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Abstract—This paper proposes a general framework to eval-
uate power system strength. The formulation features twelve
indicators, grouped in three dynamical orders, that quantify the
resistance of bus voltage phasors and their first and second order
rates of change to sudden current injection changes. To quantify
such changes the paper introduces a novel finite differentiation
technique, that we named Delta operator, able to properly capture
“jumps” of algebraic variables and utilizes the recently developed
concept of complex frequency. The paper also shows how the
proposed framework can be systematically applied to any system
device, and provides a variety of examples based on synchronous
machines, converters and loads models are given. Numerical
results in a benchmark system validate the exactness of the
formulation.

Index Terms—System strength, low-inertia systems, short-
circuit ratio, nodal inertia, complex frequency.

I. INTRODUCTION
A. Motivation

The term ‘strength’ refers to the resistance of a system to
disturbances. Intuitively, a ‘stronger’ system is less sensitive to
perturbations, whereas a ‘weaker’ system experiences higher
deviations when subjected to the same disturbance [1]. It is
typically the voltage the representative variable over which
strength is evaluated. For instance, the Australian Energy Mar-
ket Commission (AEMC) defines system strength as the power
system’s ability to resist the changes in the magnitude, phase
angle, and waveform of the voltage at any given location under
different operating conditions [2]. How to quantify this ability
to resist changes, however, is currently an open question.
In this paper, we propose a general analytical framework to
evaluate ‘strength’ based on a novel finite-difference operator
specifically developed for this purpose.

B. Literature review

Analytical developments for quantifying voltage strength
are separated into specific indicators to assess voltage mag-
nitude strength, and separate metrics aimed at evaluating
frequency strength. This separation establishes a natural rela-
tionship with conventional types of stability analysis, namely
rotor angle, frequency, and voltage stability [3].

The foundation of voltage magnitude strength is the short-
circuit level (SCL) at a given location [4]. The SCL has been
historically used as a measure of strength, and has become
a critical aspect for ensuring a stable operation of modern
systems with presence of inverter-based resources (IBRs). In
particular, the short-circuit ratio (SCR), defined as as the ratio
of the SCL to the rated power of the IBR, has emerged as
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a basic metric to assess the ability of the IBR to withstand
low strength conditions [5]. The SCR ignores the effect of
neighboring converters and can lead to optimistic results in
networks with multiple IBRs. This issue has motivated the
proposal the weighted SCR [6], the composite SCR [7],
and a wide list of more elaborated indicators addressing the
shortcomings of the SCR [8]-[13]. A comparison between
these metrics can be found in [14].

With regard to frequency, strength metrics are focused on
the system dynamic performance. Conventional AC systems
are dominated by synchronous machines (SMs), which operate
by nature at a unique frequency, rendering it a rather global
variable of the grid. Consequently, the principles of frequency
dynamics have been studied based on simplified single-node
models, or using global averaged quantities, such as the
frequency of the center of inertia. This scenario has also led to
the use of a global metric for quantifying frequency strength,
namely the system inertia, defined as the sum of the inertia
of the SMs. It is a common assumption that low inertia levels
combined with a high penetration of IBRs endanger power
systems operation. This is a very common scenario in power
systems nowadays, and has given rise to several challenges for
frequency control, and created a paradigm shift in the study
of frequency dynamics [15].

Recent investigations have shown that the spatial distri-
bution of inertia significantly impacts the post-disturbance
local frequency response [16]-[18]. These observations have
motivated research on novel indicators aimed at reflecting local
frequency strength, quantifying the inertia concentration at
different locations of the network [19]-[24]. Despite notable
methodological differences, most works are based on the so-
called ‘nodal inertia’, whose foundation assumes the existence
of an equivalent swing equation at buses [21]. While some
of these proposal’s ultimate goal is to calculate this nodal-
level metric [21]-[23], others use it as an intermediate step
to get regional frequency indicators, recognizing frequency
coherency in areas of the grid [24].

Current research efforts on strength metrics still rely on
strong approximations on the system representation, and often
involve equations proposed rather empirically than derived
analytically. In addition, indicators for quantifying the voltage
magnitude strength and voltage frequency strength are derived
independently with approaches fundamentally different, even
though both variables are, ultimately, two components of a
unique entity: a three phase AC voltage. Recent developments
have enabled the search for a more general and unifying
formulation. In particular, the complex frequency (CF) is
a concept recently proposed in [25] that has given rise to
a variety of improvements in power system modeling and
control [26]-[30]. This article exploits the properties of the
CF to develop the proposed analytical framework to evaluate
system strength.



