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Abstract—This paper proposes a systematic and general
approach to model power systems as continuous stochastic
differential-algebraic equations. With this aim, the paper pro-
vides a theoretical background on stochastic differential-algebraic
equations and justifies the need for stochastic models in power
system analysis. Then, the paper describes a general procedure to
define stochastic dynamic models. Practical issues related to the
numerical integration of the resulting power system model are
also discussed. A case study illustrating the proposed approach
is provided based on the IEEE 145-bus 50-machine system. The
case study also illustrates and compares the reliability of the
results obtained using stochastic and conventional probabilistic
models.

Index Terms—Stochastic differential algebraic equations
(SDAE), power system dynamics, time domain integration,
Wiener’s process, Ornstein-Uhlenbeck’s process.

I. INTRODUCTION

ANY physical system and, thus, also power systems,

contains randomness and uncertainty. For example, load

power consumption is not fully deterministic. Moreover, in

recent years, the massive installation of non-dispatchable

technologies, e.g., wind parks, has increased the degree of

randomness in power systems. While stochastic programming

has been extensively taken into account in power system

economics and operation, e.g., [1], the modeling of continuous

stochastic processes has not been yet assessed on a method-

ological basis. With this aim, this paper provides a novel and

systematic approach aimed to model any power system device

in terms of stochastic differential-algebraic equations.

A. Literature Review on SDE and SDAE

The literature on Stochastic Differential Equations (SDEs)

is vast. Theoretical background on SDEs can be found in,

e.g., [2]–[6]. SDEs are widely applied in finance to model

stochastic fluctuations of stock prices and other financial assets

[7], [8], and in several fields of science and engineering

to study physical systems affected by different stochastic

phenomena [9]–[12].

In general, SDEs can only be solved through numerical

methods. References [13], [14] provide detailed descriptions of

the available fixed step size methods for the numerical solution

of SDEs, whereas variable step size methods for SDEs have

been proposed in [15] and [16].
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Power system variables evolve in different time scales. To

take into account this behavior, power systems are traditionally

modeled as a set of Differential-Algebraic Equations (DAEs).

Due to the stiffness of this model, implicit numerical methods

must be used in simulations to avoid numerical instability. On

the other hand, if stochastic differential equations are used

to model random perturbations in power systems, the system

model becomes a set of Stochastic Differential-Algebraic

Equations (SDAEs). Therefore, solving SDAE models involves

to deal with both stochastic terms and stiffness. With this

regard, in [17], the adequacy of different implicit fixed step

size numerical methods for SDAEs is discussed. In the con-

text of electronic circuit simulation, [18] shows that implicit

numerical methods with fixed step size used to solve SDEs

are also suitable for being applied to SDAEs.

B. Application of SDEs to Power System Analysis

The application of SDEs to topics related to power systems

is limited. Traditionally, the focus has been on modeling load

behaviors [19]–[22]. In [23] SDEs are used as a planning

tool for power systems. In particular, SDEs are used to model

small perturbations in both system loads and transmission line

parameters. A similar approach is used in [24] and [25] to

analyze power system dynamics, where discrete perturbations

are included into switching events due to the operation of

tap-changing transformers. Power system voltage stability is

studied in [26]–[29] where SDEs are used to model the load

behavior. In [30], both load and wind power production are

modeled with SDEs to address the problem of power system

balance management in an hourly time frame. More recently,

in [31] random loads are modeled through SDEs which are

included directly in the algebraic equations of a power system

model. The problems related to the appearance of singularities

in the model resulting from this approach are investigated

in [32]. Finally, stochastic transient stability is discussed in

[33], and the application of SDEs to wind speed modeling is

analyzed in [34], [35].

C. Contributions

Despite stochastic models have been considered in the last

decades and have been periodically revisited in the literature,

we consider that a systematic approach to define SDAE models

is still missing. We identify the following major limitations of

the models given in the literature.

1) All models proposed in the literature are rigidly for-

mulated in terms of a given stochastic process (e.g.,

the Markov’s jump process in [21] and the Ornstein-

Uhlenbeck’s process in [27]).
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2) The intrinsic difficulty in including stochastic pertur-

bations into algebraic variables or parameters leads to

arbitrary solutions such as the singular perturbation

approach used, for example, in [20] and [22].

3) Time domain simulations are not given (e.g., [23]–[25]),

or limited to small power systems. For example, the

WSCC 9-bus system is used in recent publications such

as [27] and [33]).

