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Algorithmic Construction of Lyapunov Functions
for Power System Stability Analysis

M. Anghel, F. Milano, Senior Member, IEEE, and A. Papachristodoulou, Member, IEEE

Abstract—We present a methodology for the algorithmic con-
struction of Lyapunov functions for the transient stability analysis
of classical power system models. The proposed methodology
uses recent advances in the theory of positive polynomials,
semidefinite programming, and sum of squares decomposition,
which have been powerful tools for the analysis of systems with
polynomial vector fields. In order to apply these techniques to
power grid systems described by trigonometric nonlinearities we
use an algebraic reformulation technique to recast the system’s
dynamics into a set of polynomial differential algebraic equations.
We demonstrate the application of these techniques to the
transient stability analysis of power systems by estimating the
region of attraction of the stable operating point. An algorithm
to compute the local stability Lyapunov function is described
together with an optimization algorithm designed to improve
this estimate.

Index Terms—Nonlinear systems, power system transient sta-
bility, sum of squares, Lyapunov methods, transient energy
function.

I. INTRODUCTION

A traditional approach to transient stability analysis of
power systems involves the numerical integration of the
nonlinear differential equations describing the complicated
interactions between its components. This method provides an
accurate description of transient phenomena but its computa-
tional cost prevents time-domain simulations from providing
real-time transient stability assessments and significantly con-
straints the number of cases which can be analyzed [1].

Alternative approaches to transient stability analysis have
been intensively explored [1]–[5]. Among the methods pro-
posed, the so-called direct methods avoid the expensive time-
domain integration of the postfault system dynamics. These
methods rely on the estimation of the stability domain of the
postfault equilibrium point. If the initial state of the postfault
system lies inside this stability domain, then we can assert
without numerically integrating the postfault trajectory that the
system will eventually converge to its postfault equilibrium
point. This inference is made by comparing the value of a
carefully chosen scalar state function (energy and Lyapunov
functions) at the clearing time to a critical value. In practice,
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finding analytical energy and Lyapunov functions for transient
stability analysis has encountered significant difficulties. For
example, the energy function approach to transient stability
analysis relies on two strong requirements. First, we should be
able to define an analytic energy function. This condition is
generally violated in practice since energy functions for power
systems with transfer conductances do not exist [5], [6]. Thus,
for systems with losses, no analytical expressions are available
for the estimated stability boundary of the operating point.
Second, we should reliably compute the critical energy value.
This task is also very difficult and can provide inaccurate
stability assessments if it returns the wrong critical value
[7]. The closest Unstable Equilibrium Point (UEP) method
provides sufficient but not necessary conditions for stability
and is conservative. This method requires the identification of
all equilibrium points located on the boundary of the stability
region. This requires a significant computational effort and
it is impractical, but it offers mathematical guarantees. The
controlling UEP provides less conservative estimates of the
stability boundary than the closest UEP. It is generally very
difficult to find the controlling UEP relative to the fault-on
trajectory [7]. Nevertheless, a systematic method called the
boundary of stability region based controlling UEP method
(BCU method) has been developed to find this point [8], [9].
Extensive numerical simulations have found counter-examples
[10] where the BCU method fails to give the correct answer,
predicting stability for systems that in fact suffer from second-
swing instability. Furthermore, it has been shown that the
mathematical assumptions of the BCU method do not hold
generically and that the theoretical guarantees for the BCU
method are, at best, questionable [6], [11].

On the other hand the Lyapunov function approach to
transient stability analysis has been traditionally considered
very difficult due to the lack of a systematic methodology for
constructing a Lyapunov function — see [12]–[14] for details
and a systematic survey of Lyapunov functions in power
system stability. The method of Zubov is an exception and, in
principle, can find a Lyapunov function and determine the ex-
act boundary of the Region Of Attraction (ROA). This method
requires the solution of a Partial Differential Equation (PDE)
which does not possess in general a closed form solution.
Moreover, for power system models, the existence of transfer
conductances has proven again to be a serious difficulty.
This is the case, for example, when using the multivariable
Popov stability criterion. This method can also construct a
genuine Lyapunov function, but requires the satisfaction of
sector conditions that break down in the presence of transfer
conductances — see, for example, [15]–[17] and references



therein.
More recent results in the literature, using a passivity-based

control methodology (see [18] and references therein), show
the existence of Lyapunov functions for small, but unspecified,
transfer conductances and require the solution of a formidable
system of PDEs (additionally, the angle differences in equilib-
rium are also required to be small). Another recent result [19],
which is close methodologically to our approach, estimates
the ROA for non-polynomial systems using truncated Taylor
expansions and semidefinite programming optimizations —
see also [20] for a comprehensive description of Sum Of
Squares (SOS) programming techniques for the estimation
and control of the domain of attraction of equilibrium points.
Alternatively, the method in [21] shows that a local energy-like
Lyapunov function exists, in general, for stable systems with
transfer conductances. Since these results are local in char-
acter, they can only determine the stability of the equilibrium
point and cannot be used to determine the domain of attraction.
They cannot be used in transient stability assessments or
in estimating the critical clearing time. The method in [22]
proposes a procedure to construct Lyapunov functions for
power systems with transfer conductances using dissipative
systems theory for large scale interconnected systems. This
approach is the only one that we found in the literature where
the condition of small transfer conductances is not necessary.
Nevertheless, it still contains some restrictive sector conditions
on the nonlinearities which translates into conditions on the
angle differences in equilibrium. It also contains many param-
eters that have to be finely tuned in order for the method to
converge. The method in [23] uses an extension of LaSalle’s
Invariance Principle to find extended Lyapunov functions for
power systems with transfer conductances. The derivative of
the extended Lyapunov function is not required to be always
negative semidefinite and can take positive values in some
bounded regions. This is a very interesting and promising
approach. Moreover, the authors propose a generic Lyapunov
function for multimachine systems. The conditions in the
Extended Invariance Principle require that the transfer conduc-
tances be small in order for the domain in which the derivative
is positive to be included in the bounded domain defined by
the Lyapunov function. Usually, these domain inclusions are
very difficult to compute numerically and the assumption that
the transfer conductances are small is necessary in order to
guarantee these conditions.

The main contribution of this paper is twofold. First, we
introduce an algorithm that constructs Lyapunov functions
for classical power system models. Second, we embed this
algorithm into an optimization loop which seeks to maximize
the estimate of the region of attraction of the stable operating
point. Our approach exploits recent system analysis methods
that have opened the path toward the algorithmic analysis
of nonlinear systems using Lyapunov methods [24]–[30].
We introduce three critical steps that are necessary in this
formulation. For dynamical systems described by polynomial
vector fields, the first step is to relax the non-negativity
conditions in Lyapunov’s theorem to appropriate Sum Of
Squares (SOS) conditions which can be tested efficiently using
semidefinite programming (SDP) [24]. The SOS technique

cannot be applied directly to power grid systems since they
are not defined by polynomial vector fields. Hence, the second
step is to generalize the SOS formulation to non-polynomial
systems using a procedure which recasts the original non-
polynomial system into a set of polynomial differential alge-
braic equations [27]. Finally, since the recasted system evolves
over algebraic equality constraints, we employ a fundamen-
tal theorem from real algebraic geometry [31] in order to
provide a convex relaxation of the equality and inequality
conditions required by Lyapunov’s theorem in this case [25].
The proposed algorithm is used to find Lyapunov functions and
estimates of the Region Of Attraction (ROA) for two power
system models. We formulate an optimization algorithm that
searches over the space of polynomial Lyapunov functions in
order to improve these estimates. For the power system model
without transfer conductances we compare the performance
of the proposed algorithm to the energy function method. We
apply the same analysis to the power system with transfer
conductances for which an exact energy function does not exist
but for which a Lyapunov function has been proposed in the
literature. A critical discussion of the method is also presented.
Extensions and a discussion of the steps required to generalize
this analysis to large scale systems are also described. The
SOS programming concepts introduced in this paper are not
new but, to the best of our knowledge, they have never been
applied to the transient stability analysis of power systems.

