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Modal Participation Factors of Algebraic Variables
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Abstract— This paper proposes an approach to determine the
participation of algebraic variables in power system modes.
The approach is based on a new interpretation of the classical
participation factors, as well as on the definition of adequate
output variables of the system’s state-space representation. The
paper considers both the linear and generalized eigenvalue
problems for the calculation of the participation factors and
presents a theorem to cope with eigenvalue multiplicities. An
illustrative example on the two-area system, as well as a study
on a 1,479-bus dynamic model of the all-Irish transmission system
are carried out to support the theory and illustrate the features
of the proposed approach.

Index Terms— Small-Signal Stability Analysis (SSSA), Par-
ticipation Factors (PFs), algebraic variables, Linear Eigenvalue
Problem (LEP), Generalized Eigenvalue Problem (GEP).

I. INTRODUCTION

A. Motivation

Classical participation analysis is a tool to measure the

coupling of the states of a dynamical system with its modes

(eigenvalues of the state matrix). A power system model for

angle and voltage stability analysis, however, also includes a

variety of algebraic equations and variables, e.g. power flows

in network branches, that constrain the system and define its

dynamics. To study the impact of the algebraic variables on

the system dynamic response is relevant since, very often, the

measurements taken on the transmission network and used

by local and wide area controllers are modelled as algebraic

variables. The focus of this paper is on the participation of

algebraic variables in the critical modes of large-scale power

systems.

B. Literature Review

Modal participation analysis was first introduced by Pérez-

Arriaga et al. in [1] and [2]. These studies employed the

analytical solution that determines the time response of a linear

time-invariant dynamic system and applied initial conditions

appropriate to define the relative contribution of a system

state in a mode and vice versa. Participation Factors (PFs)

were introduced as an approach to Selective Modal Analysis.

Nowadays, PFs are widely considered a fundamental tool for

power system Small-Signal Stability Analysis (SSSA). They

have been also utilized in model reduction [3], as well as in

control signal and input placement selection [4].

PFs have been given various interpretations. In terms of

eigensensitivities, they represent the sensitivity of an eigen-

value to variations of an element of the state matrix [5]. They
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can be also viewed as modal energies in the MacFarlane sense

[6]. In the state space representation, PFs can be studied as

residues of the system transfer function and as joint observabil-

ities/controllabilities of the geometric approach, which play an

important role during the design of control systems [7], [8].

The properties of PFs were summarized and extended in [8].

In [9], [10], the authors studied the effect of the uncertainty in

the initial conditions in the definition of the PFs. Recent efforts

have focused on the definition of PFs for nonlinear systems

[11], [12].

Dominant states in lightly damped modes of power sys-

tems are typically the synchronous machine rotor angles

and speeds. The state variables of poorly tuned controllers,

e.g. the Automatic Voltage Regulators (AVRs) and Power

System Stabilizers (PSSs), can also show high PFs in criti-

cal modes. Nevertheless, measurement units installed on the

transmission system buses provide information on the local

voltage, frequency and active and reactive power flows, which

in angle and voltage stability studies are modelled as algebraic

variables [13]. Moreover, these quantities are typically utilized

by Flexible AC Transmission System devices as signals for

the implementation of various controllers including Power

Oscillation Damper (POD) [14].

C. Contributions

This work provides a tool to study how algebraic variables

are coupled with power system modes. The focus is on

the PFs of bus voltages, frequencies, and power injections;

synchronous machines Rate of Change of Frequency (RoCoF);

Centre of Inertia (COI) speed of different areas; and any

system parameters. However, the formulation provided in the

paper is general and can be extended to any nonlinear function

of the system states and algebraic variables.

Specific contributions of the paper are as follows:

• A measure for the participation of the algebraic variables

and, in general, of any function of the system variables in

the system modes, through the definition of appropriate

output vectors of the system’s state-space representation.

• An alternative interpretation of the classical PFs as

eigensensitivities. The proposed interpretation is derived

from the partial differentiation of the analytic solution of

the linearized power system around an equilibrium point.

• The implementation of modal participation analysis for

a power system with eigenvalue multiplicities, modelled

as singular system of differential equations, as well as

a discussion on how to implement the proposed modal

analysis in a large-scale power system.

The paper precisely recognizes that the algebraic variables

of a set of Differential Algebraic Equations (DAEs) can be

interpreted as functions of the state variables and, in turn, as



outputs of the state-space representation of the power system

model. Until now, algebraic variables were mostly interpreted

either as constraints and thus eliminated when calculating

the state matrix of the system; or as states with infinitely

fast dynamics and, as such, their PFs to system modes were

considered to be null.

The proposed approach is based on the Generalized Eigen-

value Problem (GEP), as opposed to the conventional Linear

Eigenvalue Problem (LEP), and fully exploits the sparsity

of Jacobian matrices [15]. This allows utilizing solvers for

eigenvalue analysis that scale well and are suitable for large

real-world systems.

