
2026 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 4, NOVEMBER 2005

Locational Marginal Price Sensitivities
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Abstract—Within an optimal power flow market clearing frame-
work, this paper provides expressions to compute the sensitivities
of locational marginal prices with respect to power demands. Sen-
sitivities with respect to other parameters can also be obtained.
An example and a case study are used to illustrate the expressions
derived.

Index Terms—Locational marginal prices, optimal power flow,
sensitivities.

NOTATION

The main notation used throughout the paper is stated below
for quick reference. Other symbols are defined as required in the
text.

A. Functions

Optimal power flow objective function.
Active power injection at bus .
Reactive power injection at bus .
Complex power flow magnitude through line .

B. Variables

Active power generation at bus .
Reactive power generation at bus .
Voltage magnitude at bus .
Voltage angle at bus .

C. Multipliers

Locational marginal price at bus .

D. Constants

Network or generator related constant.
Active power demand at bus .
Reactive power demand at bus .
Number .

E. Sets

Set of active inequality constraints.
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Set of buses adjacent to bus .

F. Numbers

Number of equality constraints.
Number of inequality constraints.
Cardinality of , i.e., the number of active inequality
constraints.
Number of buses.

G. Indices

, Indices for buses.
It should be noted that a variable, function, or parameter

written in bold without index is a vector form representing the
corresponding quantities. For example, the symbol represents
the vector of bus voltage angles. Moreover, a superscript “ ”
indicates upper bound, while a superscript “ ” indicates
lower bound.

I. INTRODUCTION

E LECTRICITY markets are reaching a reasonable level of
maturity, as they have evolved during the last decade. Mar-

kets, such as the New England ISO [1], the New York ISO
[2], or the PJM Interconnection [3], use or are planning to use
price-based unit commitment and optimal power flow (OPF) as
market clearing tools.

Locational marginal prices (LMPs) [4] are obtained within
an OPF framework, as they are the sensitivities (dual variables)
associated with the active power balance equations [5], [6].
However, it should be noted that these dual variables might
require adjustments to be interpreted as LMPs within some
market clearing frameworks. [7] and [8] provide a in-depth
analysis of LMPs.

If LMPs govern the electricity business, a fundamental
question arises: How LMPs change as parameters change?
Answering rigorously this question is the subject and novel
contribution of this paper.

We analyze changes in LMPs with respect to operational pa-
rameters, i.e., demands, generator cost parameters and voltage
bounds. Note, however, that changes with respect to line design
parameters (resistance, reactance, susceptance, and capacity)
and generator design parameters (capacity and minimum power
output) can be similarly computed.

The changes in LMPs as parameters vary provide insight on
the functioning and behavior of the electric energy system. This
sensitivity information might help producers and consumers to
establish their respective bidding strategies, and the regulator to
assess the degree of competitiveness of the electricity market.
However, note that sensitivities provide information for small
changes, not for large changes.
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Within an OPF market clearing framework, this paper pro-
vides expressions to compute the sensitivities of LMPs with
respect to power demands. Sensitivities with respect to other pa-
rameters are also easily derived.

Sensitivity calculations reported in the literature are gener-
ally related to the power flow problem [9]–[12], or the optimal
power flow problem involving sensitivities of the objective func-
tion and the primal variables with respect to parameters [13]. In
this paper, within an OPF framework, we provide formulas to
compute the sensitivities of dual variables (LMPs) with respect
to parameters, that is, sensitivities of sensitivities.

In the Appendix of pioneering conference paper [14], the sen-
sitivities of certain primal variables (power injections) with re-
spect to certain dual variables (LMPs) are calculated. The objec-
tive function is considered linear and only equality constraints
are taken into account. A perturbation technique similar to the
one used in this paper (and proposed in [15] and [16] in a math-
ematical programming framework) is used. Results reported in
[14] are used in [17] and [18]. However, our paper calculates
the sensitivities of any dual variable with respect to any param-
eter of the problem in a general nonlinear programming case
including equality and inequality constraints.

Reference [13] provides a perturbation approach to sensitivity
analysis similar to the one presented in [16] and pioneered in
[15], and applies it to the OPF problem. Although the technique
used in [13] allows analyzing both primal and dual variable sen-
sitivities, this paper focuses on the sensitivities pertaining to
primal variables. Within a vertically integrated electric utility
framework, paper [19] uses the results of [13] to carry out a val-
uation of the transmission impact in a resource bidding process.