II. CLASSICAL POWER SYSTEM MODEL FOR TRANSIENT
STABILITY ANALYSIS

We will consider a power system consisting of n syn-
chronous generators. Each generator is represented by a con-
stant voltage behind a transient reactance, constant mechanical
power, and its dynamics are modeled by the swing equation.
The generator voltages are denoted by E1∠δ1, . . . , En∠δn,
where δ1, . . . , δn are the generator phase angles with respect to
the synchronously rotating frame. The magnitudes E1, . . . , En
are held constant during the transient in classical stability
studies. Furthermore, the loads are represented as constant,
passive impedances. Thus, the post fault mathematical model
for this system is described by the following set of nonlinear
differential equations [4]

δ̇i = ωi , (1a)

ω̇i = −λiωi +
1

Mi
(Pmi − Pei(δ)) , (1b)

where Mi is the generator inertia constant, λi = Di/Mi,
where Di is the generator damping coefficient, Pmi is me-
chanical power input, and Pei is the electrical power output
,

Pei(δ) = E2
iGii +

∑
j,j 6=i

EiEj [Bij sin(δi − δj)

+Gij cos(δi − δj)] ,
(2)

where Bij and Gij are the line admittances and conductances.
We assume that the dynamical system has a post-fault Stable

Equilibrium Point (SEP) given by (δs, ωs = 0) where δs is the
solution of the following set of nonlinear equations,

Pmi − Pei(δs) = 0, (3)
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where i = 1, . . . , (n − 1). Since the solution δs is invariant
to a uniform translation of the angles (δs → δs + c, where
c is a constant), we work with the relative angles with
respect to a reference node, for example, node n. Thus, the
angle subspace has dimension n− 1 and the one-dimensional
equilibrium manifold collapses to a point in an m = 2n − 1
phase space. Moreover, in the presence of uniform damping
(λi = λ, i = 1, . . . , n), including zero damping, we can
further reduce the phase space by working with relative speeds.
When this is the case the phase space dimension is m = 2n−2.
The changes that we need to make to the equations of motion
(1) in order to describe the dynamics of the relative angles and
speeds are obvious [4] and are not explicitly presented here.
Finally, we make the following change of variables δ → δ+δs
in (1) in order to transfer the stable equilibrium point to the
origin in phase space.

A. Model A: Power System Without Transfer Conductances
The first model has no transfer conductances and it is a

power system model which is discussed extensively in [5].
This example represents a three-machine system with machine
number 3 as the reference machine:

ẋ1 = x2

ẋ2 = − sin(x1)− 0.5 sin(x1 − x3)− 0.4x2

ẋ3 = x4

ẋ4 = −0.5 sin(x3)− 0.5 sin(x3 − x1)− 0.5x4 + 0.05

where x1 = δ1, x2 = ω1, x3 = δ2, and x4 = ω2. Since
there are no cosine terms in these equations, they model a
lossless system for which Gij = 0 in (2). The point xs =
(0.02, 0, 0.06, 0) is a SEP for this system. Using a change of
variables, x → x + xs, we shift the equilibrium point at the
origin. The dynamic equations in shifted coordinates are:

ẋ1 = x2

ẋ2 = 0.0200 cos(x1) cos(x3)− 0.0200 cos(x1)

− 0.9998 sin(x1)− 0.4000x2

+ 0.4996 cos(x1) sin(x3)− 0.4996 cos(x3) sin(x1)

+ 0.0200 sin(x1) sin(x3)

ẋ3 = x4

ẋ4 = 0.4996 cos(x3) sin(x1)− 0.0299 cos(x3)

− 0.4991 sin(x3)− 0.0200 cos(x1) cos(x3)

− 0.4996 cos(x1) sin(x3)− 0.5000x4

− 0.0200 sin(x1) sin(x3) + 0.0500 .

This model has an energy function [5] whose expression in
shifted coordinates is given by

V (x) = x2
2 + x2

4 − 0.100x3 − 1.9996 cos(x1)

− 0.9982 cos(x3) + 0.0400 sin(x1) + 0.0600 sin(x3)

− 0.9992 cos(x1) cos(x3) + 0.0400 cos(x1) sin(x3)

− 0.0400 cos(x3) sin(x1)− 0.9992 sin(x1) sin(x3)

− 0.0060 .

We will use both the closest UEP and the BCU method to
estimate the region of attraction and to compare these results
with the estimate obtained using SOS techniques.

B. Model B: Power System With Transfer Conductances

The second model has transfer conductances and represents
a two-machine versus infinite bus system which has been
discussed in [23]:

ẋ1 = x2

ẋ2 = 33.5849− 1.8868 cos(x1 − x3)− 5.2830 cos(x1)

− 16.9811 sin(x1 − x3)− 59.6226 sin(x1)

− 1.8868x2

ẋ3 = x4

ẋ4 = 11.3924 sin(x1 − x3)− 1.2658 cos(x1 − x3)

− 3.2278 cos(x3)− 1.2658x4 − 99.3671 sin(x3)

+ 48.4810

where x1 = δ1, x2 = ω1, x3 = δ2, and x4 = ω2. This model
has a stable equilibrium point at xs = (0.4680, 0, 0.4630, 0).
The dynamic equations in shifted coordinates are:

ẋ1 = x2

ẋ2 = 16.9715 cos(x1) sin(x3)− 31.6131 cos(x1)

− 50.8269 sin(x1)− 1.9718 cos(x1) cos(x3)

− 1.8868x2 − 16.9715 cos(x3) sin(x1)

− 1.9718 sin(x1) sin(x3) + 33.5849

ẋ3 = x4

ẋ4 = 11.3986 cos(x3) sin(x1)− 47.2723 cos(x3)

− 87.4618 sin(x3)− 1.2088 cos(x1) cos(x3)

− 11.3986 cos(x1) sin(x3)− 1.2658x4

− 1.2088 sin(x1) sin(x3) + 48.4810 .

In [23] an analytical Lyapunov function, W (x), is proposed
based on the extension of LaSalle’s invariance principle —
the expression for W (x) is too long to reproduce here. The
estimated ROA provided in [23] will be compared to the
estimate obtained in this paper using SOS techniques.

III. PROBLEM FORMULATION

We assume that our dynamical system is described by an
autonomous set of nonlinear equations (1) which we write
concisely as:

ẋ = f(x) , (4)

where x ∈ Rm is the state vector and the vector field
f : Rm → Rm satisfies the smoothness conditions for the
existence and uniqueness of solutions. For the classical n
generator model m = 2(n − 1) in the presence of uniform
damping and m = 2n − 1 otherwise. We assume without
loss of generality that the origin is a SEP for this system, i.e.
xs = 0 and f(xs) = 0.

We are now in a position to formulate the transient stability
analysis problem. Assume that at the end of a disturbance
controlled by fault-on dynamics, different from (4), the system
reaches the state xcl when the disturbance is finally cleared and
its dynamics controlled by (4). The transient stability question
is whether the trajectory x(t) for (4) with initial conditions
x(0) = xcl will converge to the stable equilibrium point of
interest, i.e. xs = 0, as time t goes to infinity. Mathematically,
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Fig. 1. Model A: The boundary of the region of attraction for the SEP
xs located at the origin (�). This boundary contains 12 hyperbolic UEPs (•).
The gray areas denote various estimates of the ROA based on energy function
methods (see text for details).

we can answer this question by deciding if xcl belongs to the
ROA of xs, defined as

A(xs) = {x ∈ Rm | lim
t→∞

φ(x, t) = xs}

where φ(x, t) is the system trajectory starting from x at time
t = 0. The boundary of the stability region A(xs) is called
the stability boundary of xs and is denoted by ∂A(xs).

In order to estimate the stability region, or region of attrac-
tion (ROA), of the SEP xs a mathematical characterization of
its stability boundary ∂A(xs) is necessary. Under some generic
mathematical conditions, it can be shown that for a fairly large
class of nonlinear autonomous dynamical systems the stability
boundary consists of the union of the stable manifolds of
all unstable equilibrium points (and/or closed orbits) on the
stability boundary [5], [32], [33].

For example, for model A, Fig. 1 shows the intersection
of the stability boundary ∂A(xs) with the angle subspace
{δ1, 0, δ2, 0}. There are 12 hyperbolic equilibrium points (•)
lying on the stability boundary of xs (�) — the hyperbolicity
of equilibrium points of the classical power system model
is generic [5]. Four more UEPs are also shown (◦). The
closest UEP xu1 defines a set {x | V (x) < V (xu1)} which
contains multiple connected components (dark gray areas).
The connected component containing the SEP xs estimates
its stability region according to the closest UEP method. If
the fault-on trajectory xf (t) intersects the stability boundary
∂A(xs) by crossing the stable manifold of xu2, then this point
is the controlling UEP relative to the fault-on trajectory. The
set defined by {x | V (x) < V (xu2)} (light gray areas) defines
a local approximation to the stability boundary for all fault-on
trajectories which intersect the stable manifold of xu2.