This paper attempts to address the limitations above. With

this aim, the main objects of the paper are to provide a general

algorithm-based tool to include stochastic processes in power

system models in the form of general-formulated SDEs; and

to properly simulate the effect of stochastic terms on the tran-

sients of power systems of any size. The proposed technique

can be applied to systems of any order and complexity as it

is a general mathematical approach that does not require any

assumption or particular property to be satisfied by the original

system.

In particular, the paper provides:

1) A quantitative tool for evaluating the weight of stochas-

tic perturbations on the power system transient behavior.

2) A systematic yet simple approach to include stochastic

terms in power system models.

3) A mathematical-based comparison between the proposed

SDAE-based approach and other approaches proposed in

the literature. In particular we consider the pure deter-

ministic model and the so-called probabilistic model.

4) A case study that illustrates the points above.

D. Paper Organization

The remainder of the paper is organized as follows. Section

II briefly outlines SDE. Section III describes the power system

model based on SDAE and formulates the initial value problem

for deterministic, probabilistic and stochastic algebraic differ-

ential equations. Section IV presents the proposed systematic

approach to model electric power systems in terms of SDAEs.

Section V discusses issues related to the numerical integration

of SDAEs. Section VI presents some examples of stochastic

power system models. This section also compares the initial

value problems defined in Section III through simulations

based on the IEEE 145-bus 50-machine system. Finally, Sec-

tion VII draws conclusions and proposes future work.

II. OUTLINE OF STOCHASTIC DIFFERENTIAL EQUATIONS

A multi-dimensional Stochastic Differential Equation (SDE)

has the following general form:

dη(t) = a(η, t)dt+ b(η, t)dw(t) (1)

where a (a : R
nη × R

+ 7→ R
nη ) is the drift of the SDE,

b (b : Rnη × R
+ 7→ R

nη × R
nw ) is an nη × nw tensor that

represents the diffusion of the SDE, and w is a nw-dimensional

vector composed of nw independent scalar Wiener’s processes.

The Wiener’s process has various formal definitions. The

most practical is likely the following one: a real-valued

continuous-time stochastic process w(t), t ∈ [0,+∞) is a

Wiener’s process if:

1) w(0) = 0.

2) The function t 7→ w(t) is almost surely continuous.

3) The function w(t) is of unbounded variation in every

interval.

4) w(t) has independent increments with w(t+h)−w(t) ∼
N (0, h) ∀t, h > 0.

where N (µ, σ2) denotes the normal distribution with expected

value µ and variance σ2. The fourth condition means that if

t1 ≤ t2 ≤ · · · ≤ tj−1 ≤ tj , then w(t2) − w(t1), . . . , w(tj) −
w(tj−1) are independent random variables. The expectation of

the Wiener’s process is E(w(t)) = 0 and the variance is:

E(w2(t))− E2(w(t)) = t (2)

The results for the expectation and variance follow immedi-

ately from the definition that increments have a normal distri-

bution centered at zero, thus w(t) = w(t)− w(0) ∼ N (0, t).
Another property of the Wiener’s process is that it is not dif-

ferentiable, which means that lim∆t→0(w(t+∆t)−w(t))/∆t
does not exist. However, there does exist a formal mathemat-

ical definition

ξ(t) =
dw(t)

dt
(3)

which is the so-called white noise process. Observe that (3)

is just a formal way to relate the concept of Wiener’s process

with the concept of white noise. To simplify the notation, in

the remainder of the paper, we implicitly assume the time

dependence of ξ.

Because Wiener’s process is not differentiable, the correct

mathematical formulation of (1) is actually the integral form

η = η(t0) +

∫ t

t0

a(η, s)ds+

∫ t

t0

b(η, s)dw(s), t ∈ [t0, tf ],

(4)

where the first integral is an ordinary Riemann-Stieltjes’

integral and the second one is a stochastic integral. Due to

the unbounded variation of the Wiener’s process, stochastic

integrals cannot be interpreted as Riemann-Stieltjes’ integrals.