C. Contribution
The contributions of the paper are threefold.

o A novel general analytical framework to evaluate power
system strength in steady-state and dynamic conditions.
« A systematic methodology to study the effect of diverse
device models on system strength. Specific expressions
for relevant devices, such as synchronous machines, con-
verters, and loads, are provided.
« Definition of a novel mathematical operator, called Delta
operator, along with some of its properties and identities.
A relevant consequence of the proposed analytical framework
is the unification of the voltage magnitude and frequency
strength assessment. It also gives further information on buses
strength when subjected to remote perturbations. The proposed
framework is purely analytical, minimizes assumptions on the
system representation, and avoids approximations, rendering
it ‘exact’, provided the system model is exact.

D. Paper organization

The remainder of this document is organized as follows.
Section II introduces key mathematical foundations required
for the analytical developments of the paper. Section III
introduces the proposed formulation of system strength and its
derivation. Section IV presents specific expressions for basic
power system devices that are relevant to system strength.
Section V offers study cases implementing the proposal in
benchmark systems. Finally, Section VI draws main conclu-
sions and outlines future work.

II. MATHEMATICAL BACKGROUND

This section presents the mathematical foundations required
to build the derivation of the system strength indicators pre-
sented in this work.

A. Complex frequency

Consider the voltage represented as a dynamic Clarke vector
v € C|v=wcosf+ jvsinf. The complex frequency (CF)
of the voltage is a complex quantity denoted as 7 and defined
in [25] as follows:

772%4—]92,04—]@1, v#£0. (1)

The CF is related to the total time derivative of the voltage
as in the equation below:

p{v} =v7, )
where p{-} = £{-} + {-} 704q is the total derivative operator
of a dynamic Clarke vector as defined in [31], and 044
the reference angle of the dq coordinates with respect to a
fixed reference angle. Therefore, (2) gives the ‘absolute’ time
derivative of v, i.e., the rate of change of the vector relative to
the fixed reference frame, independently of the dq coordinates
used to represent v. We are interested in calculating the time

derivative of the vector relative to a rotating reference frame.
To do so, (2) becomes:

=1 (7 — jwo) , A3)

where wy is the fundamental frequency of the system.

Equation (3) is a very useful property of the CF that allows
using it as a time derivative operator. In this work, we are
also interested in calculating the second-order time derivative
of the voltage, v, for which a quantity with a property similar
to (3) would highly facilitate the formulation. This motivates
defining a second-order CF, 77"/, as the complex quantity
satisfying the following equation:

i, 4)
Yy

An expression for 77" is found by taking (3) and applying the
time derivative at both sides:

1]

’ij:

b =107 — jwo) + 07 (5)
S v=0 ((7—jwo)®+1) (6)
=" = (7 — jwo)® +1). (7)

The real and imaginary parts of 77 are hereafter denoted as
o and ~, respectively, i.e., 77 = o + 7, where:

c=p"—(W-w)’+p; v=2pw-w)+w.

In the remainder of this work, the (original) first-order
relative CF (i.e., 7—jwq) is denoted as 77’ and the second-order
CF is denoted as 77”. For this paper, it is enough to recognize
that 77/ contains the information of the second-order dynamics
of the voltage vector, similarly to how the CF packs the first-
order dynamics of the vector. Providing a complete physical

interpretation of this quantity is out of the scope of this work.

B. Delta operator

Consider a standard dynamic model of power systems in the
form of a set of differential algebraic equations (DAEs). Let
f(t) be a scalar function of time f(t) : RT™ — R representing
an arbitrary variable of the set of DAEs, which can be an input,
state, or algebraic variable. Note f might have discontinuities
in the latter case as algebraic variables can jump at specific
times, e.g., due to the ocurrence of faults.

Definition 1: Delta (A) operator applied to f(¢):

Af(t) = TIE?+ flr)— TIE?— flr). )

In simple words, Af(t) gives the difference between the
value of f evaluated at a time infinitesimally after ¢ (¢tT)
and infinitesimally before ¢ (¢7). Note Af(t) is always null
unless f is discontinuous at t. Hereafter, the notation used for
the limits of the function when 7 approaches ¢* and ¢~ is
simplified as f and f~, respectively. Thus:

Af(t)=fr—f". (10)
Definition 2: The instantaneous arithmetic mean of f:
~ + + f-
Definition 3: The instantaneous geometric mean of f:
Fy =Vt (12)

Let f(t), g(t) be variables of the set of DAEs, and «, 3
constants. The A operator satisfies the properties presented



below, whose proofs can be found in the addendum provided
with the paper.
Property 1: A of a constant with time is null.