D. Organization

The remainder of the paper is organized as follows. Section

II recalls the formulation of the LEP and GEP for power

system SSSA. Section III describes the modal participation

analysis of a singular power system and introduces a new

interpretation of the classical PFs. The proposed approach

to measure the participation of algebraic variables in power

system modes is presented in Section IV. The case study is

discussed in Section V. Finally, conclusions are duly drawn in

Section VI.

II. POWER SYSTEM MODEL FOR SMALL SIGNAL

STABILITY ANALYSIS

A. Non-linear power system model and linearization

Power system models for angle and voltage stability analysis

are formulated as a set of explicit non-linear DAEs as follows:

ẋ = f(x,y)

0m,1 = g(x,y) ,
(1)

where f (f : R
n+m → R

n), g (g : R
n+m → R

m) are

the differential and algebraic equations; x, x ∈ R
n, and y,

y ∈ R
m, are the state and algebraic variables, respectively. For

sufficiently small disturbances, (1) can be linearized around a

stationary point (x0,y0), as follows:

∆ẋ = fx∆x+ fy∆y (2)

0m,1 = gx∆x+ gy∆y , (3)

where ∆x = x − x0, ∆y = y − y0; fx, fy , gx, gy
are the Jacobian matrices evaluated at (x0,y0), i.e. fx =
∂f/∂x

∣

∣

(x0,y0
)

etc.; and 0i,j , 0i,j ∈ R
i×j is the zero matrix.

Note that the system of (2), (3) is an autonomous linear system,

i.e. the elements of fx, fy , gx, gy are not functions of time

t. The objective of SSSA is to study the equilibrium point

(x0,y0) through the eigenvalue analysis of system (2)-(3).

B. Generalized Eigenvalue Problem

The system (2)-(3) can be written as a set of singular

differential equations, as follows:
[

In 0n,m

0m,n 0m,m

][

∆ẋ

∆ẏ

]

=

[

fx fy

gx gy

][

∆x

∆y

]

. (4)

Assuming the notation

B =

[

In 0n,m

0m,n 0m,m

]

, A =

[

fx fy

gx gy

]

,

where In, In ∈ R
n×n, denotes the identity matrix, we can

write:1

Bξ̇ = Aξ , (5)

ξ = [∆x ∆y]T . The family of matrices sB−A parametrized

by s, s ∈ C, is called matrix pencil of system (5). In particular,

sB −A is a regular matrix pencil, since the matrices B, A

are square and det(sB −A) 6≡ 0 [17]. The pencil sB −A
has n finite eigenvalues and m infinite eigenvalues. Note that

when we refer to infinite eigenvalues, we imply eigenvalues

that are at infinity and not infinitely many. If φi and ψi are

the right and left eigenvectors, respectively, associated with an

eigenvalue λi, i = 1, 2, . . . , n +m, the GEP is described as

follows:
Aφi = λiBφi

ψiA = λiψiB .
(6)

Thus, the solution of the GEP consists in calculating the n+m
eigenvalues and eigenvectors of sB −A.

C. Linear Eigenvalue Problem

The LEP is the conventional eigenvalue problem considered

in SSSA of power systems. Algebraic variables are eliminated

from system (2)-(3), which leads to a system of ordinary

differential equations. Solving (3) for ∆y yields:

∆y = −g−1
y gx∆x , (7)

under the assumption that gy is not singular. Substitution of

(7) in (2) leads to the following linear system:

∆ẋ = As∆x , (8)

where As = fx − fyg
−1
y gx, As ∈ R

n×n, is the state matrix.

The pencil sIn−As, has n finite eigenvalues. If φ̂i and ψ̂i are

the right and left eigenvectors associated with an eigenvalue

λ̂i, i = 1, 2, . . . , n, the LEP is described as follows:

Asφ̂i = λ̂iφ̂i

ψ̂iAs = λ̂iψ̂i .
(9)

The solution of the LEP consists in calculating the n finite

eigenvalues and eigenvectors of sIn−As. Note that the finite

eigenvalues of (8) and (5) are the same.

III. PARTICIPATION FACTORS

A. Conventional Definition

Consider system (8) and the associated LEP described by

(9). The PF is defined as the following dimensionless number:

pk,i = ψ̂i,kφ̂k,i , (10)

1In [16], a semi-implicit form of (1) and hence of (2)-(3) is proposed.
This formulation leads to a non-diagonal matrix B. For simplicity, we do not
discuss the semi-implicit form here. However, all results for (5) presented in
Section III are valid also for the semi-implicit form given in [16].
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where φ̂k,i is the k-th row element of φ̂i and ψ̂i,k is the k-th

column element of ψ̂i. pk,i expresses the relative contribution

of the k-th state in the i-th mode, and vice versa, under the

assumption that all eigenvalues are distinct. The right and left

eigenvectors are usually normalized so that the sum of all PFs

that correspond to the same mode equals to 1 [1]. However,

this is not always the case [18].

The calculated PFs are collected to form a matrix, which

is known as the participation matrix. If the right (Φ̂) and left

(Ψ̂) modal matrices of (8) are defined as Φ̂ = [φ̂1 . . . φ̂n],
Ψ̂ = [ψ̂1 . . . ψ̂n]

T , the participation matrix P , P ∈ R
n×n,

can be expressed as:

P = Ψ̂
T
◦ Φ̂ , (11)

where ◦ denotes the Hadamard product, i.e. the element-wise

multiplication, and T denotes the transpose matrix.

