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Abstract—This paper presents and compares four solar ir-
radiance models for short-term power system analysis. Three
of these models can be found in the literature but are based
on approximations and shortcomings, which are duly discussed.
The fourth model is novel and is formulated through stochastic
differential equations with jumps. The case study illustrates
the ability of the proposed solar irradiance model to generate
synthetic processes that reproduce the stochastic properties of
flickering events taken from measurement data.

Index Terms—Solar irradiance, clear-sky index, Poisson pro-
cess, stochastic differential equations.

I. INTRODUCTION

A. Motivation

With an installed capacity that has doubled in the last three
years, solar Photovoltaic (PV) generation is the fastest growing
energy source in power systems worldwide [1]. Solar genera-
tion is renewable and eco-friendly but also highly volatile due
to the position of the sun and clouds changing [2]. The impact
of solar generation fluctuations on the dynamic behavior
of power systems has not been thoroughly investigated and
remains a relevant research question. Accurate models are
required to represent the solar irradiance fluctuations in power
system simulations. This paper addresses this modeling need.

B. Literature Review

The output of PV solar power plants naturally changes
throughout the day because of the daily path the sun follows
across the sky. During sunrise and sunset the output of the PV
plant will change by about 10% in just 15 min. The daily sun
path can be easily and accurately predicted. On the other hand,
PV power plants are also a significant source of intermittency
due to cloud coverage. The change in solar irradiance caused
by cloud movement can be over 60% of the peak irradiance
within a few seconds [3]. These variations can be smoothed
and their transient effects minimized if considering a large PV
power plant or an aggregated model of several geographically
distributed plants [2]. However, if a single PV power plant
covers a relatively small area, e.g., in microgrid applications,
its power output fluctuations have to be properly modelled [4].

Based on the discussion above, solar irradiance variations
can be divided into a deterministic component and a stochas-
tic one. The deterministic component is the variations at a
minutely or hourly scale due to the daily apparent movement
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of the sun. This trajectory can be accurately predicted based
on location, time of year and day using clear-sky irradiance
models [5], [6]. The stochastic variability is dependent on
the cloud coverage and can be expressed using the clear-sky
index (the ratio between the global solar radiation and the
corresponding clear-sky radiation).

In the dynamic analysis of power systems with PV gen-
eration, the solar irradiance is either assumed to be constant
[7], [8] or to vary with random steps [9]–[11]. These models
do not capture the actual intermittency of the solar irradiance.
Measurement data has to be utilized to build more accurate
models.

In [12], the solar irradiance variability is modeled by com-
bining a Poisson jump process and an Autoregressive Moving
Average (ARMA) model. Stochastic Differential Equations
(SDEs) with jumps are defined in [4] for modeling the clear-
sky index. Both these methods define model parameters based
on measurements. However, these models do not adequately
capture the volatility of the solar irradiance in the seconds to
minutes time scale.

C. Contributions

The contributions of this paper are twofold.
• To describe three models of solar irradiance volatility

previously presented in [10], [12], and [4], respectively,
and discuss the shortcomings of such models.

• To propose a novel model of the clear-sky index for short-
term dynamic analysis.

In the proposed model, clear-sky conditions are represented
through a SDE and the jumps caused by cloud movements
are simulated with two jump diffusion processes. The paper
also shows how the proposed approach overcomes the issues
of the other models.

D. Organization

The reminder of this work is organized as follows. Sec-
tion II describes the solar irradiance measurement data utilized
throughout the paper and outlines the modeling of solar
irradiance. Section III presents four solar irradiance models
and Section IV shows how the proposed model can be used
to generate synthetic solar irradiance processes that accurately
capture the intermittent behaviour of real-world data. Finally,
Section V draws conclusions and outlines relevant areas for
future work.
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II. MODELING OF SOLAR IRRADIANCE

This section presents the procedure to identify the de-
terministic and stochastic part of the solar irradiance from
measurement data. With this aim and for further analysis in
the paper, the solar irradiance data collected by the National
Renewable Energy Laboratory (NREL), gathered in Kalaeloa,
Hawaii, are used [13]. This data set consists of one year of
measurements gathered with a 1 Hz sampling frequency from
April 2010 to March 2011. Each day consists of measurements
from 5am to 8pm.