With this regard, there are mainly three different interpreta-

tions of stochastic integrals: the Itô’s and the Stratonovich’s

approaches, and the backward integral. The details of these

interpretations are beyond the scope of this paper. The inter-

ested reader can find further insights and a wider literature

review in [17]. In this paper, we use the Itô’s interpretation

for the stochastic integrals and, for simplifying the notation,

we use the differential representation of SDEs. In particular,

from equation (1) and according to (3) the general formulation

used for SDEs is

η̇ = a(η) + b(η)ξ (5)

where, for simplicity, the dependence on time of the terms of

the equation has been omitted.

In the general case, SDEs cannot be explicitly solved and

numerical methods are needed. Numerical methods for SDEs

can show two types of convergence: strong and weak.

Strong convergence refers to the goodness of the approxima-

tion when the focus is on the process trajectories themselves,

and is a straightforward generalization of the usual conver-

gence criterion applied to the numerical schemes for DAEs.
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Formally, an approximation ηN converges strongly with order

βS > 0 to the solution η at time tN if there exist a positive

constant c, independent of ∆t, such that

||η(tN )− ηN || ≤ c(∆t)βS (6)

with ∆t ∈ (0,∆t), and ∆t > 0 is given step length.

On the other hand, weak convergence refers to the good-

ness of the approximation of the statistical properties of the

solutions to the statistical properties of the process. Formally,

an approximation ηN converges weakly with order βW > 0
to the solution η at time tN if there exists a positive constant

c, independent of ∆t, such that

||E(M(η(tN ))− E(M(ηN ))|| ≤ c(∆t)βW (7)

with ∆t ∈ (0,∆t), where M is a smooth function satisfying

certain polynomial growth conditions [13], that usually repre-

sents a moment.

Reference [13] provides a detailed description of the avail-

able methods for the numerical solution of SDEs.

III. MODELING POWER SYSTEMS AS SDAES

The transient behavior of electric power systems is tradition-

ally described through a set of differential algebraic equations

(DAE) as follows:

ẋ =f(x,y,u, t) (8)

0 =g(x,y,u, t)

where f (f : R
nx × R

ny × R
nu × R

+ 7→ R
nx ) are the

differential equations, g (g : Rnx ×R
ny ×R

nu ×R
+ 7→ R

ny )

are the algebraic equations, x (x ∈ R
nx ) are the state

variables, e.g., rotor speeds and rotor angles of synchronous

machines, the dynamic states of loads and system controllers,

etc., y (y ∈ R
ny ) are the algebraic variables, e.g., bus voltage

magnitudes and phases, and u (u ∈ R
nu ) are discrete vari-

ables modeling events, e.g., line outages and faults, switching

operation of tap-changers, etc., and t ∈ R
+ is the time.

In common practice, equations (8) are split into a collection

of subsystems where discrete variables u are substituted for

if-then rules. Thus, (8) can be conveniently rewritten as a finite

collection of continuous DAEs, one per each discrete variable

change. Such a system is also known as hybrid automaton

or hybrid dynamical system. An in-depth description and

formalization of hybrid systems for power system analysis can

be found in [36], [37]. Thus, without loss of generality, in the

remainder of the paper, we focus only on autonomous and

continuous DAEs, as follows:

ẋ =f(x,y) (9)

0 =g(x,y)

where f (f : Rnx × R
ny 7→ R

nx ), and g (g : Rnx × R
ny 7→

R
ny ).

Despite the fact that (9) are well-accepted and are the

common choice in power system software packages, some

aspects of the reality are missing from this formulation, e.g.,

stochastic behavior and variable functional relations. In this

paper, we are interested in defining the possible effects of

stochastic perturbations on the transient behavior of (9). This

kind of perturbations can be originated by the stochastic

variations of loads, transient rotor vibrations of synchronous

machines, harmonics, EMT transients, measurement errors of

control devices, etc. The effect of such perturbations can lead

to stochastic behaviors of the main system variables, e.g.,

frequency, voltages, and power flows. In the general case, these

stochastic processes can depend on power system variables and

parameters. Therefore, and based on (5), stochastic perturba-

tions are modeled as follows:

η̇ = a(x,y,η) + b(x,y,η)ξ (10)

where a : Rnx × R
ny × R

nη 7→ R
nη , and b : Rnx × R

ny ×
R

nη 7→ R
nη × R

nw .
By introducing (10) in (9) the DAEs are transform into a

set of Stochastic Differential Algebraic Equations (SDAEs),

as follows:

ẋ = f(x,y,η, η̇) (11)

0 = g(x,y,η)

η̇ = a(x,y,η) + b(x,y,η)ξ

where functions f (f : Rnx ×R
ny ×R

nη ×R
nη 7→ R

nx ) and

g (g : Rnx × R
ny × R

nη 7→ R
ny ) are modified to include the

effect of stochastic terms η. Observe that, in (11), g does not

explicitly depend on white noises ξ nor on η̇, which allows

solving (11) by means of state-of-art integration techniques

for SDAEs, [13].