Aa=0. (13)
Property 2: Linearity.
Afaf(t) + Bg(t)} = aAf(t) + BAg(t). (14)
Property 3: Multiplication rule.
A{f()g(t)} = AFB)FE) + F(£)Ag(t). (15)
Property 4: Division rule.
A {ggi} _ Af(t)g(t;(t)g(t)ﬁg(t) . (16)

Property 5: Chain rule of the complex exponential function:

i, PnAf1)/2)

Jf(t) —
Ae 12

a7

In case we calculate the limit when f© — f~ of the
definitions and properties stated above, the A operator be-
comes equivalent to the absolute derivative operator (d), i.e.,
limg+_, ;- Af(t) = df(t). The proof for properties 1 and
2 is trivial. It also comes straightforwardly for properties 3
and 4 after noting that, in this situation, lims+_, ;- f(t) =
lim g, p- f(t) = f(t). Finally, the proof of property 5
needs recalling that lim, o bm("‘) = 1. This highlights the
consistency of the definition and properties found for A.

Based on the properties above, some identities regarding the
use of the A operator with Clarke vectors are found. Hereafter,
the dependency on time (t) is omitted for simplicity.

Identity 1: A of a Clarke vector v = ve??:

_ Av tan(A60/2)
A st — .
v = e ( 5 T
Identity 2: Consider a Clarke vector 7 and its equivalent after
applying the Park transform with an angle 044, 744 = 7€ 7 %4a.
The following property holds after aplying A to the original
vector:
— ~  tan(Af4q/2
A7 = e?baq (Aqu + 2dq ) 72111( 1/;(1/ )) .
The definitions, properties and identities given in this sec-
tion are, to the best of our knowledge, a novelty of this paper.

(18)

19)

III. GENERALIZATION OF SYSTEM STRENGTH
A. Preliminaries

We aim to provide a more general set of indicators to
quantify system strength. As mentioned in the introduction,
given the broad nature of the concept, we start by introducing
the following considerations to treat system strength:

« It is conceived as a property of each bus of the network.

o The voltage at the bus is taken as the representative
variable over which strength is to be quantified.

« The voltage strength is evaluated with respect to changes
in the current injected by a fictitious independent current
source at the bus.

o The concept of strength is not restricted to a sensitivity
in a small-signal sense, namely, variations of the voltage
due to infinitesimal current changes (in which case we
would look at a derivative-like expression such as %/)

In turn, strength is a measure applicable to large-signal

or discrete events (e.g., %)

B. Proposed formulation

The usual approach to define system strength is to establish
a relationship between the sensitivity of the voltage vector to
a sudden change in the current injection at the bus. Such a
formulation can only take into account how the voltage vector
changes instantaneously due to the current jump. However,
recalling the essence of the concept of strength as the voltage’s
resistance to perturbations, such an approach falls short in
representing strength, because it cannot evaluate how much
the voltage will continue to deviate right after the disturbance,
something we consider an important aspect of the evaluation
of strength.

Thus we aim at a more general formulation to evaluate
voltage strength that is able to reveal: (i) how much voltage
is expected to jump, and (ii) how fast it will continue to
deviate right after the current change. Specifically, we propose
a formulation composed of three categories of indicators,
depending on the order of the time derivative involved: zero,
first, and second-order strength.

1) Zero-order strength: Sensitivity of the voltage vector
AV to changes in the current of the independent source
A7. As V and 7 are 2-dimensional quantities, the sensitiv-
ity is 4-dimensional, i.e., there are four sensitivity factors
corresponding to the possible combinations between the two
components used to represent each vector. These components
have to be chosen and can be different for the voltage and
current. Without lack of generality, the coordinates chosen
for the independent current source are its active and reactive
components (1p, %2q), namely, the component that is in phase
and in quadrature with the voltage vector, respectively. In turn,
we use polar coordinates for the voltage (v, #). Therefore,
ideally, we would evaluate the sensitivity of v and 6 to
changes in 1, and 12,. However, note the voltage components
have different dimensions: volt and rad/s, which would
make the strength indicators of different dimensions as well,
complicating their interpretation and use. For this reason, we
formulate the strength indicators over functions of v and 6
that avoid this problem. We formalize this formulation using
a matrix representation as shown below:

Av/v S S A
[/ P o o | el BRC
p q q
Avyy = S Az, (21)

The magnitude of the voltage is normalized by its instan-
taneous arithmetic mean. In the case of the angle, note the
tangent is a bijective function for A € (—m, ), and for small
angles in a vicinty of zero 2tan(A6/2) ~ Af. Hereafter,
subscript vf denote the voltage vector parametrized using
these functions. The convenience of the form chosen will be
evident in the derivation presented later in Section III-D.