Irradiance is a measure of the power of sunlight (W/m2).
The power output of a PV panel is proportional to the
solar irradiance that hits the panel. Figure 1 shows the
solar irradiance measurements over three whole days, with
different clouding conditions. The effective Global Horizontal
Irradiance (GHI) on the solar panel can be modeled in two
parts. The deterministic part, which is the estimated clear-sky
irradiance based on the position of the sun and the stochastic
part, dependent on the cloud movement.
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Fig. 1. Measured solar irradiance [13] and estimated clear-sky global solar
irradiance using (2).

The temporal variability of solar irradiance, due to cloud
coverage, can be modeled through the clear-sky index, k. This
is defined as the ratio between the measured GHI, G, and the
estimated global horizontal clear-sky irradiance, GC :

k =
G

GC
. (1)

The clear-sky index for the three days in Fig. 1 is shown in
Fig. 2.

The clear-sky global solar irradiance is the maximum ir-
radiance arriving at earth’s surface at a specific location and
time, i.e., when no clouds are present. The clear-sky irradiance
depends on the site, the solar elevation angle and various
atmospheric conditions [6].

A number of models of varying complexity have been
suggested in the literature to model the clear-sky irradiance. In
this paper, a clear-sky model of the same form as the Adnot-
Bourges-Campana-Gicquel model is used [5]:

GC = a · cos(z)b , (2)
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Fig. 2. Clear-sky index found for the measured solar irradiance data shown
in Fig. 1. In some cases, the clear-sky index becomes bigger than zero during
flickering conditions. This is due to cloud enhancement, i.e., sunlight being
reflected by surrounding clouds.

where z is the zenith angle, which is estimated based on
the location and time of day. The parameters a and b are
determined by fitting equation (2) to the measured data for
clear-sky days [6]. These coefficients change day by day and
are thus found for each clear day of the data set. For the
remaining days, a and b coefficients are estimated based on
the parameters for the clear days.

The data sets of clear-sky indexes for one day are limited
by the sunrise and sunset, that is when GC(t) > 0. The low
values of GHI occurring just after sunrise and sunset result
in higher uncertainties in the clear-sky index [14]. Because of
this, only solar irradiance data from 8am to 5pm are used.

III. MODELS OF THE CLEAR-SKY INDEX

This section presents four models to model the fluctuations
of the clear-sky index. The first three models have been pre-
sented in the literature to represent solar irradiance fluctuations
for the short-term (seconds-to-minutes time scale) analysis of
power systems. The fourth model, which is proposed in this
paper, addresses the shortcomings of the available models and
proposes a novel way to reproduce the jumps in the clear-sky
index.

A. Model I

This model is a simple way to represent the clear-sky
index variations in simulation [10], [11]. Such variations are
represented by a random signal between 1 and 0.4, with 5
second steps. Figure 3 shows an example of a simulated clear-
sky index obtained with Model I. The range of the jump size
and the waiting time between jumps can be changed to fit
different locations. However, it is not possible to vary the
waiting time between consecutive jumps or to consider the
correlation of jump amplitudes.

B. Model II

This model, presented in [12], as well as the following two
models, split the representation of the clear-sky index into two
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Fig. 3. Clear-sky index generated with Model I.

parts:
1. The baseline of the clear-sky index varying around 1,

which models the clear-sky condition.
2. The jumps of the clear-sky index due to cloud coverage.

The baseline is modeled using an Autoregressive Moving
Average (ARMA) model. ARMA models are discrete, with
a fixed time step that must match the sampling interval
of the data. Measured solar irradiance data sampled every
minute is used to define the parameters of the model. In [12],
interpolation is used to convert the model from a time-step of
one minute to one second.

The number of cloud events E (jumps) are modeled using a
Poisson random variable, with the mean λ and the probability
density function:

f(x, λ) =
λx

x!
exp(−λ) , (3)

where x = 0, 1, 2.... The inter-event waiting time, i.e., the
time between cloud events, is itself a random variable with an
exponential distribution with mean µW :

fW (t) =
1

µW
exp(−t/µW ) , (4)

where t ≥ 0. Finally, the duration TD of a cloud event is
assumed to be exponentially distributed with mean µD. A
detailed description of how the parameters for the cloud events
are derived can be found in [12].