A. Stochastic Initial Value Problem versus Deterministic and

Probabilistic Ones

In this subsection, we compare the initial value problems for

SDAE, DAE and Probabilistic DAE (PDAE). Equations (11)

can be used to define a stochastic initial value problem (SIVP),

which is formally obtained by (11) and the initial conditions:

x(t0) = x0 (12)

y(t0) = y0

η(t0) = η0

For the sake of unifying the notation, we rewrite the SIVP

(11)-(12) in the following compact expression:

ẋ = f(x,y,η, η̇), x(t0) = x0 (13)

0 = g(x,y,η), y(t0) = y0

η̇ = a(x,y,η) + b(x,y,η)ξ, η(t0) = η0

Preserving the structure of (13), the deterministic initial

value problem (DIVP) is:

ẋ = f(x,y,0,0), x(t0) = x0 (14)

0 = g(x,y,0), y(t0) = y0

η̇ = 0, η(t0) = 0

Finally, the following probabilistic (or random) initial value

problem (PIVP) has been largely used in power system anal-

ysis [38]–[40]:

ẋ = f(x,y,η0,0), x(t0) = x0 (15)

0 = g(x,y,η0), y(t0) = y0

η̇ = 0, η(t0) = η0
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where the effect of the stochastic variables η is just due to

their initial values η0, but for t > t0 the evolution of the

system is purely deterministic. Hence the trajectories of (14)

and (15) are regulated by the same differential equations and

only differ because of the initial condition.

It is relevant to note that (14) and (15) are particular cases

of the general formulation given in (13).

IV. MODELING STOCHASTIC PERTURBATIONS IN POWER

SYSTEMS

In this section, we present a general approach to model the

stochastic behavior of power systems. With this aim, stochastic

inputs are considered perturbations and stochastic models are

derived by introducing stochastic variations, as discussed in the

previous section. For the sake of simplicity, but without lack

of generality, the discussion is restricted to a one-dimensional

model. Let z be a system variable or parameter and ψ(z, t) a

function representing its deterministic trajectory. A stochastic

model for this trajectory can be derived by introducing a

stochastic variation η(z, t, ξ) as follows:

z(t) = ψ(z, t) + η(z, t, ξ) (16)

Equation (16) can be particularized as follows:

1) If z represents a state variable (z ≡ x), the trajectory

function ψ(x, t) is not generally known a priori, but it

is the solution of a differential equation. Therefore, by

taking derivatives with respect to time in both sides of

equation (16) we have

dx(t)

dt
= f(x, t) +

dη(x, t, ξ)

dt
(17)

where

f(x, t) =
dψ(x, t)

dt
(18)

The dynamic behavior of the stochastic variable

η(x, t, ξ) is an SDE

η̇ =
dη(x, t, ξ)

dt
= a(x, η, t) + b(x, η, t)ξ (19)

where ξ is defined in (3). Therefore, (17) and (19) can

be rewritten as the following set of SDEs:

ẋ = f(x, t) + η̇ (20)

η̇ = a(x, η, t) + b(x, η, t)ξ

2) The variable z can represent an algebraic variable, e.g.,

z ≡ y. Taking into account that this kind of variable is

constrained by an algebraic equation, e.g., g(y, t) = 0,

its deterministic trajectory ψ(y, t) can be obtained by

formally imposing that:

y(t) = g−1(t) (21)

where g−1 is the inverse of g(y, t). By combining (21)

in (16), one obtains:

y(t) = g−1(t) + η(y, t, ξ) (22)

Therefore, the stochastic model for an algebraic variable

y is a SDAE where the stochastic perturbation η imposes

that y varies according to the constraint g, as follows:

0 = g(y − η, t) (23)

η̇ = a(y, η, t) + b(y, η, t)ξ .

3) In case z represents a constant system parameter, say p
(z ≡ p), its deterministic trajectory is a constant, e.g.,

ψ(p, t) = p0. Therefore, according to (16), the stochastic

model for a parameter is as follows:

p(t) = p0 + η(p, t, ξ) (24)

η̇ = a(p, η, t) + b(p, η, t)ξ .