2) First-order strength: Sensitivity of the first-order dy-
namic of the voltage vector, represented through the first-order
CF A7, in real and imaginary parts (p, w), to changes in the
current of the independent source Az, in active and reactive
components (zp, 2q). Formally:

Ap — SPZD Splq AZP
{ Aw } B |: (.AJZp UJ'Lq } { AZq ’ (22)
A’ =5 A, . (23)

3) Second-order strength: Sensitivity of the second-order
dynamic of the voltage vector, represented through the second-
order CF A7”, in real and imaginary parts (o, 7), to changes
in the current of the independent source Az, in active and
reactive components (2p, 2q). Formally:

Ao | | Sou, Sou,
Ay || Sy Sy

Aﬂ// _ éﬁ A@pq'
According to the proposed general formulation, voltage
strength at a single bus is quantified through twelve individual
indicators, four per strength order. In practice, some symme-
tries in actual power system models cause some indicators to
be equal. Nevertheless, in the most general case each bus has a
set of twelve individual strength indicators. For instance, qu
is the zero-order strength metric for the voltage’s magnitude
with respect to changes in reactive current injections. S.,, is
the second-order strength metric for the imaginary part of the
second-order CF with respect to changes in the active current
injections, and so forth.

(24)

AV
Arg |’

(25)

C. Assumptions for the Evaluation of Strength Indicators

To estimate the the set of indicators presented in (20)-
(25), we propose an analytical approach based on a dynamic
model of the system. The resulting indicators are therefore
a function of the variables and parameters of the model. As
any mathematical model representing a physical system, it is
based on a set of working assumptions. The most important
assumptions are as follows.

o Three-phase systems in balanced conditions. This allows
representing voltages and currents using dynamic Clarke
vectors, and the objects introduced in the Addendum
provided with this paper. In particular, the reference used
for voltages and currents is an angle rotating at the
fundamental frequency wy.

o The time scale of interest for evaluating system strength
is considered the one corresponding to electromechanical
phenomena. Fast electromagnetic dynamics are treated as
algebraic constraints. The most important consequence of
this assumption on the derivation is the use of a constant
admittance matrix for the transmission network.

This model is the reference of exactness in this work, and is
the starting point of the derivation presented below. Note that
the proposed indicators can be also obtained using data-driven
approaches, but a discussion on these approaches is beyond the
scope of this paper.

D. Derivation

The starting point is the dynamic model in the standard form
of a set of Differential-Algebraic Equations (DAEs). The goal
is to find an analytical expression for the strength indicators
introduced above, in terms of the parameters p and variables
(x(t) y(t)) of the system of DAEs. Formally:

Avyy = S(p.@(1).y(1) Ay 20
An' = S'(p,x(t), y(1)) Az, 7
A" = 8" (p, () y(1)) Dy @

where Az, is a column vector containing the current injection
of an independent current source at each bus (in pq coordinates
relative to each bus), whereas Av,y, An', An” are column
vectors containing the change due to Egpq in the voltage,
the first-order CF, and the second-order CF, at each bus,
respectively. Therefore, S, S’ and §” are square matrices
whose elements are smaller square matrices (2x2) containing
the strength metrics as defined in (20)-(25). We are particularly
interested in the diagonal elements of the matrices, which
are the bus sensitivities with respect to a change in the
current injection at the same bus, i.e., the sought strength
indicators. The off-diagonal elements are in turn a measure
of the sensitivity of a bus with respect to changes in the
current injection at a different bus, and is a byproduct of
the formulation with relevant information that can be used
in future work.