While these mathematical results enable the exact computa-
tion of the stability region, the algorithmic implementation is
numerically very expensive and often inaccurate. In particular,
this approach requires the identification of all equilibrium
points, which is extremely difficult for large-scale nonlinear

dynamical systems. Moreover, the algorithm also needs to
identify those equilibrium points whose unstable manifolds
contain trajectories approaching the SEP and numerically
expensive time-domain simulations are required to accomplish
this task. For these reasons a number of methods have been
proposed to approximate the ROA of stable equilbrium points.
The so called direct methods use Lyapunov and energy func-
tions to infer information about the system stability from the
state of the system at the beginning of its post-fault phase.

IV. LYAPUNOV FUNCTION THEORY

The use of Lyapunov functions for direct transient stability
analysis relies on a stability theorem formulated by Lyapunov.
This theorem defines the following sufficient conditions for the
stability of the equilibrium point for the system (4) [34]:

Theorem 1 (Lyapunov): If there exists an open set D ⊂ Rm
containing the equilibrium point x = 0 and a continuously
differentiable function V : D → R such that V (0) = 0 and

V (x) > 0 , ∀x ∈ D�{0} , (5a)

− V̇ (x) = −
(
∂V

∂x

)T
· f(x) ≥ 0 , ∀x ∈ D , (5b)

then x = 0 is a stable equilibrium point. Moreover, if −V̇ (x)
is positive definite in D then x = 0 is an asymptotically stable
equilibrium of (4). In addition, any region Ωc = {x ∈ Rm |
V (x) ≤ c} such that Ωc ⊂ D describes a positively invariant
region contained in the ROA of the equilibrium point.

The continuously differentiable function V is called a
Lyapunov function — the energy function is generally not
a Lyapunov function, except in very specific cases. For a
given Lyapunov function, the largest Ωc region offers the best
estimate of the region of attraction of the equilibrium point.
Since the theorem leaves complete freedom in selecting both
a Lyapunov function V and a domain D, an optimization
algorithm that searches over V and D in order to maximize
the estimate of the ROA will be formulated in Section VII.

The difficulties encountered in the application of Lyapunov
theorem stem from the positivity conditions required in the
theorem, which are notoriously difficult to test. Even in cases
when both the vector field f and the Lyapunov function
candidate V are polynomial, the Lyapunov conditions are
essentially polynomial non-negativity conditions which are
known to be NP-hard to test [35]. Fortunately, as has been
pointed out in [24], if we relax the polynomial non-negativity
conditions to appropriate polynomial sum of squares (SOS)
conditions, testing SOS conditions can then be done efficiently
using semidefinite programming (SDP), as we discuss in
Appendix A. To illustrate this point let us assume that
D = Rm in Theorem 1. Then, the conditions of Theorem
1 become sufficient global stability conditions. They can be
reformulated as SOS conditions as follows:

Proposition 1: Suppose that for the system (4) there exists
a polynomial V (x) of degree 2d such that V (0) = 0 and

V (x)− φ1(x) ∈ Σm , (6a)

− V̇ (x) ∈ Σm , (6b)
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where Σm is the set of all SOS polynomials in m variables
and φ1(x) = ε

∑m
i=1

∑d
j=1 x

2j
i , with ε > 0, was introduced

to guarantee the positive definiteness of V. Then, x = 0 is
a globally stable equilibrium point. If we replace the second
condition with −V̇ (x)− φ2(x) is SOS, where φ2(x) > 0, for
x 6= 0, then x = 0 is globally asymptotically stable.

The software SOSTOOLS [36], [28], in conjunction with
a semidefinite programming solver such as SeDuMi [37], can
be used to efficiently solve the LMIs that appear in the SOS
conditions (6). For examples and extensions see [25], [28],
[29], [36]. All the SOS programs formulated in this paper
were solved using the freely-available MATLAB toolboxes
SOSTOOLS, Version 2.0 [36], and SeDuMi, Version 1.1 [37].

V. RECASTING THE POWER SYSTEM DYNAMICS

SOS programming methods cannot be directly applied to
study the stability of power system models because their
dynamics contain trigonometric nonlinearities and are not
polynomial. For this reason a systematic methodology to recast
their dynamics into a polynomial form is necessary [25], [27].
It has been shown in [38] that any system with non-polynomial
nonlinearities can be converted to a polynomial system with a
larger state dimension. The recasting introduces a number of
equality constraints restricting the states to a manifold having
the original state dimension. For the classical power system
model introduced in Section II recasting is trivially achieved
by a non-linear change of variables

z3i−2 = sin(x2i−1) (7a)
z3i−1 = 1− cos(x2i−1) (7b)
z3i = x2i , (7c)

for i = 1, . . . , n − 1. Here we assume a model with uniform
damping so that x2i−1 = δi− δn and x2i = ωi−ωn represent
the relative angles and speeds of the generators. Recasting
produces a dynamical system with a larger state dimension,
z ∈ RM , where M = 3(n − 1) for a model with uniform
damping. When the damping is not uniform M = 2(n−1)+n,
x2i = ωi, and the recasted variables include z3n−2 = ωn in
addition to (7). Recasting also introduces (n − 1) equality
constraints,

Gi(z) = z2
3i−2 + z2

3i−1 − 2z3i−1 = 0 , (8)

where i = 1, . . . , n − 1, which restrict the dynamics of the
new system to a nonlinear manifold of dimension m in RM .

Note that we have chosen the recasted variables in such a
way that the stable equilibrium point of the original system,
xs = 0, is mapped to zs = 0 in the recasted system space.

A. Recasting the dynamics of Model A

Let us consider first the differential equations describing
the dynamics of model A. We define the new state variables
z1 = sin(x1), z2 = 1 − cos(x1), z3 = x2, and z4 = sin(x3),
z5 = 1− cos(x3), z6 = x4. The dynamics for these new state
variables can be derived from the model equations by using
the chain rule of differentiation and by replacing everywhere
in the derived equations sin(x1), cos(x1), x2 with z1, z2, z3,

and sin(x3), cos(x3), x4 with z4, z5, z6. Thus, we obtain the
following dynamical system

ż1 = z3 − z2z3 (9a)
ż2 = z1z3 (9b)
ż3 = 0.5z4 − 0.4z3 − 1.5z1 − 0.02z5 + 0.02z1z4

+ 0.5z1z5 − 0.5z2z4 + 0.02z2z5

(9c)

ż4 = z6 − z5z6 (9d)
ż5 = z4z6 (9e)
ż6 = 0.5z1 + 0.02z2 − 1.00z4 + 0.05z5 − 0.5z6

− 0.02z1z4 − 0.5z1z5 + 0.5z2z4 − 0.02z2z5

(9f)

The dynamics are constrained by the following equations,

G1(z) = z2
1 + z2

2 − 2.0z2 = 0 (10a)

G2(z) = z2
4 + z2

5 − 2.0z5 = 0 , (10b)

which restrict the evolution of the new system in its 6-
dimensional state space to a 4-dimensional manifold.

B. Recasting the dynamics of Model B

The reacasted dynamics of model B is given by

ż1 = z3 − z2z3 (11a)
ż2 = z1z3 (11b)
ż3 = 33.6z2 − 67.8z1 − 1.89z3

+ 16.9715z4 + 1.9718z5 − 1.9718z1z4

+ 16.9715z1z5 − 16.9715z2z4 − 1.9718z2z5

(11c)

ż4 = z6 − z5z6 (11d)
ż5 = z4z6 (11e)
ż6 = 11.3986z1 + 1.2088z2 − 98.8604z4

+ 48.4810z5 − 1.2658z6 − 1.2088z1z4

− 11.3986z1z5 + 11.3986z2z4 − 1.2088z2z5 ,

(11f)

while its constraints are defined by the following equalities:

G1(z) = z2
1 + z2

2 − 2.0z2 = 0 (12)

G2(z) = z2
4 + z2

5 − 2.0z5 = 0 . (13)

For both models recasting produces a system whose dy-
namics are described by polynomial Differential Algebraic
Equations (DAE).