4) The multidimensional case can be derived straightfor-

wardly by simply defining as many sets of (20), (23),

and (24), as needed. Correlations between stochastic

processes can be easily taken into account through a

proper definition of the elements of a and b.

It is important to note that functions a and b of the SDEs

in (20), (23), and (24) define the dynamic behavior and the

statistical properties, respectively, of the stochastic perturba-

tions η. Therefore, taking into account the characteristics of the

stochastic phenomena perturbing the system, an appropriate

SDE can be designed.

The formulation proposed in this section allows to straight-

forwardly derive SDAEs from DAEs by simply including

additional (stochastic) differential equations to the original

DAE model. In particular, in the case study presented in

Section VI, we use (20), (23), and (24) to introduce stochastic

variations in synchronous machine rotor speeds, bus voltage

phasors, and voltage dependent loads, respectively.

V. TIME-DOMAIN INTEGRATION OF SDAES

The most common methods used for integrating SDEs and

SDAEs are explicit, being the most popular ones the Euler and

Milstein schemes [14]. These methods have been also used

for studying power system transients, e.g., [33]. On the other

hand, explicit schemes are particularly exposed to numerical

errors, which tend to increase as the simulation time increases.

Moreover, the stiffness of power system equations makes

explicit integration schemes particularly prone to numerical

issues.

In this paper, we consider an implicit trapezoidal integration

scheme for the drift (deterministic) functions, f and a, and an

explicit Maryuama-Euler scheme for the diffusion (stochastic)

term b [14]. For simplifying the notation of the integration

scheme, let us define x̂ = [xT ,ηT ]T , f̂ = [fT ,aT ]T , and b̂ =
[0T , bT ]T , which transform (11) into the following compact

form:

˙̂x = f̂(x̂,y) + b̂(x̂,y)ξ (25)

0 = g(x̂,y)

The i-th step of the integration scheme applied to (25) is as



5

follows:

x̂
(i) = x̂

(i−1) +
1

2

(

f̂(x̂(i),y(i)) + f̂
(i−1)

)

∆t (26)

+ b̂
(i−1)

∆w(i−1)

0 = g(x̂(i),y(i))

where ∆t = ti − ti−1 is the time step length, x̂(i−1), f̂
(i−1)

,

and b̂
(i−1)

are known vectors from the previous step, and

∆w(i−1) = w(ti)−w(ti−1) is the vector of increments of the

Wiener’s process. This scheme provides a strong convergence

order of 0.5 (O(∆t)0.5) and a weak convergence order of 1

(O(∆t)), [13], [14].

When considering a numerical solution of SDAEs, one

has to restrict the attention to a finite subinterval [t0, tf ].
Moreover, it is necessary to choose an appropriate discretiza-

tion t0 < t1 < · · · < ti < · · · < tN = tf of [t0, tf ].
The other crucial problem is simulating sample paths of the

Wiener’s process over the discretization of [t0, tf ]. Considering

an equally-spaced discretization tj − tj−1 = (tf − t0)/N = h,

j = 1, . . . , N , the random independent increments are:

w(tj)− w(tj−1) ∼ N (0, h), n = 1, . . . , N (27)

of the Wiener’s process {w(t), t0 ≤ t ≤ tf}. From (27) is

clear that the values of the Wiener’s process increments depend

on the size of h and, therefore, the use of a different step size

h will lead to a different path of the Wiener’s process.

The general approach is to use the same step size in the

numerical integration and in the generation of the Wiener’s

process, i.e., ∆t = h. If the focus of the analysis is on the tra-

jectories themselves and, for example, comparing trajectories

of the solutions of SDAEs with different discretization steps

∆t is of interest, it is necessary to ensure that the same path

of the Wiener’s process is being used in order to make the

comparison consistent. To solve this issue, the sample paths

of the Wiener’s process can be generated by using a step

size h equal to the smallest discretization step ∆t used in

the integration scheme.

VI. CASE STUDY

This section presents some results of time domain simula-

tions for a power system including stochastic perturbations in

a variety of devices as specified in Subsection VI-A.