The dependence on time of (t) and y(¢) is at two specific
times: right before (—) and right after (+) the current injection
change introduced by Agpq. Thus, (26)-(28) can be expressed
more precisely as follows:

Avyy=S(p,x™,y x",y") Ay, (29)
An' =S'(p.x",y",x",y") A, (30)
An" =8"(p,x",y "zt y") Az, (€20)

The dependence on pre-disturbance values £~ and y~ high-
lights the strength indicators are specific to a given operating
condition. This also implies calculating their numerical values
requires initializing the set of DAEs beforehand. The strength
metrics are also a function of post-disturbance values =T, yt,
i.e., the resistance of the voltage to a perturbation depends not
only on the system parameters and current operating condition,
but also on the perturbation itself. This is a very important
aspect of the formulation, which retains the nonlinearity of
the system equations, and is a fundamental difference with
respect to calculating small signal sensitivities. Obtaining ™
is straightforward as states do not jump on discrete events, i.e.
zt==x".

The derivation starts by considering the set of DAEs of
the system. Without lack of generality, we assume it is in
a current injection form, i.e., each shunt-connected device
interfaces with the transmission network through its current
injection at the connection bus [32]. The algebraic equations

of the network voltages and current injections are:
v = Z Tdev » (32)

where v and 24, are column vectors containing the voltage
and net current injected by shunt-connected devices at each



bus, respectively. Z is the impedance matrix, i.e., the inverse
of the admittance matrix of the network.
We add the current injected by the fictitious independent
source at each bus z to (32):
vV=Ztgev + Z7. (33)
At this point, we organize the remainder of the derivation
into five steps:

1) Use (33) to find expressions for ¥, ¥ and @ in terms of
2devs idcv, idcv’ and 7.

2) Apply the A operator to the equations found in the
previous step to get expressions for Av, Av and Av
in terms of AZdey, AZdev, A2geyv, and Az. Note that at
this point, continuing the derivation requires replacing
ATgey, Algey, and Alge, depending on device models.

3) For a single generic device, write expressions for Azgey,
Aldey, and Alqev, as a function of Av, Ay, and Av.

4) Combine the equations of steps 2 and 3 to solve for
A, Av and A%. The solutions depends on z and the
parameter and variables of the system.

5) Apply the transformations required to express Av, Av
and A in the desired form, i.e., as Aw,y, An’ and
AQ”, and also Az as Az,,. B

6) The derivation concludes by combining the results of
steps 4 and 5 to get the sought expressions for the three
orders of strength metrics, i.e., S, S’, and S”.

1) Step 1: Equation (33) is already in the desired form at
this stage:

vV=Zle + Z1. (34)

By applying the time derivative to (34), we find the expres-
sions for ¥ and v:

(35)
(36)

Tdev )

QI
Il
N N

Sl
I
I

dev »

where 7 =7 = 0 as 7 is a fictitious independent source, acting
as a step-like input.
2) Step 2: We apply the A operator to (34)-(36):

AD = Z Nigey + Z A, (37)
A = Z Nigey , (38)
AD = Z Atgo . (39)

3) Step 3: Consider a single device shunt-connected at a
generic bus as illustrated in Fig. 1.

Rest of

Device the system

Ydev

Fig. 1: Generic device interface with the rest of the system.

In a current injection form, the device can be seen as an
input-output block, where the input is the terminal voltage, v,
and the output is the current injected at the bus, 7gey. This

allows us to express the change in the current as a linear
function of the change of the voltage:

Atgey = aAv, (40)

where a depends on variables and parameters of the specific
model of the device. Note that we have replaced the use
of complex numbers with an equivalent representation with
vectors and matrices (see the Addendum provided with this
paper for a detailed explanation on the mathematical objects
used and their notation). Consequently, a has four degrees of
freedom instead of two, making (40) more general.
Similarly, we can assume the time derivatives of the current
are, ultimately, a function of the voltage and its time deriva-
tives. This allows us to express Agg,, and Az, as follows:

'Av+ b Ab,
NAQ“FQ//AQ‘FQNA@-

Algey = 41

(42)

el

AZdev =

~

Expressions for a, a’, a”’, b', b” and ¢ specific to relevant
power system device models are presented in Section IV.
4) Step 4: The results of the previous step can be written

for all buses as follows:

Argey = AAv, (43)
Aigey = A Av + B' Ab, (44)
Algey = é" Av + é" Av + g” AD. (45)
Replacing (43) in (37):

Av=ZAAv+Z Az, (46)
S Mv=(1-24) " Zl, 47

where 1 is the identity matrix. Denote:
Zy=(1-24)" Z. (48)

then:

Av = Z M (49)

Equation (49) is the sought expression at this step for Awv.
We continue replacing (44) in (38):

A =Z (A'Av+ B M) | (50)
e A= (I-2ZB) ZA M. (51)

Using the previous result in (49):
Ab=(1-ZB) " ZAZqAr (D)

Denote:
Zy=(1-2B)" ZA Z. (53)
then:

Av = Z'eOl Az (54)

Equation (54) is the sought expression at this step for Av.
Repeating the procedure for Av:

Ay:é (éﬁAQ—‘y—éﬁAgﬁ-g//Aﬁ) ;
& Ab=(1-2C") " ZA"Av+ZB"Ab.