In the following, the ARMA model is substituted with an
Ornstein-Uhlenbeck Stochastic Differential Equation (SDE) to
illustrate the properties of this model. This substitution has no
side effect as the variations of the baseline are minimal in the
considered time scale. The SDE is defined as:

dX(t) = θ(µ−X(t))dt+ σdW (t) , (5)

where µ, θ > 0 and σ > 0 are parameters and W (t) is a
Wiener process. The process described by (5) is a continuous-
time equivalent of an ARMA(1,0) process. Models III and IV,
which are discussed below, also utilize the process in (5) to
represent the stochastic clear-sky conditions.

Figure 4 shows an example of a simulated clear-sky index,
generated with Model II and with the parameters of the jump
process that represent the spring data set, i.e., λ = 7.4178,
µW = 46.5186 and µD = 54.0616 [12]. In this model, the
jump amplitude is the same for all cloud events, which is not
realistic.
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Fig. 4. Clear-sky index generated with Model II.

C. Model III

This model was presented in [4] and uses jump diffusion
processes, i.e., SDEs with jumps, to represent the clear-sky
index. A general jump diffusion process is defined as:

dY (t) = a(Y (t), t) + b(Y (t), t)dW (t) + ξdJ(t) , (6)

where a(Y (t), t) and b(Y (t), t) are the drift and diffusion
terms, respectively; ξ is a jump size that is assumed to be
a normally distributed random number, ξ ∼ N(µξ, σξ); and
J(t) is a Poisson process with jump rate λ, as defined in (3).
In the following, for comparison, it is assumed that the first
two terms on the right-hand side of (6) represent an Ornstein-
Uhlenbeck process, as in (5).

In [4], three scenarios are modeled: cloudy, flickering and
sunny. For the cloudy and sunny scenarios, no jumps are
considered (ξ = 0). Then, a non-parametric estimation method
is used for estimating the parameters of the model. Figure 5
shows an example of a simulated clear-sky index in the flick-
ering state obtained with Model III. The parameters defined
in [4] for the flickering state are used, namely, λ = 0.01,
σξ = 0.028 and µξ = 0.7. The number of times the clear-sky
index data crosses its mean value (∼ 0.7) is used for defining
the jump rate λ. This assumption clearly prevents modeling
any jump that is smaller than the threshold defined by the
mean value.
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Fig. 5. Clear-sky index generated with Model III.

D. Model IV (Proposed Model)

If the clear-sky indexes generated using Models I to III
above are compared with measurement data, two limitations
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become apparent. Firstly, they are based on the whole data set,
not on the flickering cloudy conditions solely. For this reason,
these models cannot capture the dynamics of fast variations in
the time scale of seconds to minutes. Secondly, small jumps
of the clear-sky index are neglected.

The model proposed in this section is aimed at capturing
clear-sky index variations for flickering clouding events over
the time scale of seconds to minutes. The proposed method
utilizes the Ornstein-Uhlenbeck SDE in (5) to represent the
clear-sky stochastic variations in the same way as is done in
Method II and III. Since the jumps do not depend on the
stochastic variable X(t) and are additive noise (see (6)), they
are added directly to the X(t), thus simplifying the numerical
integration. The interested reader can find the detailed proce-
dure to integrate jump diffusion processes in [15].

The jumps are modeled as:

H(t) = mP (t) , (7)

where m is the jump amplitude assumed to be a normally
distributed random number, namely, m ∼ N(µm, σ

2
m). P (t)

is a step function that can get only 0/1 values, where the
number of transitions per period are determined with Poisson
distribution with parameter λ as in (3). The duration of each
jump is determined with a normal distribution δ ∼ N(0, σ2

δ ).
In turn, each time P (t) switches from 0 to 1 (or to 1 to 0), it
remains constant for a time δ.

Visual inspection of the measured clear-sky index data
allows identifying two types of jumps of the clear-sky index:

• Jump model 1 (JM1): Big clouds passing over the PV
that block most of the solar irradiance.

• Jump model 2 (JM2): Small clouds that typically pass
by more frequently and only partially reduce the solar
irradiance.