Since there is no commercial tool able to define and inte-

grate power system device models with inclusion of stochastic

processes, simulations can be solved only in two ways: (i) to

adapt an existing open-source software tool for power system

analysis to account for SDAE models (e.g., PSAT [41]) or

(ii) to adapt an existing SDE software tool to study power

system models (e.g., SDE Toolbox [42]). We have inclined

towards the former option. With this aim, we have used DOME

[43], a Python-based version of PSAT, which allows easily

prototyping novel integration methods and device models such

as the ones discussed in this paper. Moreover, DOME allows

parallelizing time domain simulations, which dramatically

speeds up the simulation of SDAEs. The sampling of normal

variates that approximates the Wiener’s process is achieved by

computer generation of pseudo-random numbers. In particular,

we have used the pseudo-random number generator provided

by the GNU Scientific Library (GSL) [44].

A. Stochastic Processes considered in the Case Study

In this case study, we consider stochastic perturbations

of load power consumption, bus voltage phasors, and syn-

chronous machine rotor speeds. The choice of these variables

and parameters is driven by the purpose of illustrating the

procedure discussed in Section IV, which can be applied to

state variables (i.e., rotor speeds), algebraic variables (i.e., bus

voltage phasors) as well as system parameters (e.g., load power

consumption). Clearly, any other stochastic perturbation can

be included by using the proposed approach and based on the

knowledge of the system and on measurements.

For the stochastic processes involved in the simulations, we

use the Ornstein-Uhlenbeck’s process, also known as mean-

reverting process. This process has been already used in the

literature for modeling power system loads (see, for example,

[27]–[29]). The general form of a SDE defining the Ornstein-

Uhlenbeck’s process is:

η̇(t) = α(µ− η(t)) + bξ (28)

Equation (28) represents an exponentially autocorrelated pro-

cess that tends to a pre-specified mean value µ as time tends to

infinite. The resulting process is a normal distributed process

whose expression for the mean and the variance are:

E[η(t)] = µ+ (η(t0)− µ)e−αt (29)

Var[η(t)] =
b2

2α
(1− e−2αt) (30)

Hence, η(t) tends to a normal distributed process in the form

N (µ, b2/2α) as t → ∞. Note that α is the mean-reversion

speed, that is, the rate at which the stochastic variable is pulled

toward the mean value µ, and it can be used to define the

autocorrelation of the process. After that, b can be adjusted to

obtain the desired variance.

In general, the Ornstein-Uhlenbeck’s process is more ap-

propriate for modeling stochastic perturbations in physical

systems than the standard Wiener’s process, as the variance

of the Ornstein-Uhlenbeck’s process does not increase indef-

initely. However, observe that other stochastic processes with

different statistical properties can be used, as the procedure

described in Section IV is general and does not rely on a

specific stochastic process. In particular, one can choose other

functions for the drift and the diffusion terms of the SDE (19)

to define stochastic processes with given statistical properties.

For example, the interested reader can find a discussion on

how to model Weibull’s distributed processes as SDAEs in

[35].

1) Load model: Loads at high voltage level are equiva-

lents of wide areas containing several thousands of physical

loads and devices. The stochastic behavior of such equivalent

aggregated loads is a well-established concept that has been

recognized in the literature (e.g., [19]).
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The stochastic load model is developed based on the well-

known voltage dependent load model as a reference [45]:

pL(t) = pL0(v(t)/v0)
γ (31)

qL(t) = qL0(v(t)/v0)
γ

where pL0 and qL0 are parameters representing active and

reactive load powers at t = 0, v(t) is the voltage magnitude

at the bus where the load is connected, v0 is the value of this

voltage magnitude at t = 0, and exponent γ is a parameter

that characterizes the dependence of the load with respect

to voltage. For instance, this exponent takes values γ = 0
for constant power loads, γ = 1 for constant current loads,

and γ = 2 for constant impedance loads. Since pL0 and

qL0 are parameters, equation (24) of the procedure described

in Section IV applies. Parameters pL0 and qL0 in (31) can

be transformed into stochastic processes ηp(t) and ηq(t),
respectively, with the same formulation as (28). The resulting

set of equations is thus:

pL(t) = (pL0 + ηp(t))(v(t)/v0)
γ (32)

qL(t) = (qL0 + ηq(t))(v(t)/v0)
γ

η̇p(t) = αp(µp − ηp(t)) + bpξp

η̇q(t) = αq(µq − ηq(t)) + bqξq

where the parameters α, µ, and b, have the same meaning as

in (28).