B. Participation Factors as Residues

Consider the Single-Input Single-Output (SISO) system

state space representation:

∆ẋ = As∆x+ bu1

w1 = c∆x ,
(12)

where b is the column vector of the input u1; c is the row

vector of the output w1. Then, the residue of system (12)

transfer function associated with the i-th mode is given by:

ri = c φ̂i ψ̂i b . (13)

That said, the PF of the k-th state in the i-th mode can

be viewed as the residue of system (12) transfer function

associated with the i-th mode, when the input is a perturbation

in the differential equation that defines ∆ẋk and the output is

∆xk. Indeed, if

c =
[

c1 . . . ck . . . cn

]

=
[

0 . . . 1 . . . 0
]

,

bT =
[

b1 . . . bk . . . bn

]T

=
[

0 . . . 1 . . . 0
]T

,

equation (13) becomes:

ri = ψ̂i,k φ̂k,i = pk,i . (14)

In the case of a Multiple-Input Multiple-Output (MIMO)

system representation, the PFs appear as the diagonal elements

of the emerging residue matrix. The ability to calculate only

a subset of all residue elements and acquire an approximate

but yet accurate measure of the contribution of system states

in system modes (and vice versa), features the physical im-

portance and the computational efficiency of the PFs.

C. Participation Analysis of Large-Scale Systems

For a system of small to medium size, one can efficiently

compute all the right and left eigenvectors and determine the

participation matrix from (11). However, a property of the

state matrix As is that it is dense. The standard algorithm for

the solution of the eigenvalue problem for dense matrices is

QR factorization, e.g. with LAPACK [19], which calculates all

eigenvalues and eigenvectors. The QR algorithm has compu-

tational complexity O(n3) and therefore, it is not practical for

large systems. For example, with the current typical processing

capacities, solution of the LEP for a dynamic model of the

ENTSO-E system that includes about 40k state variables (thus

leading to a dense As with about 1.6M elements) cannot be

solved with LAPACK and a memory error is returned [15].

On the other hand, the matrices A and B of the GEP

are sparse. A commonly utilized algorithm that is appropriate

for large sparse matrices is Arnoldi iteration and its variants,

e.g. with ARPACK [20] coupled with an efficient sparse

factorization solver such as KLU [21]). A library that has

also shown promising results is Z-PARES [22], which allows

determining the eigenvalues that lie in a domain of the com-

plex plane defined by the user. Apart from exploiting sparsity,

an advantage of these libraries is that they allow efficiently

calculating only a subset of the solution, i.e. the most critical

eigenvalues and associated eigenvectors. For this reason, in

this paper, we consider the modal participation analysis of the

GEP, i.e. the singular system (5).

As already mentioned, the main assumption of classical par-

ticipation analysis is that all eigenvalues are distinct. However,

it is common in the simulation of dynamical system models

that some eigenvalues are repeated. For small size systems, it

is feasible to perturb some parameters and avoid multiplicities.

But this is impractical for a real-world size system.

This paper provides the implementation of modal partici-

pation analysis for a power system with multiple eigenvalues.

The formulation of the PFs for the special cases of distinct

eigenvalues and multiple eigenvalues with algebraic multiplic-

ity equal to the geometric one is also extracted.

In the remainder of this subsection, we first derive the ana-

lytical solution of a singular system with multiple eigenvalues.

For this system, we then propose a new interpretation of the

PFs, which is valid for both GEP and LEP. Rewriting (5) as:

Bξ̇(t) = Aξ(t) , (15)

where t ∈ [0,∞), we can propose the following theorem.

Theorem 1. Consider the system (15) with initial condi-

tions ξ(0) and regular pencil sB −A. Let λi, i = 1, 2, ..., ν
be a finite eigenvalue of the pencil, where ν corresponds to

the number of Jordan blocks. Let also ni be the rank of the

corresponding Jordan block. We have
∑ν

i=1 ni = n, ν ≤ n.

Then, the general solution of (5) can be written as follows:

ξ(t) =
ν
∑

i=1

eλit

ni
∑

j=1

(

j
∑

σ=1

tσ−1ψ
(j−σ+1)
i Bξ(0)

)

φ
(j)
i , (16)

where φ
(j)
i , ψ

(j)
i denote the j-th (generalized) right, left

eigenvectors corresponding to the eigenvalue λi, respectively.

The proof of (16) is given in the appendix. From the proof

of Theorem 3.1, we arrive at the following proposition.

Proposition 1. Consider the system (5) with a regular

pencil. Let ξk(t) be the k-th element of ξ(t), with k ≤ n,

i.e. ξk is a state variable. Then the PF of ξk in the finite mode

λi is given by the sensitivity:

pk,i =
∂ξk(t)

∂eλit
. (17)
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The proof of (17) is given in the appendix.

