following case. For τ0 = 0.1 s, the rightmost

eigenvalue pair of the system is −0.0541 ± j10.8622, and

hence, the system is expected to be stable following a small

disturbance. On the other hand, if the power system includes

a constant delay τ(t) = 0.1 s, its rightmost eigenvalues are

0.2289±j11.2527, which indicates that the system is unstable.

Figure 5 shows the transient behaviour of the IEEE 14-bus

system with a 20% load increase following a small disturbance

on the rotor speed of the synchronous compensator connected

to bus 3. In this case, we consider the constant and sawtooth-

varying delays, with τ0 = 0.1 s and Ω = 418.7 rad/s.

The system is stable if the PSS input signal includes the

sawtooth delay. On the other hand, the equilibrium point

becomes unstable if the delay is constant and the trajectory

eventually falls into a limit cycle. Hence, the time domain

simulation confirms that the eigenvalues estimated by means

of the proposed small-signal stability approach are accurate.

To complete the analysis of the robustness of the proposed

small-signal analysis approach that does not take into account

Ω, we have carried out the following study. We consider the

transient triggered by the outage of line 1-5 and a sawtooth

delay τ(t) = 0.1 + 0.1f1(Ωt) s, and then solve several

cases with varying Ω in the range [314.2, 628.3] rad/s, which

corresponds to periods ranging from 10 to 20 ms. In all these

cases, the estimated post-contingency dominating eigenvalues

of the system are 0.1742 ± j10.5381. Moreover, the time-

varying delays, whose frequency is within the range, the

trajectories obtained with time domain integration lead to

practically the same transient responses.

Figure 6 shows the trajectories of the rotor speed of bus-2

generator and the voltage at bus 10 following line 1-5 outage.

In this case, the trajectories of the system fall into a period-

2 limit cycle. This behaviour is consistent with the estimated

pre- and post-contingency dominant eigenvalues.

IV. CONCLUSIONS

This paper provides a systematic numerical approach to

define the small-signal stability of power systems with inclu-

sion of time varying delays. The proposed approach combines

two small-signal stability analysis methods: (i) the system is

linearized and an equivalent distributed delay set of equations

is defined; and (ii) the distributed delays are approximated

with a discrete number of constant delays, thus leading to

a multiple-delay DDAE. The discretization is obtained by

means of the Simpson rule. The stability of the resulting set of

equations is finally studied through a Chebyshev discretization

scheme.
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Figure 6: Transient behaviour of bus-2 generator rotor speed

of the IEEE 14-bus system with 20% load increase and WAM

communication time-delay τ(t) = 0.1+0.1f1(Ωt) s following

line 1-5 outage.

The case study based on the IEEE 14-bus system shows the

accuracy and numerical robustness of the proposed approach.

Moreover, the results of the case study show the existence

of quenching phenomenon in power systems. We can thus

conclude that accurate delay models are necessary to properly

appraise the stability of power systems with inclusion of time-

varying delays.

Future work will focus on the application of the proposed

technique on real-world large power systems, e.g. all-island

Irish grid. Moreover, since the robustness of the proposed

approach consistently depends of several approximations, it is

relevant to further analysis its numerical accuracy, especially

in the case where there are multiple time-varying delays.
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