The problem of sensitivity analysis in nonlinear program-
ming has been discussed by several authors, as, for example,
[20]–[27], and [15] and [16]. There are at least three ways of
deriving equations for the sensitivities: 1) the Lagrange multi-
plier equations of the constrained optimum (see [20]); 2) differ-
entiation of the Karush-Kuhn-Tucker conditions to obtain the
sensitivities of the objective function with respect to changes
in the parameters (see [22]); and 3) the extreme conditions of
a penalty function (see [20]). In the derivations below, we use
results reported in [15] and [16].

Background on electricity market can be found, for instance,
in [28]–[30].

This paper is organized as follows. Section II provides the
considered OPF formulation and defines the LMP sensitivities
of interest. Section III develops analytical linear expression to
compute LMP sensitivities. Section IV gives results from an il-
lustrative example to demonstrate the functioning of the expres-
sions derived. Section V gives results from a case study based
on the IEEE Reliability Test System [31]. Section VI provides
some relevant conclusions.

II. OPF FORMULATION AND LMP SENSITIVITIES

A general expression for the OPF has the form

(1)

subject to

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Equation (1) represents generation cost (the minus social wel-
fare in a market framework), and (2)–(3) are the active and reac-
tive power flow equations, respectively; constraints (4) enforce
transmission capacity limits of power lines, constraints (5)–(6),
(7)–(8), (9)–(10), and (11)–(12) are bounds on active power gen-
erations, reactive power generations, voltage magnitudes, and
voltage angles, respectively.

For simplicity we consider all demands inelastic. Note,
however, that elastic demand can be handled by the proposed
procedure.

Particularly, we develop analytical expressions to compute
the sensitivities

(13)

for all , ; that is, the sensitivity of any LMP
with respect to the demand in any bus. Nevertheless, any other
sensitivity can be obtained using the procedure described in
Section III. In the case study, we also provide the following
sensitivities:

(14)

where and are, respectively, the linear and quadratic cost
coefficients of generator .

To facilitate mathematical derivations, problem (1)–(12) is
rewritten in compact form as

(15)

subject to

(16)

(17)
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where variable vector , parameter vector ,
and

are the equality and inequality
constraints, respectively. Vector includes all optimization
variables ( , , , ), while vector includes all parameters
( , , ); and and are the Lagrange multiplier vectors
for equality and inequality constraints, respectively. Parameter
vector includes line resistances, reactances, susceptances and
capacities; generator capacities, minimum power outputs and
cost coefficients; and voltage magnitude and angle limits. Note
that , , and are the number of equality constraints, the
number of inequality constraints, the number of variables, and
the number of parameters, respectively.

III. GENERAL SENSITIVITY EXPRESSIONS

A. Optimality Conditions

Considering appropriate regularity assumption1 (see [32] or
[33]) on problem (15)–(17), the Karush–Kuhn–Tucker (KKT)
first-order optimality conditions for this problem are

(18)

(19)

(20)

(21)

(22)

As it is well known, the vectors and are called the
Lagrange multipliers. Conditions (19)–(20) are the primal fea-
sibility conditions, condition (21) is known as the complemen-
tary slackness condition, and condition (22) imposes the non-
negativity of the multipliers of the inequality constraints, and is
referred to as the dual feasibility condition.

The sensitivity analysis we propose requires an OPF solution.
If such solution is not available, the analysis cannot be carried
out. However, algorithms to solve the OPF in a robust manner
are nowadays available. Moreover, if an OPF solution cannot
be found, the OPF can be linearized, a solution obtained for this
linearized OPF, and the proposed sensitivity analysis performed.

B. Feasible Perturbation

To obtain sensitivity equations, we perturb or modify , ,
, , in such a way that the KKT conditions still hold [16].

Thus, to obtain the sensitivity equations we differentiate the ob-
jective function (15) and the optimality conditions (18)–(22), as
follows:

(23)

1For a given OPF solution, regularity entails that the gradient vectors of the
binding constraints at the solution are linearly independent. Non regular cases
are extensively analyzed in [16].

(24)

(25)

(26)

where is the set of binding (active) inequality constraints,
its cardinality, and all the matrices are evaluated at the optimal
solution, , , , . It should be noted that the derivation
above is based on results reported in [16].