The following comments are relevant:

(a) Since only the finite eigenvalues appear in (16), the partic-

ipation matrix of system (5) has dimensions (n+m)× ν.

In order to determine the PFs associated with the infinite

modes and obtain the full matrix, one can apply a special

Möbius transform, i.e. the dual transform, in (5) and

employ the eigenvectors associated to the zero eigenvalue

of the dual pencil ŝA−B, where ŝ = 1/s. Nevertheless,

infinite modes are not dynamics of interest in SSSA, thus

the complete analysis, even though it is interesting from

a mathematical viewpoint, it is not relevant for dynamical

system studies. For more information, the interested reader

can refer to [23].

(b) Consider (6) for n < k ≤ n +m, i.e. ξk is an algebraic

variable. Then ψiBξ(0) = 0. The m rightmost columns

of B which contain only zero elements, impose that

the PFs of the algebraic variables in the system finite

modes are found to be null. This is a consequence of

the fact that the coefficients of the first derivatives of

the algebraic variables are zero, which implies that the

algebraic variables introduce only infinite modes to the

system. Nevertheless, the algebraic variables constrain the

system and, in this sense, do participate in the system finite

modes. This will be further discussed in the next section,

where the participation of the algebraic variables is seen

through the PFs of the system states.

(c) As already discussed, the GEP (6) is preferable for large

networks and allows determining only the part of the

participation matrix that is associated with the most critical

modes. Let κ, κ ≤ ν, be the number of the calculated finite

eigenvalues. If the corresponding right and left modal

matrices are denoted with Φκ and Ψκ, respectively, then

using (17) the (critical) participation matrix can be always

expressed as:

P κ = Ψ
T
κ ◦ (BΦκ) =

[

P x

0m,κ

]

, (18)

where P x ⊂ P , P x ∈ C
n×κ. The matrix P x contains

all the information on the dynamics of interest and is the

matrix that is utilized in the remainder of the paper.

IV. PARTICIPATION FACTORS OF ALGEBRAIC VARIABLES

In this section, we introduce an approach to measure the

participation of algebraic variables in power system modes.

These can be algebraic variables included in the DAE system

model, or, in general, any algebraic outputs that is defined as

a function of the states and algebraic variables of the DAE

system.

Let us define the output vector w, w ∈ R
q such that:

w = h(x,y) ,

where h (h : Rn+m → R
q) is a nonlinear function of x, y.

Then differentiation around (x0,y0) yields:

∆w = hx∆x+ hy∆y , (19)

where hx = ∂h/∂x
∣

∣

(x0,y0
)
, hy = ∂h/∂y

∣

∣

(x0,y0
)
. Substitu-

tion of (7) to the last equation gives:

∆w = C∆x , (20)

where C = hx − hyg
−1
y gx, C ∈ R

q×n, is the output matrix.

Let ∆wµ be the µ-th system output. We propose the

following expression as the PF of ∆wµ in the mode λi:

πµ,i =
∂∆wµ

∂eλit
. (21)

From the state-space viewpoint, πµ,i expresses the residue

(or the joint observability/controllability) of the i-th mode,

when the input is, exactly as it holds for pk,i, a perturbation in

the differential equation that defines ∆ẋk. The output however

is ∆wµ, which can be, in principle, any function of the system

state variables. The fact that the perturbation that leads to (17)

and (21) is the same, is also the reason that πµ,i is called PF.

Proposition 2. Let the PF πµ,i be the µ-th row, i-th column

element of the participation matrix Π(w). Then:

Π(w) = CP x . (22)

Proof. Let cµ =
[

cµ,1 . . . cµ,n

]

be the µ-th row of C.

Then, we have for ∆wµ:

∆wµ = cµ∆x = cµ,1∆x1 + cµ,2∆x2 + · · ·+ cµ,n∆xn .

Partial differentiation over eλit leads to:

∂∆wµ

∂eλit
= cµ,1

∂∆x1
∂eλit

+ cµ,2
∂∆x2
∂eλit

+ · · ·+ cµ,n
∂∆xn
∂eλit

+

+
∂cµ,1
∂eλit

∆x1 +
∂cµ,2
∂eλit

∆x2 + · · ·+
∂cµ,n
∂eλit

∆xn

⇒ πµ,i = cµ,1p1,i + cµ2p2,i + · · ·+ cµnpn,i ,

where
∂cµ,1
∂eλit

=
∂cµ,2
∂eλit

= . . . =
∂cµ,n
∂eλit

= 0, since the elements

of C do not depend on functions of t. By applying the same

steps for all outputs and representing in matrix form, we arrive

at (22).

The proof is completed.

The main feature of (22) is that it allows defining the

participation matrix not only of the algebraic variables of the

DAE, but also of any defined output vector that is a function

of the system state and algebraic variables. One has only to

specify the gradients hx and hy at the operating point, and

then calculate the output matrix C. The proposed participation

matrix Π(w) provides meaningful information for the system

coupling that, to the best of the authors’ knowledge, has not

been exploited in the literature.