VI. ANALYSIS OF RECASTED MODELS

We have just shown that for a classical power system
consisting of n generators recasting is trivially achieved by
a non-linear change of variables (7), which we write as

z = H(x) , (14)

with H : Rm → RM . Recasting produces a dynamical system
whose dynamics are modeled by polynomial DAE

ż = F (z) (15a)
0 = G(z) , (15b)

where z ∈ RM , and F : RM → RM , and G : R2(n−1) →
Rn−1 are vectors of polynomial functions.
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In the new state space we assume a semi-algebraic domain
D̃ defined by the following inequality and equality constraints,

D̃ = {z ∈ RM | β − p(z) ≥ 0, G(z) = 0} , (16)

with p(z) a positive definite polynomial and β > 0 to ensure
that D̃ is connected and contains the origin. For the recasted
system (15) the following extension of Theorem 1 provides
sufficient conditions that guarantee the existence of a Lya-
punov function for the original non-polynomial system [27]:

Theorem 2: If there exists an open set D̃ ⊂ RM containing
the equilibrium point z = 0 and a continuously differentiable
function Ṽ : D̃ → R such that Ṽ (0) = 0, and

Ṽ (z) > 0 ,∀z ∈ {β − p(z) ≥ 0, G(z) = 0}�{0} , (17)

− ˙̃V (z) > 0 ,∀z ∈ {β − p(x) ≥ 0, G(z) = 0}�{0} , (18)

then z = 0 is an asymptotically stable equilibrium of (15).
Moreover, any region Ωc = {z ∈ RM | Ṽ (z) ≤ c} such that
Ωc ∈ D̃ describes a positively invariant region contained in
the ROA of the equilibrium point.

This theorem expresses the fact that Ṽ (z) only needs
to be positive on the domain D̃ defined by (16). Finally,
V (x) = Ṽ (H(x)) is a Lyapunov function for the original
non-polynomial system.

A. Local Stability Analysis

The conditions of Theorem 2 for asymptotic stability can
be formulated as set inclusion conditions:

{z ∈ RM |β − p(z) ≥ 0, G(z) = 0}�{0} ⊆
{z ∈ RM | Ṽ (z) > 0} (19a)

{z ∈ RM |β − p(z) ≥ 0, G(z) = 0}�{0} ⊆

{z ∈ RM | ˙̃V (z) < 0} . (19b)

If we can find a constant β > 0 and a Ṽ (z) to satisfy these
conditions then system (15) is asymptotically stable about the
fixed point z = 0. We assume that the positive polynomial
p(z) defining the level sets of the domain D̃ is fixed.

We further replace the non-polynomial constraint z 6= 0
with l1(z) 6= 0 and l2(z) 6= 0, where l1, l2 ∈ ΣM , and
formulate the conditions (19) as the following set emptiness
conditions:

{z ∈ RM |β − p(z) ≥ 0, G(z) = 0,

l1(z) 6= 0, Ṽ (z) ≤ 0} = ∅ (20a)

{z ∈ RM |β − p(z) ≥ 0, G(z) = 0,

l2(z) 6= 0, ˙̃V (z) ≥ 0} = ∅ . (20b)

According to the Positivstellensatz (P-satz) theorem dis-
cussed in Appendix B, these conditions hold if and only
if we can find Ṽ (z) and f̃1 ∈ C(β − p(z),−Ṽ (z)), f̃2 ∈
C(β − p(z), ˙̃V (z)), g̃1 ∈ M(l1(z)), g̃2 ∈ M(l2(z)), and
h̃1,2 ∈ I(G(z)) such that

f̃1 + g̃2
1 + h̃1 = 0 (21)

f̃2 + g̃2
2 + h̃2 = 0 . (22)

Using the definitions of the cone C, monoid M, and ideal
I, we can rewrite these set emptiness constraints as a search
for Ṽ (z), s1, . . . , s8 ∈ ΣM , λ1,2 ∈ Rn−1

M , and k1,2 ∈ Z+

such that

s1 + s2(β − p)−s3Ṽ − s4(β − p)Ṽ
+ λT1 G+ l2k1

1 = 0 (23a)

s5 + s6(β − p)+s7
˙̃V + s8(β − p) ˙̃V

+ λT2 G+ l2k2
2 = 0 (23b)

Note that λ1,2 are (n−1)-dimensional vectors of polynomials
in RM .

To limit the degree of the polynomials, and implicitly the
size of the SOS program, we select k1 = k2 = 1. To further
reduce the size of the SOS program we replace s1, . . . , s4

with s1l1, . . . , s4l1 and s5, . . . , s8 with s5l2, . . . , s8l2, since
the product of two SOS polynomials is SOS. Similarly, we
replace λ1 and λ2 with λ1l1 and λ2l2. We can now factor
out the l1,2 terms to get the following convex relaxation of
Theorem 2:

Proposition 2: If there exists a constant β > 0 and poly-
nomial functions Ṽ , λ1,2 ∈ Rn−1

M , and s1, . . . , s8 ∈ ΣM such
that Ṽ (0) = 0 and

−s2(β − p) + s3Ṽ + s4(β − p)Ṽ − λT1 G− l1 ∈ ΣM (24a)

−s6(β − p)− s7
˙̃V − s8(β − p) ˙̃V − λT2 G− l2 ∈ ΣM (24b)

then z = 0 is a stable equilibrium point of (15) and
V (x) = Ṽ (z(x)) is a Lyapunov function for the original non-
polynomial system.

Note that by choosing s4 = s8 = 0 and s3 = s7 = 1 we
recover Proposition 4 in [25]. This choice also removes the
bilinear constraints in Ṽ and s.

1) Lyapunov Function for Model A: We define p(z) =
z2

1 + z2
2 + 2.0z2

3 + z2
4 + z2

5 + 2.0z2
6 and search for β and

for a Lyapunov function Ṽ of maximum degree dṼ = 2 and
without any constant term (degree zero monomial) since we
have to enforce the constraint Ṽ (0) = 0. We choose li(z) =∑6
j=1 εijz

2
j , i = 1, 2, where εij ≥ 0 and

∑6
j=1 εij ≥ 0.01,

i = 1, 2. We select s4 = s8 = 0 and s3 = s7 = 1 and the
maximum degrees ds2 , ds6 of the SOS multipliers and dλ1 , dλ2

of the λ polynomials. These are two component vectors since
the constraints G are two component vectors of polynomials.
These degrees have to be chosen so that the following relations
hold:

max{deg(ps2),deg(Ṽ )} ≥
max{deg(λ11G1),deg(λ12G2), dl1}

max{deg(ps6),deg( ˙̃V )} ≥
max{deg(λ21G1),deg(λ22G2), dl2}.

We now search for a feasible solution of the following
problem with SOS constraints

−s2(β − p) + Ṽ − λ11G1 − λ12G2 − l1 ∈ ΣM (25a)

−s6(β − p)− ˙̃V − λ21G1 − λ22G2 − l2 ∈ ΣM (25b)

where we choose dλ1(1) = 0, dλ1(2) = 0, dλ2(1) = 1, dλ2(2) =
1, ds2 = 0,ds6 = 1. We find that for β = 0.2 the SOS problem
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is feasible and it has the following solution in the original
phase space coordinates:

V (x) = 0.0932 sin(x1)− 0.2920x4 − 25.3499 cos(x1)

− 21.0067 cos(x3)− 0.0408x2 − 0.3359 sin(x3)

− 2.6408 cos(x1) cos(x3) + 0.0165 cos(x1) sin(x1)

+ 0.1450 cos(x1) sin(x3)− 0.1098 cos(x3) sin(x1)

+ 0.1909 cos(x3) sin(x3)− 5.0017 sin(x1) sin(x3)

− 1.6016 cos(x1)2 − 1.1354 cos(x3)2 + 4.6283x2x4

− 0.02086x2 cos(x1) + 0.0616x2 cos(x3)

+ 0.0199x4 cos(x1) + 0.2721x4 cos(x3)

+ 3.5181x2 sin(x1) + 1.52425x2 sin(x3)

+ 0.6551x4 sin(x1) + 5.2582x4 sin(x3) + 11.0457x2
2

+ 12.8486x2
4 + 51.7345 .

According to Theorem 2 the operating point at the origin is
asymptotically stable.