(55)
(56)



Using the previous results in (49) and (54):

M= ((L-2C") " ZA" 20+ ZB' 2l ) 1. 57)
Denote
Zy, = (l—ég”) Z A" Z «+2ZB"Z, (58)
then:
Ab = Z] As. (59)

Equation (59) is the sought expression for A®.

5) Step 5: We take the resulting expressions of the previous
step and transform them into the desired form proposed in
III-B. We start with the current, which we require to transform
from Az to Agpq. The former is in global dq coordinates with
respect to a common rotating reference frame at wy, and the
latter is with respect to the angle of the voltage corresponding
to each bus. This transformation makes the d-axis and g-
axis current to be the active and reactive components, which
motivates the subscript pq.

We start by applying the inverse Park transform to 2:

Ar=A {gﬁ lpq} ’ (60)

where e’? is a diagonal matrix whose k-th component is:

— Sin(ak)
cos(0g)

and 6, is the angle of the voltage vector at bus k£ with respect
to the global dq reference frame rotating at wy.

Next, we apply the definition of the A operator (equation
(10). Hence, (60) becomes:

+ —_
_ 530 P 70—
Ar=e"" 15, — €7 2.

50 _ |cos(O)

& = sin(0) 1)

(62)

definition, and thus 2} = As. Therefore:

Note that Yy = 0b A

_ 0"
Ar=¢"" Az, (63)

Equation (63) is the sought transformation for the current.
We continue by deriving the expression required to transform
Av into Aw,,. Recalling the alternative form of identity 1
(equation (18) and using a matrix representation:

Av =T e Av,,. (64)

Equation (64) is the sought transformation for the voltage.
Next, we find the transformation from A®» to An’. To do
so, we use the complex frequency property of acting as time
derivative operator as presented in equation (3):

Av=Afen'}, (65)
Av=n'Av+vAn . (66)

Therefore: -
An' =~ Av—'v N’Ay. (67)

Equation (67) is the sought transformation for the first-
order complex frequency. Finally, the transformation for the
second-order complex frequency is found following a similar
procedure:

Aﬂ// — ~—1 Ay _ g—l 7 (68)

6) Step 6: We combine the results of steps 4 and step 5 to
get the final expressions for S, 8" and S”. First, we replace
(63) and (64) into (49):

Avyy =" (e29) ! Zeqge!?" Ay (69)
Therefore, the sought expression for the zero-order is:
=5 (@) 2o )
Next, we replace (49), (54) and (63) into (67):
~— ~ 20T
An =5 (Zéq - "’Zeq) e’ Ay ()
Therefore, the sought expression for the first-order is:
s=g" (Z - Z) e (72)

We continue by replacing (49), (59) and (63) into (68):

Ar'=g (Z” - Zq) & Ay (T3)
Hence, the sought expression for the second-order is:
8" =5 <qu ug Z) e’ (74)
where:
Z=(1-24)" 2, (75)
-1

Zy=(1-2B") ZAZ, (76)
zi,=(1-2C") " ZA"Z+2ZB"Z,,. (1]

The resulting strength metrics depend on the device models
through A, A’, A", B, B” and C" matrices. Consequently,
evaluating st?engTh as a function of the parameters and vari-
ables of a specific system requires the knowledge of the
devices composing the grid. The problem thus reduces to find
expressions for a, a’, a”, b', b and ¢ for specific devices.

We address this task in the next section.

IV. DEVICE MODELS

In this section, we work with a variety of basic power
system device models that are relevant to system strength, e.g.,
synchronous machines, inverter-based resources, and basic
load models. For each case, the goal is to find analytical
expressions for a, a’, a”, b, b” and ¢”, which can be replaced
into the results of Yheiprewous section to evaluate strength.

To do so, we follow a systematic methodology divided into
two steps. First, starting from the set of DAEs composing the
dynamic model of the device, find expressions for its current
injection at terminals and its time derivatives, i.., Z4oy»> gey
and %y, . These expressions must be a function only of model
inputs, states, the terminal voltage and/or its time derivatives.
Second, apply the A operator to the equations found. Finally,
the sought expressions for a, @/, ¢”, b/, b” and ¢’ can be
identified from the results of the second step.