Remark 2. We enumerate the following important special

cases for the participation matrix of (22):

(a) State variables: If w = x, the gradients in (19) become

hx = In, hy = 0. The output matrix is C = In and

hence the participation matrix of the system states is, as

to be expected:

Π(x) = P x . (23)
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(b) Algebraic variables: If w = y, the gradients in (19)

become hx = 0, hy = Im. The output matrix is C =
−g−1

y gx. Thus:

Π(y) = −g−1
y gxP x , (24)

which is the participation matrix of the algebraic variables

in system modes included in the DAE model.

(c) Rates of change of state variables: If we have the output

w = ẋ = f(x,y), we obtain the participation matrix of

the derivatives of the state variables in system modes. The

Rate of Change of Frequency (RoCoF) of the synchronous

machines (ω̇G) is a relevant case. The gradients in (19)

become hx = fx, hy = fy . The output matrix is C = A.

Thus:

Π(ẋ) = AP x . (25)

(d) Parameters: Finally, consider the scalar output w = η,

where η is a defined parameter. If η appears only in

the j-th algebraic equation 0 = gj(x,y, η), then we can

obtain the participation vector of η in the system modes.

Linearization of the j-th algebraic equation around the

operating point yields:

0 = gjx∆x+ gjy∆y + gjη∆η , (26)

where gjx ∈ R
1×n, gjy ∈ R

1×m and gjη ∈ R6=0. Solving

(26) for ∆η and comparing with (19), we obtain that hx =
−gjx/g

j
η and hy = −gjy/g

j
η . The participation vector is

obtained from (22) for C = (−gjx + gjyg
−1
y gx)/g

j
η .

Notice, finally, that once the eigenvalue analysis is com-

pleted and the modal matrices are known, calculating the

proposed participation matrices involves few matrix multipli-

cations. From the computational burden viewpoint, the cost

of calculating the PFs is marginal compared to the eigenvalue

analysis.

V. CASE STUDIES

In this case study, we present two practical applications of

the proposed approach and show how defining PFs of algebraic

variables in system modes can help design more effective

and robust controllers. In particular, Section V-A is based

on the well-known two-area system [24] and shows how the

calculation of PFs can help select the most effective algebraic

variable to be measured to damp interarea oscillations. Section

V-B utilises a realistic detailed model of the all-island Irish

power system and shows how PFs can help define the impact

of a given system mode on the network. This second case

study also serves to discuss the robustness and the scalability

of our approach.

All simulations are carried using the Python-based software

tool DOME [25]. The version of DOME employed here is

based on Fedora Linux 28, Python 3.6.8, CVXOPT 1.2.2 [26],

KLU 1.3.8, and MAGMA 2.2.0 [27]. The hardware consists

of two 20-core 2.2 GHz Intel Xeon CPUs which are employed

for general matrix factorization, and one NVIDIA Tesla K80

GPU, which is employed for SSSA.

A. Two-Area System

The two-area system is depicted in Fig. 1. It comprises two

areas connected through a relatively weak tie; eleven buses

and four synchronous machines. Each generator is equipped

with an AVR of type IEEE DC-1 and a turbine governor.

The system feeds two loads connected at buses B7 and B9
and which are modelled as constant active and reactive power

consumptions.

25km 10km 10km 25km
110km110kmB1 B5

B2

B6 B7 B8 B9 B11 B3

B4

B10G1

G2

G3

G4

Area 1 Area 2

Fig. 1: Two-area four-machine system.

The system model has 52 state variables. For a system

with this dynamic order, we can efficiently calculate the

state matrix As. The most critical modes and the mostly

participating states in these modes are presented in Table

I. Area 1 presents a critical local mode −0.599 ± j6.604
with natural frequency 1.06 Hz and dominant state the rotor

speed ωG2. Area 2 presents a critical local mode as well,

which is −0.514 ± j6.843 with natural frequency 1.09 Hz

and dominant state the rotor speed ωG4. For these modes,

the damping ratio is > 5%. Finally, the most lightly damped

mode is −0.096 ± j3.581, which is an interarea mode with

natural frequency 0.57 Hz. The mostly participating state in

the interarea mode is the rotor speed ωG3.

TABLE I: Two-area system critical modes

Mode Freq. (Hz) Damping (%) x-dom. |p|max

−0.096± j3.581 0.57 2.67 ωG3 0.1696

−0.514± j6.843 1.09 7.50 ωG4 0.2945

−0.599± j6.604 1.06 9.04 ωG2 0.2530

The participation matrix of the algebraic variables for these

modes is calculated from (24). Note that in this section, each

πµ,i is divided over the Euclidean norm of the respective

output cµ, so that the results are normalized and comparable

according to the geometric approach. Of course, since the PFs

are a relative measure, one may apply any further normaliza-

tion, e.g. the maximum or the sum of the values to be equal

to 1.