2) Lyapunov Function for Model B: For this model we
chose p(z) = z2

1 + z2
2 + z2

3 + z2
4 + z2

5 + z2
6 . We have made the

same choices for the degree of the Lyapunov function Ṽ and
for the degrees of the various polynomials involved in the SOS
problem (25). We found that for β = 0.1 the SOS problem is
feasible and it has the following solution in the original phase
space coordinates:

V (x) = 1.2468 cos(x1) sin(x1)− 0.3646x4 − 18.7585 cos(x1)

− 27.6219 cos(x3)− 6.9358 sin(x1)− 4.1573 sin(x3)

− 7.2379 cos(x1) cos(x3)− 0.3399x2

+ 2.5142 cos(x1) sin(x3) + 5.6889 cos(x3) sin(x1)

+ 1.6431 cos(x3) sin(x3)− 2.5392 sin(x1) sin(x3)

− 11.3052 cos(x1)2 − 13.3274 cos(x3)2 + 0.0841x2x4

+ 0.0939x2 cos(x1) + 0.2461x2 cos(x3)

+ 0.2212x4 cos(x1) + 0.1434x4 cos(x3)

+ 0.7038x2 sin(x1)− 0.1629x2 sin(x3)

+ 0.2459x4 sin(x1) + 0.4671x4 sin(x3)

+ 0.3647x2
2 + 0.3158x2

4 + 78.2509 .

As for model A, this shows that the operating point at the
origin is asymptotically stable.

B. Estimating the Region of Attraction

These Lyapunov functions enable us to estimate the domain
of attraction of the stable operating point for these two models.
Indeed, assume that for a given scalar c the level set Ωc = {z ∈
RM | Ṽ (z) ≤ c,G(z) = 0}, is included in the domain D̃,
i.e. Ωc ⊆ D̃. Then Ωc describes a positively invariant region
contained in the domain of attraction of the equilibrium point.
For a given domain D̃ and Lyapunov function Ṽ (z), the best
estimate of the region of attraction of the stable fixed point at
the origin is given by the largest c such that Ωc ⊆ D̃. To find

c we have to solve the following optimization problem

max c

s.t.

{z ∈ RM |c− Ṽ (z) ≥ 0, G(z) = 0} ⊆
{z ∈RM | β − p(z) ≥ 0, G(z) = 0}

where Ṽ , p,G, and β are fixed. This can be formulated as
an SOS programming problem by constructing the following
empty set constraint version

max c

s.t.

{z ∈ RM | c− Ṽ (z) ≥ 0, G(z) = 0,

p(z)− β ≥ 0, p(z)− β 6= 0} = ∅

According to the the P-satz theorem this condition holds if
and only if we can find c > 0, f̃ ∈ C(p(z) − β, c − Ṽ (z)),
g̃ ∈M(p(z)− β), and h̃ ∈ I(G(z)) such that

f̃ + g̃2 + h̃ = 0 (26)

By picking k = 1 in the definition of the monoid the
set emptiness condition is cast into a search for c > 0,
s0, s1, s2, s4 ∈ ΣM , and λ ∈ Rn−1

M such that

s0+s1(c−Ṽ )+s2(p−β)+s3(c−Ṽ )(p−β)+λTG+(p−β)2 = 0
(27)

Thus, the best estimation of the ROA can be defined as the
following SOS programming problem

max
s1,s2,s3∈ΣM ,λ∈RM

c (28a)

s.t.

−s1(c− Ṽ )− s2(p− β)−s3(c− Ṽ )(p− β) (28b)

−λTG−(p− β)2 ∈ ΣM (28c)

which is solved using a bisection search on c.
1) ROA Estimation for Model A: In Fig. 2 the dark gray

area represents the largest invariant set Ωc = {z ∈ R6 |
Ṽ (z) ≤ c,G(z) = 0} which was obtained for c = 0.922.
This represents a poor estimate of the exact ROA (the thin line
connecting the UEPs (•) on the boundary of the stable fixed
point). Compare this estimate to the constant energy surface
passing through the closest UEP xu1 and, locally, to the energy
surface passing through the UEP xu2 (thick black lines). The
light gray area defines the domain D̃ = {z ∈ R6 | β− p(z) ≥
0, G(z) = 0}, projected in the angle space, for β = 0.2.
An algorithm to maximize the size of the invariant subset is
needed in order to improve the estimated ROA.

2) ROA Estimation for Model B: In Fig. 3 the dark gray
area represents the largest invariant set Ωc obtained for c =
0.868. It represents a poor estimate of the exact ROA (the
outermost thin black line). This estimate should be compared
to the level set ΩL = {x ∈ R4 | W (x) ≤ L}, for L =
3.2, where W (x) is the Lyapunov function computed for this
model in [23] (the intermediate thick black line). The light
gray area defines the domain D̃, projected in the angle space,
for β = 0.1. For model B it is also necessary to devise an
algorithm to improve the estimated ROA.
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Fig. 2. Model A: The region of attraction for the SEP located at the origin,
projected in the angle space (ω1 = ω2 = 0), is shown in thin black line
connecting the UEPs (•) on its boundary. The light gray area defines the
domain D̃ for β = 0.2. The dark gray area inside D̃ represents Ωc, for
c = 0.922, and is an (under)estimate of the ROA.

Fig. 3. Model B: The region of attraction for the SEP located at the origin,
projected in the angle space (ω1 = ω2 = 0), is the outermost thin black
line. The light gray area defines the domain D̃. The dark gray area inside D̃
represents Ωc, for c = 0.868, which is an (under)estimate of the ROA. The
thick black line defines the estimated ROA provided in [23].

VII. OPTIMIZING THE REGION OF ATTRACTION

An obvious choice to improve the estimate of the fixed
point’s region of attraction is to expand the domain D̃ by
maximizing β. A bisection search over β can be used to
search for the maximum β value for which a feasible solution
Ṽ (z) for the problem (19) can be found. Then, by solving
(28) and finding the largest level set of Ṽ included in D̃, an
improved estimate of the fixed point’s region of attraction can
be found. This is the essence of the expanding D̃ algorithm
first proposed in [39]. Its extension to the analysis of non-
polynomial systems can be easily obtained by replacing the
relevant steps in the algorithm with their non-polynomial
extensions described in sections VI-A and VI-B. However,

expanding D̃ does not guarantee the expansion of Ωc, the
largest invariant set contained in D̃. For this reason, as Figs. 2
and 3 already suggest, the algorithm often finds a large D̃ that
contains a much smaller invariant set Ωc. We do not provide
more details here because this algorithm does not perform as
well as the expanding interior algorithm which we describe
next.

A. Expanding Interior Algorithm
The idea of the algorithm is to expand a domain that is

contained in a level set of the Lyapunov function Ṽ . This
improves the estimate of the ROA since the domain expansion
always guarantees the expansion of the invariant region defined
by the level set of Ṽ . This algorithm was also introduced in
[39]. We modify this algorithm in two ways. First, we extend
the algorithm to analyze non-polynomial systems. Then, we
introduce an iteration loop designed to improve the estimate
of the region of attraction.

The basic idea of the algorithm is to select a positive definite
polynomial p ∈ ΣM and to define a variable sized domain

Pβ = {z ∈ Rn | p(z) ≤ β} , (29)

subject to the constraint that all points in Pβ converge to the
origin under the flow defined by the system’s dynamics. In
order to satisfy this constraint we define a second domain

D̃ = {z ∈ RM | Ṽ (z) ≤ c} , c > 0 , (30)

for a yet unspecified candidate Lyapunov function Ṽ and
impose the constraint that Pβ is contained in D̃. Then by
maximizing β over the set of Lyapunov functions Ṽ , while
keeping the constraint Pβ ⊂ D̃, we guarantee the expansion of
the domain D̃ which provides an estimate of the fixed point’s
ROA.

Theorem 2 imposes additional constraints which can be
formulated as set inclusion conditions. The first constraint,

{z ∈ RM |Ṽ (z) ≤ c,G(z) = 0}�{0} ⊆

{z ∈ RM | ˙̃V (z) < 0} , (31)

requires the derivative of the Lyapunov function Ṽ to be
negative over the manifold defined by G = 0 inside the domain
D̃. The second constraint requires the Lyapunov function Ṽ
to be positive on the manifold defined by G = 0 inside the
domain D̃�{0}. Since Ṽ and thus D̃ are unknown, the only
effective way to ensure this constraint is to require that Ṽ is
positive everywhere on the manifold defined by G = 0:

Ṽ (z) > 0 , ∀z ∈ {G(z) = 0}�{0} . (32)

Thus, the problem of finding the best estimate of the region
of attraction can be written as an optimization problem with
set emptiness constraints

max
Ṽ ∈RM ,Ṽ (0)=0

β

s.t.