2) Synchronous machine rotor speeds: The dynamic of a

synchronous machine is described by the well-known equa-

tions [45]:

δ̇(t) = ω(t)− ωs (33)

ω̇(t) =
1

M
(τm(t)− τe(t)−D(ω(t)− ωs))

where δ is the rotor angle, ω is the rotor speed, τm is the

mechanical torque, τe is the electro-magnetic torque, M is

the inertia constant, D is the rotor damping, and ωs is the

synchronous speed. Expressions of τe and τm depend on the

level of detail of the model and controllers associated with

the machine [45]. The stochastic perturbations of rotor speeds

model rotor vibrations due to electrical harmonics as well

as mechanical asymmetry and aging. The stochastic process

perturbs the state variable ω. Hence, equation (20) of the

procedure described in Section IV applies. By introducing the

Ornstein-Uhlenbeck’s process (28) in (33), one obtains:

δ̇(t) = ω(t)− ωs (34)

ω̇(t) =
1

M
(τm(t)− τe(t)−D(ω(t)− ωs)) + η̇ω

η̇ω(t) = αω(µω − ηω(t)) + bωξω

where the parameters α, µ, and b, have the same meaning as in

(28). Observe that classical stochastic models of synchronous

machines add just a diffusion term to (33), e.g., [20]. However,

in this particular case, the resulting model reproduces an

Ornstein-Uhlenbeck’s process due to the damping term in (33).

3) Bus voltage phasors: To complete the set of stochas-

tic models, we consider the bus voltage phasors, which, in

transient stability studies, are algebraic variables [45]. As

for synchronous machine rotor speeds, stochastic processes

of bus voltage phasors model harmonics due to transformer

nonlinearities and power electronic devices, the effects of

electromagnetical transients, corona effects, and any other

parasitic phenomena that result, at the fundamental frequency,

as noise.

Voltage phasors have to satisfy the power (or current)

balances at all buses, which are a subset of the algebraic

equations g in (9). The power balance at each bus n is:

0 = pGn(t)− pLn(t) (35)

− vn(t)

nB
∑

m=1

[vm(t)Bnm sin(θn(t)− θm(t))

+ vm(t)Gnm cos(θn(t)− θm(t))]

0 = qGn(t)− qLn(t)

− vn(t)

nB
∑

m=1

[vm(t)Gnm sin(θn(t)− θm(t))

− vm(t)Bnm cos(θn(t)− θm(t))]

where nB is the number of buses connected to bus n, pGn

and qGn are, respectively, the total active and reactive powers

generated at bus n, pLn and qLn are, respectively, the total

active and reactive powers consumed at bus n, Gnm and Bnm

are, respectively, the real a imaginary part of the element {n,

m} of the system admittance matrix, vn (vm) is the voltage

magnitude at bus n (m), and θn (θm) is the voltage phase

angle at bus n (m).

Since (35) are algebraic, we apply equation (23) of the

procedure described in Section IV. Introducing the Ornstein-

Uhlenbeck’s process, one obtains the following set of SDAE

for each node of the system:

0 = pGn(t)− pLn(t) (36)

− v̂n(t)

nB
∑

m=1

[v̂m(t)Bnm sin(θ̂n(t)− θ̂m(t))

+ v̂m(t)Gnm cos(θ̂n(t)− θ̂m(t))]

0 = qGn(t)− qLn(t)

− v̂n(t)

nB
∑

m=1

[v̂m(t)Gnm sin(θ̂n(t)− θ̂m(t))

− v̂m(t)Bnm cos(θ̂n(t)− θ̂m(t))]

η̇vn
(t) = αvn

(µvn
− ηvn

(t)) + bvn
ξvn

η̇θn(t) = αθn(µθn − ηθn(t)) + bθnξθn

where v̂n(t) = vn(t) − ηvn
(t) and θ̂n(t) = θn(t) − ηθn(t)

(v̂m(t) and θ̂m(t) are defined in a similar way), and parameters

α, µ and b, have the same meaning as in (28).