We carry a simple test, to show how the proposed PFs of the

algebraic variables are linked to their sensitivities in eigenvalue

changes. We impose a perturbation in the active power and

voltage of the PV buses B1, B4, so that the most critical mode

−0.096± j3.581 changes by |dλ| = 3 · 10−5. The calculated

eigensensitivities |d∆yk|/|dλ| are compared with the PFs of

the algebraic variables P1, P4, v1, v4, in Table II. As expected,

a highly participating variable in a mode indicates that this

mode is sensitive to small variations of this variable.
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TABLE II: Sensitivity test for the interarea mode, |dλ| = 3 · 10−5.

yk (pu) πk,i |d∆yk| (pu)
|d∆yk|

|dλ|

P1 = 5.88 0.3642 0.43 · 10−3 14.42

P4 = 7.00 0.9766 0.54 · 10−3 18.00

v1 = 1.03 0.0036 0.27 · 10−4 0.90

v4 = 1.01 0.0028 0.11 · 10−4 0.35

For illustration, we now consider the simple example of

finding the participation vector of one system parameter. Let

P7 be the active power consumption of the load connected at

B7. Since P7 is also the active power injection at B7, we can

write the following algebraic equation (see Fig. 1):

0 = v7v6(G76 cos(θ7 − θ6) +B76 sin(θ7 − θ6))

+ v7v8(G78 cos(θ7 − θ8) +B78 sin(θ7 − θ8))− P7

= g(v6, v7, v8, θ6, θ7, θ8, P7) .

Linearization and solving for ∆P7 yields:

∆P7 =
( ∂g

∂v6
∆v6 +

∂g

∂v7
∆v7 +

∂g

∂v8
∆v8 +

∂g

∂θ6
∆θ6

+
∂g

∂θ7
∆θ7 +

∂g

∂θ8
∆θ8

)

,

where, the gradients are evaluated at (v06 , v
0
7 , v

0
8 , θ

0
6, θ

0
7, θ

0
8); we

substituted ∂g/∂P7 = −1. Therefore, we obtain that hx = 0

and hy is the 1×m row vector which contains the gradients

calculated above in the indexes of v6, v7, v8, θ6, θ7, θ8; all

other elements of hy are zero. The output matrix C is C =
−hyg

−1
y gx, C ∈ R

1×n. The resulting participation matrix is

given by (22).

TABLE III: Participation factors, two-area system.

Mode −0.096± j3.581 −0.514± j6.843 −0.599± j6.604

Output Dom. |π| Dom. |π| Dom. |π|

vB v11 0.0192 v8 0.0375 v7 0.0345

θB θ8 0.1429 θ4 0.2385 θ6 0.2250

ωB ω8 0.2065 ω10 0.3247 ω6 0.3113

PB P6 0.1447 P10 0.2518 P6 0.2719

QB Q11 0.0258 Q8 0.0544 Q10 0.0631

ω̇G ω̇G4 0.0401 ω̇G4 0.0917 ω̇G2 0.0539

ωcoi ωcoi,2 0.1700 ωcoi,2 0.3151 ωcoi,1 0.3137

The active (PB) and reactive (QB) power injections on all

system buses, as well as the COI speeds (ωcoi) of the two areas

are defined as outputs and their PFs are obtained from (22).

Correspondingly, the system bus voltages (vB), angles (θB)

and frequencies (ωB) are included in the algebraic variables

of the DAEs. Thus, their PFs are determined from (24). With

this aim, ideal frequency estimations of the system buses are

obtained by employing the Frequency Divider Formula (FDF)

proposed in [28]. The formulation of the FDF in per units is

as follows:

BBB∆ωB = −BBG∆ωG ,

where ∆ωB are the estimated bus frequency deviations with

respect to the reference synchronous speed; ∆ωG are the

synchronous machines rotor speed deviations; and BBB, BBG

are system susceptance matrices that include the internal

reactances of the synchronous machines. Finally, the PFs of

the RoCoF of the synchronous machines (ω̇G) are determined

from (25).

The mostly participating of the above variables in the system

critical modes are summarized in Table III. We observe that

the bus voltages, the reactive power injections and the RoCoF

have a low participation in the system critical modes. Mostly

participating in the interarea mode is the bus frequency ω8.

Similarly, the bus frequency ω10 is the one mostly participating

in the local mode of Area 2. Finally, the COI speed of Area

1 (ωcoi,1) is the one mostly participating in −0.599± j6.604,

which is a local mode of this area.

Finally, we show how the calculated PFs can be utilized

to improve the dynamic behaviour of the system. As already

discussed, the critical mode of the system is the interarea mode

and the mostly participating variable (Table III) is the bus

frequency ω8. We install a Static Var Compensator (SVC)

at B8 with a POD loop [14]. The POD input signal is ω8.

The POD output is considered as an additional input to the

SVC voltage reference algebraic equation. The results are

summarized in Table IV. Eigenvalue analysis shows that, after

the addition of the controller, the system is stable and no mode

is poorly damped.

TABLE IV: Impact of SVC-POD installation in the critical mode.

SVC-POD Mode Damping (%)

No −0.096± j3.581 2.67

Yes −0.256± j3.562 7.16

B. All-Island Irish Transmission System

In this section we consider a real-world model of the all-

island Irish power system. The topology and the steady-state

operation data of the system have been provided by the Irish

transmission system operator, EirGrid Group, whereas the

dynamic data have been defined based on our knowledge

about the technology of the generators and the controllers. The

system consists of 1,479 buses, B1 . . .B1479, 796 lines, 1055

transformers, 245 loads, 22 synchronous machines G1 . . .G22,

with AVRs and turbine governors, 6 PSSs and 176 wind power

plants.