{z ∈ RM | Ṽ (z) ≤ 0, G(z) = 0, z 6= 0} = ∅
{z ∈ RM | p(z) ≤ β,G(z) = 0, Ṽ (z) ≥ c, Ṽ (z) 6= c} = ∅

{z ∈ RM | Ṽ (z) ≤ c,G(z) = 0, ˙̃V (z) ≥ 0, z 6= 0} = ∅
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If we replace the two z 6= 0 non-polynomial constraints with
l1(z) 6= 0 and l2(z) 6= 0 for l1, l2 ∈ ΣM , positive definite, the
formulation becomes

max
Ṽ ∈RM ,Ṽ (0)=0

β

s.t.

{z ∈ RM | Ṽ (z) ≤ 0, G(z) = 0, l1(z) 6= 0} = ∅
{z ∈ RM | p(z) ≤ β,G(z) = 0, Ṽ (z) ≥ c, Ṽ (z) 6= c} = ∅

{z ∈ RM | Ṽ (z) ≤ c,G(z) = 0, ˙̃V (z) ≥ 0, l2(z) 6= 0} = ∅

By selecting c = 1 we recover the formulation in [39],
extended to handle equality constraints introduced by the
recasting procedure.

By applying the P-satz theorem, this optimization problem
can be now formulated as the SOS programming problem

max
Ṽ∈RM,Ṽ (0)=0,k1,k2,k3∈Z+

s1,...,s10∈ΣM,λ1,λ2,λ3∈R
n−1
M

β

s.t.

s1 − s2Ṽ + λT1 G+ l2k1
1 = 0

s3 + s4(β − p) + s5(Ṽ − c) + s6(β − p)(Ṽ − c)
+λT2 G+ (Ṽ − c)2k2 = 0

s7 + s8(c− Ṽ ) + s9
˙̃V + s10(c− Ṽ ) ˙̃V + λT3 G+ l2k3

2 = 0

Again, in order to limit the size of the SOS problem, we
make a number of simplifications. First, we select k1 = k2 =
k3 = 1. Then, we simplify the first constraint by selecting
s2 = l1 and factoring out l1 from s1 and the polynomials
λ1. Since the second constraint contains quadratic terms in
the coefficents of Ṽ , we select s3 = s4 = 0, replace λ2 with
λ2(Ṽ − c), and factor out (Ṽ − c) from all the terms. Finally,
we select s10 = 0 in the third constraint in order to eliminate
the quadratic terms in Ṽ and factor out l2. Thus, we reduce
the SOS problem to the following formulation

max
Ṽ∈RM,Ṽ (0)=0,

s6,s8,s9∈ΣM,λ1,λ2,λ3∈R
n−1
M

β

s.t.

Ṽ − λT1 G− l1 ∈ ΣM (36a)

−s6(β − p)− λT2 G− (Ṽ − c) ∈ ΣM (36b)

−s8(c− Ṽ )− s9
˙̃V − λT3 G− l2 ∈ ΣM (36c)

The algorithm performs an iterative search to expand the
domain D̃ starting from some initial Lyapunov function Ṽ .
At each iteration step, due to the presence of bilinear terms in
the decision variables, the algorithm alternates between two
SOS optimization problems. When no improvement in β is
possible, the algorithm stops and D̃ offers the best estimate of
the region of attraction. The quality of the estimate critically
depends on the choice of the polynomial p(z). By improving
this choice we can find better estimates and the following
observation suggests how this can be done. Notice that the
Lyapunov function changes as the iteration progresses and
that by expanding the domain Pβ the algorithm forces the
level sets of the Lyapunov function to better approximate the

shape of the region of attraction. This observation suggests
that the algorithm can be improved by introducing another
iteration loop over p(z): when the algorithm defined above
converges and no improvements in β can be found, we use
the Lyapunov function Ṽ to define the new p(z). Since we
required Ṽ to be positive definite everywhere, this substitution
is always possible. This substitution guarantees that the next β
optimization loop starts from the point β = c where Pβ = D̃.
Due to the constraint Pβ = {z | p(z) ≤ β} ⊂ D̃ = {z |
Ṽ (z) ≤ c} the algorithm stops when it reaches a fixed point
where p(z) = Ṽ (z), and β = c. Finally, we noticed that we
cannot always guarantee that a domain D̃ can be found while
keeping the constant c fixed. For this reason we have included
a search over c at each iteration step. The detailed description
of the algorithm is as follows — see [39] for a comparison to
its original formulation.

B. SOS Formulation

The algorithm contains two iteration loops to expand the
region Pβ and, implicitly, the domain D̃ that provides an
estimate of the region of attraction of the stable fixed point
z = 0. The outer iteration loop is over the polynomial p(z)
defining Pβ = {p(z) < β}. The iteration index for this loop
is j. The inner iteration loop is over the parameter β and i
defines its iteration index. The outer iteration starts from a
candidate polynomial p(j=0)(z) > 0 for ∀z ∈ RM . The inner
iteration starts from a candidate Lyapunov function Ṽ (i=0)

which can be found by solving the SOS program described
in Theorem 2. For the two power grid systems we select the
quadratic polynomial p(z) and the Lyapunov function Ṽ (z)
found in Section VI-A.

Select the maximum degrees of the Lyapunov function, the
SOS multipliers, the polynomials λ, and the l polynomials as
dṼ , ds6 , ds8 , ds9 , dλ1

, dλ2
, dλ3

and dl1 , dl2 respectively. Fix
lk = ε

∑M
k=1 z

dlk
k for k = 1, 2 and some small ε > 0. Finally,

select β(i=0) = 0.
(1a) Set Ṽ = Ṽ (i−1), β = β(i−1). We expect the SOS

problem to be infeasible until c reaches the level at which
{x | p(j−1)(x) < β(i−1)} ∈ {x | Ṽ (i−1)(x) < c} The problem
remains feasible until we reach a c value at which dṼ /dt is
no longer negative inside Ṽ (i−1)(x) < c level set. Therefore,
for given Ṽ = Ṽ (i−1), β = β(i−1) we will find that the SOS
problem is feasible for c ∈ [cmin, cmax]. Therefore, we search
on c in order to solve the following SOS optimization problem

max
s6,s8,s9∈ΣM ,λ1,λ2,λ3∈Rn−1

M

c

s.t.

−s6(β − p(j−1))− λT2 G− (Ṽ − c) ∈ ΣM (37)

−s8(c− Ṽ )− s9
˙̃V − λT3 G− l2 ∈ ΣM (38)

where the decision variables are: s6 ∈ ΣM,ds6
, s8 ∈ ΣM,ds8

,
s9 ∈ ΣM,ds9

and λ1 ∈ Rn−1
M,dλ1

and λ2 ∈ Rn−1
M,dλ2

. Set s(i)
8 =

s8, s(i)
9 = s9, λ(i)

1 = λ1, and λ(i)
2 = λ2. Set c(i) = c.

(1b) Set Ṽ = Ṽ (i−1) and c = c(i) and perform a line
search on β in order to find the largest domain p(j−1)(x) < β
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included in Ṽ (i−1)(x) < c(i). To solve this problem we
formulate the following SOS optimization problem

max
s6,s8,s9∈ΣM ,λ1,λ2,λ3∈Rn−1

M

β

s.t.

−s6(β − p(j−1))− λT2 G− (Ṽ − c) ∈ ΣM (39)

−s8(c− Ṽ )− s9
˙̃V − λT3 G− l2 ∈ ΣM (40)

where the decision variables are: s6 ∈ ΣM,ds6
, s8 ∈ ΣM,ds8

,
s9 ∈ ΣM,ds9

and λ1 ∈ Rn−1
M,dλ1

and λ2 ∈ Rn−1
M,dλ2

. Set s(i)
8 =

s8, s(i)
9 = s9, λ(i)

1 = λ1, and λ(i)
2 = λ2. Set β(i) = β.

(2a) Set β = β(i) fixed and s8 = s
(i)
8 , and s9 = s

(i)
9 . We

want to find a c and a Ṽ > 0 on the manifold G = 0 so that
p(j−1)(x) < β is included in Ṽ (z) < c. Thus, we solve

min
Ṽ ,Ṽ (0)=0,s6,λ1,λ2,λ3

c

s.t.

Ṽ (z)− λT1 G(z)− l1 ∈ ΣM (41)

−s6(β − p)− λT2 G− (Ṽ − c) ∈ ΣM (42)

−s8(c− Ṽ )− s9
˙̃V − λT3 G− l2 ∈ ΣM (43)

and set c(i) = c.
(2b) Fix c = c(i) and set s8 = s

(i)
8 , and s9 = s

(i)
9 . We

search over Ṽ and s6 so that we can maximize β:

max
Ṽ ,Ṽ (0)=0,s6,λ1,λ2,λ3

β

s.t.