It should also be noted that once an OPF solution is known,
binding inequality constraints are considered equality con-
straints and nonbinding ones are disregarded. Note that this
is appropriate as our analysis is just local. Note also that we
assume local convexity around an optimal OPF solution. How-
ever, it should be noted that the OPF is in general not a convex
problem, therefore local convexity around a solution might not
imply a globally optimal solution [34].

Observe that the degenerate case (binding constraints with
null multipliers) is not considered. Once the OPF solution is
known, degeneracy can be identified and eliminated. The de-
generate case is extensively analyzed in [16].

The linear system of (23)–(26) can be expressed in matrix
form as follows:

(27)
where the vectors and submatrices in (27) are defined below
(dimensions in parenthesis)

(28)

(29)

(30)

(31)
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(32)

(33)

(34)

(35)

Vector (28) is the gradient of the objective function with re-
spect to , vector (29) is the gradient on the objective func-
tion with respect to , submatrix (30) is the Hessian of the
Lagrangian ( ) with respect to

, submatrix (31) is the Hessian of the Lagrangian with respect
to and , submatrix (32) is the Jacobian of with respect
to , submatrix (33) is the Jacobian of with respect to

, submatrix (34) is the Jacobian of with respect to
for binding constraints, and submatrix (35) is the Jacobian of

with respect to for binding constraints.

C. Specific Sensitivity Expressions

To compute sensitivities with respect to the components of
the parameter vector , system (27) can be written as

(36)

where the matrices and are

(37)

(38)

and therefore

(39)

Replacing by the -dimensional identity matrix in (39)
all the derivatives are obtained. Thus, the matrix with all deriva-
tives with respect to parameters becomes

(40)

Expression (40) allows deriving sensitivities of the variables,
the multipliers (dual variables) and the objective function with
respect to all parameters. Therefore, the sensitivities of the
LMPs with respect to active and reactive power demands are
straightforwardly obtained using expression (40). The sim-
plicity of expression (40) should be noted.

The computational complexity of building matrices and
and evaluating expression (40) is moderate even for large scale
electric energy systems.

It should be noted that matrix is invertible in most prac-
tical cases, e.g., if the solution is regular and nondegenerate.
However, if it is not, alternative procedures (more computation-
ally involved) to obtain and/or analyze the sensitivities are avail-
able [16].

For linear programming problems the analysis remains valid.
Matrix is invertible provided that: 1) only binding constrains
are considered; 2) redundant constraints are removed; and 3)
nonbasic variables are eliminated. This implies that the con-
straint matrix of the linear programming problem reduces to the

Fig. 1. Six-bus system.

basis. Note finally that the basis is known once the linear pro-
gramming problem has been solved.

IV. ILLUSTRATIVE EXAMPLE

The 6-bus electric energy system depicted in Fig. 1 is consid-
ered in this example [29]. Data for this system is provided in the
Appendix.

The considered OPF formulation is stated as follows:

subject to

where , , , , , and (constants included in )
are the linear cost coefficient of generator , the quadratic cost
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TABLE I
OPF SOLUTION

coefficient of generator , the element of the real part of the
admittance matrix, the element of the imaginary part of the
admittance matrix, the charging susceptance of line , and the
transmission capacity of line , respectively. Additionally, it is
assumed that and .

The optimal solution of the OPF above is illustrated in Table I.
Sensitivities of LMPs with respect to active power demands

are provided in the matrix below. Units are ($/MWh)/(puMW).
If the desired units are ($/MWh)/(MW), the matrix below should
be divided by 100, the power base value

Note that in the expression above subscript refers to rows
while subscript refers to columns. Note also that the matrix
above is full as all LMPs change as any load increment occurs
(in any bus throughout the network).

The observations below are pertinent.
1) Matrix is symmetrical. This is a consequence

of the linearity of the analysis carried out and the regu-
larity of problem (15)–(17).

2) Being generator 2 the marginal generator, values in
column/row 2 are small and close to 0.1. The actual
values are related to the quadratic cost terms and the
fluctuations (around 0.1) are due to the losses.

3) The derivative of the LMP in bus 2 with respect to the
demand in that bus equals the derivative with respect to
demand of the marginal cost of the generator in that bus,
because this generator is the swing generator.

4) The highest price sensitivity occurs in bus 4. This indi-
cates that this bus might suffer a comparatively signifi-
cant price volatility. Observe that the high price volatility
of bus 4 is not a trivial property of the system, thus demon-
strating the added value of the proposed analysis.