The dynamic order of the system is 1,480. The eigenvalue

analysis shows that the system is stable when subject to small

disturbances. The system presents both local machine modes

and intermachine modes. Recall that, a local machine mode

refers to a single machine oscillating against the rest of the

system. On the other hand, an intermachine mode refers to a

group of machines of the same area oscillating against each

other [24]. In the remainder of this section we show two

modes with different damping ratios and natural frequencies.

The examined modes are summarized in Table V.

Mode 1 has eigenvalue −0.586 ± j7.248, with natural

frequency 1.16 Hz and damping ratio 8.06%. The dominant

states in this mode are the rotor angle and speed of the

synchronous machine G16. The PFs of these states sum to

0.8912. The mode is local with G16 oscillating against the

6



|π|max

0

Fig. 2: Participation of bus active power injections in Mode 1 for the
all-island Irish system.

rest of the system. Mode 2 has eigenvalue −0.722 ± j4.618,

with frequency 0.74 Hz and damping ratio 15.44 %. The

mostly participating states are the rotor speed and angle of

the synchronous machine G2. The corresponding PFs sum to

0.5755. The natural frequency and the distribution of the PFs

indicate that this is an intermachine mode [24].

The Python module graph-tool [29] is utilized to generate

a graph of the studied network. The resulting graph has

1,479 vertices, which correspond to the system buses and

1,851 edges, which correspond to lines and transformers.

Note that the coordinates of the graph vertices and edges

do not represent the actual geography of the system. For the

considered modes, we calculate the participation matrices of

the bus active power injections. Then, the sizes and the colors

of the graph vertices are adjusted with respect to the magnitude

of the calculated PFs.

The generated graph with the PFs of all bus active power

injections in the local Mode 1 is illustrated in Fig. 2. The

mostly participating active power injection is the one of the

bus B552, that is adjacent to the machine G16, with |π|max =
0.3218. The PFs of all bus active power injections in the

intermachine Mode 2 is illustrated in Fig. 3. The mostly

participating active power injection is the one of the bus

B1405, that is close to the synchronous machine G2, with

TABLE V: Examined modes, Irish system.

Mode Mode 1 Mode 2

Eigenvalue −0.586± j7.248 −0.722± j4.618

Frequency (Hz) 1.16 0.74

Damping (%) 8.06 15.44

Type Local Intermachine

Dominant States State |p|max State |p|max

1st δG16 0.4456 ωG2 0.2883

2nd ωG16 0.4456 δG2 0.2872

|π|max

0

Fig. 3: Participation of bus active power injections in Mode 2 for the
all-island Irish system.

|π|max = 0.2508. Figure 3 shows that the lower frequency

oscillations spread over the power system. In fact, there are

several buses in a large area that have a high participation in

the intermachine mode.

We complete this case study with a discussion on the

computational burden of the proposed approach to calculate

PFs. Table VI shows a comparison of the LEP solved with

LAPACK and the GEP solved with ARPACK, for the same

Irish system. Regarding the participation analysis, once the

eigenvalue analysis is completed, the cost of calculating the

proposed PFs is negligible.

TABLE VI: Eigenanalysis computational burden, Irish system.

Problem LEP GEP

Pencil sIn −As sB −A

Solver Schur method Arnoldi iteration

Library LAPACK ARPACK

Size 1480× 1480 8578× 8578

Eigenvalues All 20 LR2

Eigen-analysis completed in [s] 14.50 0.68

P (x) computed in [s] 0.08 0.39

Based on the results of Table VI, the following remarks are

relevant:

• LEP (LAPACK): All finite eigenvalues and eigenvectors

all calculated. The matrix multiplications and transposi-

tions required to compute P x are completed in 0.08 s.

The calculation of the proposed matrix Π(w) requires

multiplication with matrix C. The multiplication time

depends on the size of matrix C, but for most of the

cases is marginal.

• GEP (ARPACK): In this case, only the 20 eigenvalues

with the largest real value are calculated. For the calcu-

lation of the eigenvalues, a Cayley transform has been

2LR: Largest real value.
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considered with shift and anti-shift parameters σ = 0.01,

κ = −0.05, respectively. Since it takes advantage of the

sparsity of the matrix pencil, the eigenvalue analysis is

completed much faster. Note that solving the GEP with

a sparse solver is the only solution possible if a very

large dynamic system is to be considered [15]. The matrix

multiplications and transpositions required to compute

P x are completed in 0.39 s.

In conclusion, the proposed approach allows exploiting the

sparsity of the GEP matrix pencil and can lead to a significant

speedup, provided that a proper eigenvalue solver is employed.