Ṽ (z)− λT1 G(z)− l1 ∈ ΣM (44)

−s6(β − p)− λT2 G− (Ṽ − c) ∈ ΣM (45)

−s8(c− Ṽ )− s9
˙̃V − λT3 G− l2 ∈ ΣM (46)

Set β(i) = β and V (i) = Ṽ . If β(i) − β(i−1) is smaller than a
given tolerance go to step (3). Otherwise, increment i and go
to step (1a).

(3) If j = 0 set p(1) = Ṽ (i) and go to step (1a). If j ≥ 1
and the largest (in absolute value) coefficient of the polynomial
pj(z)− p(j−1)(z) is smaller than a given tolerance, the outer
iteration loop ends. Otherwise, advance j, set p(j) = Ṽ (i) and
go to step (1a).

(4) When the outer iteration loop stops the set D̃(i) = {z ∈
RM | Ṽ (i)(z) ≤ ci} contains the domain P (j)

β(i) = {z ∈ RM |
p(j)(z) ≤ βi} and is the largest estimate of the fixed point’s
region of attraction. In practice, we noticed that when the outer
iteration loop stops, the algorithm reaches a fixed point where
the domain D̃(i) becomes essentially indistinguishable from
the domain P (j)

β(i) .

Fig. 4. The region of attraction for the SEP located at the origin (�), projected
in the angle space (ω1 = ω2 = 0), is shown in thin black line connecting
the UEPs (•) on its boundary. The thick black lines show the constant energy
surface passing through the closest UEP xu1 and the one passing through the
UEP xu2. The dark gray area shows the best estimate of the ROA according
to the expanding interior algorithm.

C. Analysis of Model A

For this model the optimization algorithm described in the
previous section returns the following Lyapunov function

V (x) = 0.0030 sin(x1)− 0.00008x4 − 0.2683 cos(x1)

− 0.2649 cos(x3)− 0.0030x2 + 0.0044 sin(x3)

− 0.2377 cos(x1) cos(x3) + 0.0008 cos(x1) sin(x1)

+ 0.0047 cos(x1) sin(x3)− 0.0037 cos(x3) sin(x1)

− 0.0092 cos(x3) sin(x3)− 0.1588 sin(x1) sin(x3)

− 0.0109 cos(x1)2 + 0.0203 cos(x3)2 − 0.0004x2x4

− 0.0016x2 cos(x1) + 0.0047x2 cos(x3)

+ 0.0011x4 cos(x1)− 0.0010x4 cos(x3)

+ 0.0579x2 sin(x1) + 0.0219x2 sin(x3)

+ 0.0195x4 sin(x1) + 0.0972x4 sin(x3)

+ 0.1461x2
2 + 0.1703x2

4 + 0.7614 .

The Lyapunov function has been rescaled so that the best
estimate of the ROA is provided by the level set {x ∈ R4 |
V (x) ≤ c} with c = 1.0. This estimate is shown by the dark
gray area in Fig. 4. We notice that this estimate significantly
improves the one provided by the closest UEP method. We also
notice that the algorithm provides a good global estimate of the
ROA which compares well with the local estimates returned
by the controlling UEP method. For example, compare locally
the approximation returned by our algorithm with the one
provided by the controlling UEP xu2: our estimate is better
except very close to xu2. This property holds for many other
possible controlling UEPs on the boundary of the ROA.
Finally, our algorithm avoids the computationally difficult task
of estimating the controlling UEP.
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Fig. 5. The region of attraction for the SEP located at the origin, projected
in the angle space (ω1 = ω2 = 0.80), is the outermost thin black line. The
expanding interior algorithm produces an estimate of the ROA shown in light
gray. The dark gray area represents the estimated ROA provided in [23].

D. Analysis of Model B

For this model the expanding interior algorithm returns the
following Lyapunov function (projected back in the original
phase space coordinates)

V (x) = 0.0036x2 − 0.0026x4 − 0.7007 cos(x1)

− 0.7866 cos(x3)− 0.2762 sin(x1)− 0.2702 sin(x3)

− 0.1905 cos(x1) cos(x3) + 0.2072 cos(x1) sin(x1)

+ 0.0467 cos(x1) sin(x3) + 0.0690 cos(x3) sin(x1)

+ 0.2235 cos(x3) sin(x3)− 0.0559 sin(x1) sin(x3)

− 0.0744 cos(x1)2 − 0.1044 cos(x3)2 + 0.0015x2x4

− 0.0076x2 cos(x1) + 0.0040x2 cos(x3)

+ 0.0042x4 cos(x1)− 0.0016x4 cos(x3)

+ 0.0138x2 sin(x1)− 0.0018x2 sin(x3)

+ 0.0056x4 sin(x1) + 0.0091x4 sin(x3)

+ 0.0075x2
2 + 0.0059x2

4 + 1.8567 .

This Lyapunov function has also been rescaled so that the best
estimate of the ROA is provided by the level set {z ∈ R4 |
V (x) ≤ c} with c = 1.0. Our estimate should be compared
to the dark gray area which is the estimated ROA provided
by ΩL = {x ∈ R4 | W (x) ≤ L} for L = 3.2, where W (x)
is the Lyapunov function computed in [23] for this model.
Except for a very small region of the phase space (for this
particular ω1 = ω2 = 0.80 projection) our estimate is better.
In fact, the analysis of multiple two-dimensional projections in
phase space shows that our estimate outperforms the estimate
provided by ΩL. Perhaps this comparison is not fair since the
elegant method proposed in [23] contains multiple parameters
that can be optimized in order to improve the estimated ROA.
More importantly, the domain inclusions and the boundedness
of the set ΩL which are required by the Extended Invariance
Principle in [23] are very difficult to check numerically. For
this reason the assumption that the transfer conductances

are small is necessary in order to guarantee some of these
constraints. Many of these difficulties could be overcome by
applying the algebraic methods proposed in this paper and
a synthesis of these two approaches might provide improved
ROA estimates.

VIII. DISCUSSION AND FUTURE WORK

We have introduced an algorithm for the construction of
Lyapunov functions for classical power system models. The
algorithm we propose provides mathematical guarantees and
avoids the major computational difficulties engendered by the
computation of the controlling UEP in the energy function
method. Moreover, we have also shown that systems with
transfer conductances can be analyzed as well, without any
conceptual difficulties. This is a significant result because an-
alytical energy functions do not exist for these systems and the
proposed SOS analysis provides a constructive approach for
computing analytical Lyapunov functions for these systems.
The approaches proposed in [18], [19], [23] for constructing
Lyapunov functions for power systems with transfer conduc-
tances have to assume that the transfer conductances are small.
Our approach is free of these parametric constraints. Moreover,
these approaches impose structural constraints on the class of
Lyapunov functions. The approach we propose is structure-
free and for this reason the function space in which we search
for Lyapunov functions includes all these structured Lyapunov
subspaces. If well designed, our proposed algorithm should
outperform these alternative approaches. The generalization
of this approach to network preserving models, which also
include more realistic load and generator models [40]–[44],
can in principle be achieved. Moreover, further improvements
in estimating the ROA might be achieved by increasing the
dimension of the Lyapunov function.

Another possible generalization is the inclusion of paramet-
ric uncertainties. For power systems these uncertainties can
reflect changes in line impedances or uncertainties in some of
the system parameters (for example the inertia and damping
coefficient of generators). When this is the case, the location
of the equilibrium usually changes when the parameters are
varied. In the presence of parametric uncertainties the use of
equality and inequality constraints is natural: the region of
the parameter space that is of interest can be described by
inequality constraints, and if the equilibrium moves as the
parameters change, one can impose an equality constraint on
the corresponding variables. As we have already shown in this
paper, the stability of systems with constraints can be elegantly
handled using SOS techniques as demonstrated in [29].

This fact can be used to handle the following difficulty.1 The
Lyapunov function derived in this paper is valid for a particular
operating point and any change in parameters or operating
point will require the solution of another optimization problem
to obtain a new Lyapunov function for the new configuration.
Apparently, new Lyapunov functions have to be computed,
solving a high-dimensional optimization problem, every time
a change in the system occurs. Nevertheless, by expressing
the dependence of the equilibrium point on the uncertain

1We thank one of our reviewers for pointing out this difficulty to us.
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parameters using equality constraints, parameterized Lyapunov
function can be constructed as has been discussed in [29].
Conceptually this approach can produce Lyapunov functions
which depend explicitly on some of the system parameters.