A. Synchronous machines

Consider the classical model of synchronous machines [32],
where the symbols have the usual meanings:

0 = Op(wy — 1), (78)
er:pm_pc_D(wr_l)v (79)

along with the algebraic equations:
0= (ra+214)Tdev — E+7, (80)
0= Eexp(— (6 —m/2)) — je1q, (81)
0=R{E%} — e, (82)

where py, and e;q are the inputs of the model, normally states
of the machine controllers.

From the set of DAEs of the machine’s model, the following
expressions are found:

Tdey = (Ta + 214) "' (B =) , (33)
o = (ra+ gma) " (B - 1) (84)
iew = (raty210) 7 (B =) , (85)
where

E = eiqexp(y9), (86)

E:E<é1q+ 5), 87)
e1q

E=E ((:Z +35)2 + 761“6;‘; Aa 4 ]5> (88)

Considering a constant e14 and the differential equations of
the model, equations (86)-(88) can be rewritten as:

E = e1qexp(y9) (89)
E= 1 E(w, — 1) (90)
E = B(=Q}(wr — 1) + ) (i) (1Y

_ Q

= B(-Q(wr — 1)* + Mb (Pm — Pe — D(w; — 1)) .
92)
The A operator is applied to (83):
Algey = (ro + g710) " (AE — AD) (93)
where, using identity 1 (equation (18):
Aey tan(Ad/2)

= 01d a

AE =¢qe ( T J 12 : (94)

As ¢ is a state and e14 a constant input, Ad = Aeiq = 0.
Therefore:

AE =0. 95)
Finally, we obtain:
Algey = —(ra + yz14) AT, (96)
from where g is identified:
T —X -1
4= Lmad rald} ©7)

Next, the A operator is applied to (84):

Algey = (1o + g214) " (AE — Af;) , (98)
where: )
AE =3 (AE(E;r —-1)+ EAwr) . (99)
Again, as w; is a state and using (95):
AE=0. (100)
Hence:
Aigey = —(ra + yz1a) ' AD, (101)
from where o’ and Q’ are identified:
a@=0; V=g (102)
Finally, we apply the A operator to (85):
Bigew = (ra+gma) " (AE=AB) . (103)
where:
AE = jE (Apm — Ape) . (104)
As py, is considered a constant input:
AE=— E%Ape : (105)

Note p. is an algebraic variable of the machine model.
Finding the desired form formulated in (45) needs expressing
De as a function of the current and terminal voltage. To do so,
note (82) can be equivalently rewritten as (see Addendum):

=0 £ e

Replacing in (105) and using the previous result in (83) for
A@devz

(106)

O,

AE=—yE—2 {1 0} E*alu. (107)
The resulting equation for AE is replaced in (103):
Q
Bigey = ja B =7 [1 0} E*aluv+ali, (108)
from where a”, Q” and ¢ are identified:
O Mo
11 — E °b |: E*
g jg:M 00| = g’ (109)
b’ =0; ' =a.

B. Grid-following converters

Consider a GFL converter model with active and reactive
power control, ideal synchronization, and a droop frequency
control. The set of DAEs describing such model are shown
below, where the symbols have the usual meanings:

Tiq = tdref — 2 (110)
Tiq = tqret — 2q » (111)
Tf.i‘pz E(w—wref)—a:p, (112)



along with the algebraic equations:

0 = Srefo + Tp — Sret (113)
0 = Tdq Tref — Bref » (114)
0=1Td4q — v, (115)
0=7e"% — ey . (116)

From the set of DAEs of the GFL model, the following
expressions are found:

(117)

SRR

+J(w—wo)> :

- 2 - — — -
e o E . . lref @ — lref ?
ldev = ldev ((Z+](w Cdo)) +]w+7T52 ) s

where:

— — 0. - =
tdev =2€7"7 5 Udev —Zdev<

Tref — 1
T b)
w

iret = — K, <R + Wey U + 1oy 17) + K (Sper — 8). (119)

7=

(118)

Next, we apply the A operator to (117) to find the expres-
sions for AZgeyv, Aldey and Aigey:
Algey =767, (120)

Recalling property 5 and identity 1 (see (17) and (18)):