B. IEEE 145-bus 50-machine System

In this subsection, we provide simulation results of the

initial value problem for SDAEs through the IEEE 145-bus

50-machine system [46]. This system consists of 145 buses,
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453 line/transformers, and 50 machines. Machines connected

to buses 93, 102, 104, 105, 106, 110, and 111, are modeled

through a VI-order model. These machines are equipped with

IEEE ST1a exciters including PSS devices. The classical

model is used for the remaining machines. Turbine governors

have been incorporated to all system machines to avoid

unrealistic instabilities. The case study includes stochastic per-

turbations for all loads, rotor speed of synchronous machines,

and bus voltage phasors by using the models described in the

previous subsection. Besides stochastic processes, at t = 1 s,

the system undergoes the outage of the line connecting buses

6 and 7.

The sample paths of the Wiener’s process used in the

stochastic model are generated by using a step size h = 0.02
s, whereas a step length ∆t = 0.02 is used for the integration

scheme. 1000 simulations with different Wiener’s processes

are carried out to provide a consistent set of solutions. The

final simulation time is 20 s. The parameters for the stochastic

models are as follows: αp = αq = αω = αv = αθ = 0.5
1/s, bp = 0.5% of pL0, bq = 0.5% of qL0, bω = 0.01%
of ω0, bv = 0.01% of v0, and bθ = 0.01% of θ0, where

pL0, qL0, ω0, v0 and θ0 are the values of the parameters and

variables obtained from the initialization of the corresponding

models from the power flow solution. Moreover, we assume

µp = µq = µω = µv = µθ = 0 to impose that the stochastic

perturbations have zero mean. Finally, the initial values of

the stochastic perturbations are taken from a N (0, b2/2α)
particularized for the given values of b and α corresponding

to each perturbation model.

Figure 1 depicts the time evolution of the voltage magnitude

at bus 95 for the 1000 simulations. The black continuous

line is the voltage mean value, which coincides with the

solution of the deterministic initial value problem, i.e., with

the solution of a system where stochastic perturbations are

not modeled. Figure 1 shows that the deterministic solution is

above the minimum voltage technical limit. However, 38.4%
of the solutions of the SDAE system are below such limit.

A similar information can be obtained using the probabilistic

model. As stated in Section III-A, in the probabilistic model

only initial conditions are affected by random perturbations,

whereas the system dynamic model is purely deterministic.

These random perturbations on the initial conditions are taken

from a N (0, b2/2α) particularized for the given values of

b and α corresponding to each perturbation model used in

the stochastic simulation described above. Figure 2 shows

1000 trajectories obtained using probabilistic model of loads,

machine rotor speeds and bus voltage phasors. In this case,

20.4% of the solutions falls below the bus voltage limit.

Hence, the probabilistic model provides conservative results

with respect to the detailed SDAE model. This result was to

be expected as SDAE models accurately account for the time

evolution, i.e., the “history” of stochastic perturbations. Table

I summarizes simulation results.

By using a server mounting 48 CPUs, 256 GB of RAM,

and running a 64-bit Linux OS, the simulation of a single

trajectory of the SDAE model takes an average CPU time of

19.8 s, whereas the parallel simulation of 1000 trajectories on

the 48 CPUs takes an average total time of 551 s.
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Fig. 1. Bus voltage magnitude at bus 95 obtained by using the stochastic
approach.
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Fig. 2. Bus voltage magnitude at bus 95 obtained by using the probabilistic
approach.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a general formulation for modeling

power systems as stochastic differential algebraic equations,

as well as a systematic method to model the stochastic

perturbations present in these systems. The convenience of the

stochastic modeling approach is illustrated through simulations

on the IEEE 145-bus 50-machine system.

The proposed methodology has the relevant advantage of

being general and can easily account for any stochastic pro-

cess formulated by means of stochastic differential equations.

Based on this methodology, several future work directions

can be anticipated. Detailed modeling of non-dispatchable

distributed generation (e.g., photo-voltaic and wind parks) is

one promising field of future research. Moreover, the tools

provided in this paper can be used to study transient stability

as well as long term voltage stability of power systems affected

by stochastic inputs. Small-signal stability analysis is also a
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TABLE I
SIMULATION RESULTS FOR THE 145-BUS, 50-MACHINE SYSTEM

Problem LVP NTLV PTLV

# %

DIVP No 0 0

PIVP Yes 204 20.4

SIVP Yes 384 38.4

LVP: Low Voltage Phenomenon
NTLV: Number of Trajectories with Low Voltage
PTLV: Percentage of Trajectories with Low Voltage

challenge for SDAE systems. The analythical tool provided in

this paper can be also useful to define metrics able to help

system operators quantify the effects of stochastic processes.

The authors are currently working on all these topics.
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