Nevertheless, there are serious difficulties before these al-
gebraic methods, and the generalizations discussed above, can
be applied to large power systems. The difficulties are not
conceptual but numerical because one of the major limitations
of the SOS framework is the complexity of the system
description that can currently be analyzed. Indeed, the size
of the SDP that needs to be solved in order to compute the
SOS decomposition grows with the number of variables and
the degree of the polynomial. This is a serious limitation,
which renders the proposed algorithm impractical in its current
formulation, as many systems of interest are of significantly
higher dimension.

However, some of these numerical problems can be partially
overcome by using decomposition techniques. In this regard,
the approach in [22] is very significant for a couple of reasons.
First, it provides the only alternative that we found in the
literature for computing Lyapunov functions for systems with
transfer conductances that do not suffer from the difficulties
mentioned before. Second, it contains conditions on the inter-
connection of a large scale system such that a weighted sum
of the subsystems energy functions give a Lyapunov function
for the overall system. Similar conditions can be employed by
our method in order to analyze larger power systems.

Alternatively, decomposition techniques that have been pro-
posed for the analysis of large-scale systems — see for
example [45] and the references therein — can be used in
order to address this problem. The underlying assumption is
that stability certificates can be constructed for the individual
subsystems and patched together to form a composite Lya-
punov function [30]. Finally, one can employ clustering and
aggregation techniques [46] to generate a low-dimensional
system of equivalent generators and to apply the proposed
analysis techniques to this reduced model.

APPENDIX A
THE SUM OF SQUARES DECOMPOSITION

In this appendix we give a brief introduction to sum of
squares (SOS) polynomials and describe how the existence
of a SOS decomposition can be verified using semidefinite
programming [47]. The notation used is as follows. Let R
denote the set of real numbers and Z+ denote the set of
nonnegative integers. The set of n × m matrices is repre-
sented by Rn×m. A matrix P ∈ Rn×n is positive definite
if xTPx > 0 for all x ∈ Rn, x 6= 0 and positive semidefinite
if xTPx ≥ 0 for all x ∈ Rn, x 6= 0; we denote these
by P � 0 and P � 0 respectively. A monomial mα in n
independent real variables x ∈ Rn is a function of the form
mα := xα1

1 · · ·xαnn , where αi ∈ Z+, and the degree of the
monomial is degmα := α1 + . . . + αn. Given c ∈ Rk and
α ∈ Zk+ a polynomial is defined as p(x) =

∑k
j=1 cjmαj .

The degree of p is defined by deg p := maxj(degmαj ). We
will denote the set of polynomials in n variables with real
coefficients asRn and the subset of polynomials in n variables
that have maximum degree d as Rn,d.

Definition 1: For x ∈ Rn, a multivariate polynomial p(x)
def
= p(x1, . . . , xn) is a sum of squares (SOS) if there exist some
polynomial functions hi(x), i = 1 . . . r such that

p(x) =

r∑
i=1

h2
i (x) (47)

Note that p(x) being a SOS implies that p(x) ≥ 0 for all x ∈
Rn. However, the converse is not always true except in special
cases [48]. The set of all SOS polynomials in n variables will
be denoted as Σn and we define Σn,d = Σn

⋂
Rn,d.

An equivalent characterization of SOS polynomials is given
in the following proposition [24]:

Proposition 3: A polynomial p(x) ∈ Rn of degree 2d is a
SOS if and only if there exists a positive semidefinite matrix
Q and a vector of monomials Zn,d(x) in n variables of degree
less than or equal to d such that p = Zn,d(x)TQZn,d(x).

In general, since the monomials in Zn,d(x) are not alge-
braically independent, the matrix Q in the quadratic repre-
sentation of the polynomial p(x) is not unique and the set of
matrices that make the quadratic equality in Proposition 3 hold
are an affine subspace of the symmetric matrices [49]:

Qp =
{
Q | Zn,d(x)TQZn,d(x) = p(x)

}
=

{
Q0 +

p∑
i=1

λiQi

}
(48)

where Q0 is any symmetric matrix such that p(x) =
Zn,d(x)TQ0Zn,d(x) and {Qi}pi=1 is the set of symmetric
matrices such that Zn,d(x)TQiZn,d(x) = 0. Since p(x) being
SOS is equivalent to Q � 0, the problem of finding a Q
which proves that p(x) is an SOS is equivalent to checking
if there exist λi such that Q0 +

∑p
i=1 λiQi � 0. This Linear

Matrix Inequality is a convex feasibility problem, as was first
noticed in [24], and can be solved efficiently using semidefinite
programming techniques which have worst-case polynomial
time complexity. Note that, as the degree of p(x) or its number
of variables is increased, the computational complexity for
testing whether p(x) is an SOS increases. Nonetheless, the
complexity overload is still a polynomial function of these
parameters.

An important extension, widely used in this paper, was
introduced in [50] and refers to the case when p(x) is a linear
combination of polynomials with unknown coefficients, and
we want to search for feasible values of those coefficients
such that p(x) is nonnegative.

Theorem 3: Given a finite set of polynomials {pi}ri=0 ∈
Rn, the existence of {ai}ri=1 ∈ R such that

p = p0 +

r∑
i=1

aipi is an SOS (49)

is an LMI feasibility problem.
When supplemented by the following optimization objective

max

r∑
i=1

aiwi , (50)

where the the aj are scalar, real decision variables and the
wj are some given real numbers, (49) and (50) define a
SOS program. This SOS program can be converted to a
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convex semidefinite program (SDP) which can be solved
numerically with great efficiency. The software SOSTOOLS
[36], [28] automatically performs this conversion for general
SOS programs. It also calls a SDP solver, such as SeDuMi
[37], and converts the SDP solution back to the solution of
the original SOS program. We have used SOSTOOLS, Version
2.0, in conjunction with SeDuMi, Version 1.1, to solve all SOS
programs formulated in this paper.

APPENDIX B
BASIC ALGEBRAIC GEOMETRY

In this section we introduce the basic algebraic definitions
that are necessary in order to present one of the most important
theorems in real algebraic geometry.

Definition 2: Given {g1, . . . , gt} ∈ Rn, the Multiplicative
Monoid generated by gj’s is

M(g1, . . . , gt) = {g1
k1g2

k2 . . . gt
kt |k1, . . . , kt ∈ Z+} (51)

which is the set of all finite products of gj’s including the
empty product, defined to be 1. It is denoted asM(g1, . . . , gt).

Definition 3: Given {f1, . . . , fs} ∈ Rn, the Cone gener-
ated by fj’s is

C(f1, . . . , fs) :=
{
s0 +

∑
sibi|si ∈ Σn, bi ∈M(f1, . . . , fs)

}
(52)

Definition 4: Given {h1, . . . , hu} ∈ Rn, the Ideal gener-
ated by hk’s is

I(h1, . . . , hu) :=
{∑

hkpk|pk ∈ Rn
}

(53)

With these definitions we can now state the following
fundamental theorem.

Theorem 4 (Positivstellensatz): Given polynomials {f1,
. . . , fs} , {g1, . . . , gt} , and {h1, . . . , hu} in Rn, the following
are equivalent:

1) The setx ∈ Rn
∣∣∣∣∣∣
f1(x) ≥ 0, . . . , fs(x) ≥ 0
g1(x) 6= 0, . . . , gt(x) 6= 0
h1(x) = 0, . . . , hu(x) = 0

 (54)

is empty.
2) There exist polynomials f ∈ C(f1, . . . , fs), g ∈
M(g1, . . . , gt), and h ∈ I(h1, . . . , hu) such that

f + g2 + h = 0. (55)

The LMI based tests for SOS polynomials can be used to
prove that the set emptiness condition from Positivstellensatz
(P -satz) holds, by finding specific f, g and h such that f +
g2 + h = 0. These f, g and h are known as P-satz certificates
since they certify that the equality holds.

It is important to notice that P -satz offers no guidance on
how to select the degrees of the polynomials involved in the
definition of the monoid M, cone C, and ideal I. By putting
an upper bound on these degrees and checking whether (55)
holds, one can create a series of tests for the emptiness of
(54). Each of these tests requires the construction of some
sum of squares and polynomial multipliers, resulting in a sum
of squares program that can be solved using SOSTOOLS.
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