VI. CONCLUSIONS

The paper proposes a systematic analytical approach to

quantify the participation of the algebraic variables of a power

system model, and in general of any function of the system

variables in the system modes, through the definition of output

vectors of the system’s state-space formulation. The proposed

approach, which describes an alternative interpretation of the

PFs as eigensensitivities, provides a high flexibility, since it

allows determining PFs of states, algebraic variables, rates of

change of system variables, as well as of system parameters.

In future work, we aim at utilizing the approach proposed here

to design robust wide-area controllers.

APPENDIX

This appendix provides the proofs of (16) and (17).

Proof of Theorem 1. Since sB −A is regular, there exist

non-singular matrices Ψ, Φ ∈ C
(n+m)×(n+m) such that

ΨBΦ = In ⊕Hm

ΨAΦ = Jn ⊕ Im ,
(27)

where Jn, Jn ∈ C
n×n is the Jordan matrix related to the finite

eigenvalues, Hm ∈ C
m×m is a nilpotent matrix constructed

by using the algebraic multiplicity of the infinite eigenvalue.

By substituting the transformation

ξ(t) = Φz(t) (28)

into (15), and by multiplying by Ψ we obtain

ΨBΦż(t) = ΨAΦz(t) . (29)

Let Φn, Φm be the matrices that contain all right eigenvectors

of the finite, and infinite eigenvalues respectively. Then by

setting z = [zn zm]T , Φ = [Φn Φm], with zn ∈ C
n×1,

zm ∈ C
m×1, and using (27), we arrive at two subsystems of

(29):

żn(t) = Jnzn(t) ;

Hmżm(t) = zm(t) .

The first subsystem has solution:

zn(t) = eJntzn(0) . (30)

For the second subsystem let m∗ be the index of the nilpotent

matrix Hm, i.e. Hm∗

m = 0m,m. Then we can obtain the

following matrix equations:

Hmżm(t) = zm(t)

H2
mz̈m(t) =Hmżm(t)

...

Hm∗−1
m z(m∗−1)

m (t) =Hm∗−2
m z(m∗−2)

m (t)

Hm∗

m z(m∗)
m (t) =Hm∗−1

m z(m∗−1)
m (t) .

By taking the sum of the above equations we arrive at the

following solution for the second subsystem:

zm(t) = 0m,1 . (31)

By using (31) in (28), we obtain:

ξ(t) =
[

Φn Φm

]

[

zn(t)

0m,1

]

= Φnzn(t) . (32)

Substitution of (30) in the last equation yields:

ξ(t) = Φne
Jntzn(0) . (33)

The matrix Jn has the Jordan canonical form. In addition,

eJnt is the matrix exponential of Jnt.
Let Ψn, Ψm be the matrices that contain all left eigenvec-

tors of the finite, and infinite eigenvalues respectively. Then

by setting Ψ = [Ψn Ψm]T , and making use of (27) we have

that ΨnBΦn = In. By multiplying (32) with ΨnB we have:

ΨnBξ(t) = ΨnBΦnzn(t) ,

or, equivalently, zn(t) = ΨnBξ(t). Hence,

zn(0) = ΨnBξ(0) .

If we replace the above expression in the general solution (33)

we have:

ξ(t) = Φne
JntΨnBξ(0) .

If in the above equation we substitute:

Φn = [φ
(n1)
1 . . . φ

(1)
1 . . . φ(nv)

ν . . . φ(1)
ν ] ,

Ψn = [ψ
(n1)
1 . . . ψ

(1)
1 . . . ψ(nv)

ν . . . ψ(1)
ν ]T ,

we arrive at (16).

The proof is completed.

Proof of Proposition 1. From the general solution (16), the

evolution of ξk(t) is:

ξk(t) =

ν
∑

i=1

eλit

ni
∑

j=1

(

j
∑

σ=1

tσ−1ψ
(j−σ+1)
i Bξ(0)

)

φ
(j)
k,i , (34)

where φk,i
(j) ∈ φ

(j)
i . Partial differentiation of (34) with

respect to eλit leads to:

∂ξk(t)

∂eλit
=

ni
∑

j=1

(

j
∑

σ=1

tσ−1ψ
(j−σ+1)
i Bξ(0)

)

φ
(j)
k,i . (35)
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We are interested in calculating the PF at t→ 0. Substitution

in (35) yields:

∂ξk(t)

∂eλit
= ψ

(1)
i Bξ(0)φ

(1)
k,i . (36)

The PF of ξk in the finite mode λi is given by (36) by applying

appropriate initial conditions, i.e. ξk(0) = 1, ξh(0) = 0, h 6= k

[1]. Since k ≤ n, we have ψ
(1)
i Bξ(0) = ψ

(1)
i,k . Substitution in

(36) gives:

∂ξk(t)

∂eλit
= ψ

(1)
i Bξ(0)φ

(1)
k,i = ψ

(1)
i,kφ

(1)
k,i = pk,i. (37)

In the special case that the eigenvectors form a complete

basis for the rational vector space of the matrix pencil, i.e. all

eigenvalues are either distinct or their algebraic multiplicity is

equal with the geometric, we have ni = 1, ν = n, and thus

φ
(1)
i,k = φi,k, ψ

(1)
i,k = ψi,k in (37).

The proof is completed.
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