It should be noted that if cost functions are linear, as is often
assumed, the derivatives with respect to demand at generator
swing buses are zero.

Sensitivities of LMPs with respect to reactive power demands
are provided in the matrix below. Units are ($/MWh)/(puMVAr).

Observe that these sensitivities are much smaller than the sen-
sitivities with respect to active power demands.

Note that the first three columns of the matrix of LMP deriva-
tives with respect reactive power demands are zero because re-
active power has no cost (in this particular example) and is in
between its bounds for each of the generators at the first three
buses.

Sensitivities with respect to the voltage single upper bound
are provided by the vector below. Sensitivities with respect to
the voltage single lower bound are zero, as no lower bound limit
is reached for voltages (see Table I). Units are ($/MWh)/(puV)

Observe that bus 4 presents the highest sensitivities with re-
spect to the reactive power demands and with respect to the
single upper bound for voltage magnitudes, which leads to the
conclusion that the demand in bus 4 plays a critical role in the
congestion of the network and confirms the volatility of .

Next, sensitivities with respect to generator (linear and
quadratic) cost parameters and are provided in the fol-
lowing matrices:

The first matrix above is dimensionless and units for the
second matrix are .

Observe that sensitivities of LMPs with respect to cost coef-
ficients are zero for generators working at their respective max-
imum or minimum power output.

Note also that the derivative of the LMP in bus 2 with respect
to the linear cost term of the generator in that bus is 1 because
that generator is the swing generator.

Finally, note that sensitivities with respect to line design pa-
rameters (resistance, reactance, susceptance and capacity) and
generator design parameters (capacity, minimum power output
and cost parameters) are also readily available.

V. CASE STUDY

A case study based on the IEEE RTS, depicted in Fig. 2, is
presented in this section. Topology, line, and generator data can
be found in [31, Fig. 1, Tables 12 and 9]). Fuel costs have been
taken from [35] and are $2.3/MBtu for #6 oil, $3.0/MBtu for #2
oil, $1.20/MBtu for coal, and $0.6/MBtu for nuclear.
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Fig. 2. IEEE 24-bus reliability test system [31].

Fig. 3. Sensitivities @� =@p and @� =@q for the 24-bus test system.

The methodology presented in the previous sections is ap-
plied to the IEEE Reliability Test System in this section. A se-
lection of the results obtained is described and discussed below.
Fig. 3 provides the LMP sensitivities of bus 21 (a typical gener-
ating bus) with respect to active and reactive power demands,
respectively; while Fig. 4 provides the same information for
bus 8 (a typical demand bus). Units for these sensitivities are
($/MWh)/(puMW) and ($/MWh)/(puMVAr), respectively.

As expected, sensitivities of LMPs with respect to active
power variations are significantly higher that sensitivities with
respect to reactive power increments.

Fig. 4. Sensitivities @� =@p and @� =@q for the 24-bus test system.

TABLE II
GENERATOR DATA

TABLE III
DEMAND DATA

TABLE IV
LINE DATA

It should be noted that the highest values of LMP sensitivities
with respect to active power demand variations are the diagonal
elements (i.e., ) of the corresponding sensitivity ma-
trix. Non-diagonal sensitivities depend directly on the transmis-
sion system topology and parameters, and can be used as a mea-
sure of the impact of demand variations in any bus throughout
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the power system on the network working conditions. For ex-
ample, LMP presents high sensitivities with respect to de-
mand variations in its adjacent buses, while the sensitivity is
relatively low for a demand variation in bus 7, which is electri-
cally far away from bus 21. On the other hand, LMP presents
a relatively significant sensitivity with respect to the demand
variation in adjacent bus 7, while suffering a homogeneous and
relativity weak impact from demand variation in the remaining
buses.

VI. CONCLUSION

This paper provides simple analytical expressions to com-
pute LMP sensitivities with respect to changes in demands
throughout an electric power network. Not only prices but their
sensitivities with respect to demands constitute fundamental in-
formation in nowadays mature electricity markets. An example
and a case study are used to illustrate the sensitivity formulas
derived.

APPENDIX

DATA FOR THE SIX-BUS SYSTEM

Generator, demand and line data are provided in Tables II–IV,
respectively. As it is customary, the considered three-phase
power base is 100 MVA.
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