The resulting proposed model of the clear-sky index is:

k(t) = X(t) + u(t)G(t) , (8)

where X(t) is defined by (5) and u(t) is a function that defines
the duration of a clouding event:

u(t) =

{
1 if ustart ≤ t ≤ ustop

0 otherwise ,
(9)

where ustart and ustop are the starting and ending times of
the clouding event and

G(t) =

{
−H1(t) +H2(t) if H1(t) > 0

−H2(t) otherwise ,
(10)

where H1(t) and H2(t) are JM1 and JM2, respectively.
The data set presented in Section II is used for evaluating

the parameters of the jump models. Five clouding events for
each month, for a total of 60 events, are analyzed. This analysis
leads to the parameters shown in Table I. These parameters are
utilised in the remainder of the paper to represent the jumps of
the clear-sky index for Model IV, as discussed in the following
section.

TABLE I
RANGE OF PARAMETERS FOR THE JUMP MODELS OF MODEL IV DEFINED

BASED ON THE ANALYSIS OF 60 CLOUDING EVENTS

Parameters Jump model 1 Jump model 2
λ 0.005− 0.05 0.05− 0.1
µm 0.6− 0.8 0
σ2
m 0.0005− 0.005 0.01− 0.1
σ2
δ 10− 50 1− 5

TABLE II
PARAMETERS OF MODEL IV FOR THE CLOUDING EVENT SHOWN IN FIG. 6

Parameters Jump model 1 Jump model 2
λ 0.007 0.05
µm 0.7 0
σ2
δ 30 3

σ2
m 0.05 0.001

IV. CASE STUDY

A cloud event from the data set presented in Section II is
considered in this section to illustrate Model IV and compare
its output with Models I to III discussed above. The event
occurred on the 1st of December 2010 and its duration was
450 s. The analysis of the behavior of the clear-sky index
during this event allows determining the parameters for the
clear-sky index through Model IV.
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Fig. 6. Clear-sky index obtained from measurement data [13] and clear-sky
model (2).

The first step is to identify the parameters for JM1. Three
periods of low clear-sky indexes can be clearly seen from
Fig. 6. From this values, one obtains that the number of jumps
in the unit of time (450 s), is 3/450 = 0.007. This value is
within the range given in Table I and, just for the sake of
example, the Poisson distribution parameter is set λ = 0.007.
With similar assumptions, the average and variance of the
jumps amplitudes are set to µm = 0.7 and σ2

m = 0.001,
respectively, whereas the variance that defines the distribution
of the duration of big clouding events is set to σ2

δ = 30.
The second step is to identify the parameters for JM2. Only

jumps in the measured clear-sky index that exceed 0.1 are
considered. Such a number is found to be 23 and, hence, λ =
23/450 ≈ 0.05 is used. The remaining parameters for JM2
are identified in the same way as the parameters for JM1. All
parameters of Model IV for the clouding event in Fig. 6 are
shown in Table II.

Using Model IV and the parameters of Table II, one can
generate synthetic scenarios that are comparable with the
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measurement data clouding event shown in Fig. 6. Two sample
processes are shown in Fig. 7. Visual inspection reveals that
the proposed model is able to reproduce the main features
of the clouding event of the measurement data in the time-
domain.
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Fig. 7. Two sample synthetic clear-sky index processes, generated with Model
IV and based on the cloud event shown in Fig. 6.

Figure 8 compares the probability distributions of the mea-
sured and simulated clear-sky indexes. Model I does not
capture the two peaks in the probability distribution, while
Models II and III capture the peaks but not the distribution
between the peaks. Model IV is able to better reproduce
the clear-sky indexes probability distribution and time-domain
behavior when compared to Models I-III.
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Fig. 8. Histograms of the clear-sky index during the clouding event shown
in Fig. 6 and the generated clear-sky indexes obtained with Models I-IV.

V. CONCLUSIONS

This paper deals with the modeling of solar irradiance for
short-term analysis of PV solar generation. Three models pre-
viously proposed in the literature are discussed. It is concluded
that these models do not fully capture the behavior of big
jumps of the solar irradiance and fail to model small jumps.

To cope with these issues, a novel model is proposed in
the paper based on measurement data. The model considers
individual cloudy flickering events. Jumps are grouped con-
sidering two thresholds. In this way, the proposed model is
able to capture both big jumps, caused by full cloud coverage,
and small jumps, due to partial blockage of the sun. Finally,
it is demonstrated how synthetic data can be generated to
replicate the actual behavior of an individual clouding event,
as observed in real-world measurements.

Future work will focus on studying the impact of the
flickering of the solar irradiance in power system models. This
is done by including the proposed solar irradiance model in
power system models with PV solar power plants.
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