— tan(A6/2
Algey = zef%(l/g/) : (121)
which, in matrix form:
Ao, =177 [0 57 @) P Aw. (122)
Therefore, a is identified:
o=’ g7 @) (123)
In the case of Aigey:
_ %ref 7 ~
Algey = Algey < — +7(w— wo)) +
T7
B (124)
% A'Lref Aw
dev T2 J )
where:
Aw = [g 3] ! (Ag—ﬁ’ Ay) 7 (125)
Aue =43 T " [y o] @97 Au. (26)

Note the first term of (124) and ﬁ’ are negligible compared
to the other terms. Adopting this simplification and combining
(124) to (126) leads to the sought expression for Ay,

. .20 [00] ~—1 A
Algey =187 [0 1} v Av+

Lt [0 @ e [ @0 A

Tf

Therefore, g’ and Q’ are identified:

5 [0 0] ~—
b’=1§19[ }Q '

1 —_— _ ——
o = et [0 ) s [g o] (00)7"

Finally, a similar procedure is followed to find an expression
for Aldey:

(128)

Fo e (ks o] - ) @t

T2 2 00 =
Therefore, a”, Q" and ¢ are found:
g// 29/7
1 . — " — _
o' = e 07 s [ ] (@07,
1. o= /(1 01 « 1o — _
b= e (TfR {0 0} T Sref [0 0} (e2?)™".

C. Constant-impedance loads

Consider a standard constant shunt impedance load model:

0=74 Zgev - (129)
From (129), the following expressions are found:
Tdov = —2 "0 = Aigey = —2 ' A, (130)
Tdev = —2 10 = Algey = —2 AT, (131)
Tdov = —2 10 = Algey = —2 1 AD. (132)
Therefore:
a = b/ = C/, = —271
a:/ — Z/I ::b// — 0: (133)

V. STUDY CASES

The proposed framework is discussed based on the well-
known IEEE 39-bus system. Synchronous machines are rep-
resented using the classical model described in Section IV-A.
Loads are considered constant-impedances according to the
model presented in Section IV-C. Standard system parameters
and operating conditions are used and can be found in [33].

The complete set of strength indicators S, S’ and 8" is
calculated at every bus using (70), (72) and (74). Without lack
of generality, the test perturbation used for this example is
an active current sudden change of Az,q = 14 70 pu. The
results for two representative strength indicators are presented
in Fig. 2. The values are normalized to the maximum of all the
indicators of the same order, and the absolute value is taken for
an easier comparison among different buses using a grayscale.
Fig. 2a shows the results for S, , namely, the sensitivity of
the magnitude of the voltage with respect to reactive current
changes. As expected, the results of this zero-order metric
are driven by the topology of the network plus the internal
impedance of SMs. Nodes with a higher Thevenin equivalent



are more sensitive, such as nodes 29, 28 and 38. In turn, nodes
in more meshed areas of the grid or closer to bigger SMs are
stronger, such as nodes 02, 03 and 39. The results for the
opposite zero-order metric Sp,,, namely, the sensitivity of the
angle of the voltage with respect to active current changes,
is equal in magnitude to S,,,. This is a consequence of the
device models used, particularly, the classical model of SMs,
which has a unique internal impedance for both coordinates.

The other two zero-order metrics Smp and ngq are much
lower than those discussed previously. Fig. 2b shows the
results for S’vzp’ namely, the sensitivity of the RoCoF (v as
defined in (8) with respect to active current changes. In this
case, buses closer to SMs terminals tend to be weaker than
those further from them. The rationale behind this result is that
buses in ‘central’ locations of the grid leverage the contribution
of the inertia of all the SMs. In turn, a SM terminal bus is
mostly affected by the (relatively lower) inertia of the local
machine. In particular, bus 36 is the weakest bus, and coincides
with the terminal bus of the machine of the lowest inertia in
the system. The rest of second-order metrics S, So., and
Soq, are negligible compared to S., .

Finally, the four first-order metrics Sy, , Spiy> Swiys Swrg
are null for this system. This means that the first-order
complex-frequency 7’ is infinitely strong, i.e., it does not jump
after a sudden current change. This is a consequence of the
device models present in the system, particularly because of
the classical model of SMs. A system entirely composed of
SMs makes the CF of the voltage at every node continuous.

() Indicator Swy.,,.

(b) Indicator S,Wp.

0.0 0.2 0.4 0.6 0.8 1.0
« Stronger Node Strength Weaker -

Fig. 2: Normalized results of the system strength metrics considering
a conventional power system. (Note: generators marked with dashed
rectangles are replaced by GLF converters in the second case study.)

Having calculated the strength metrics of the system, a
dynamic validation for a sample perturbation at bus 15 at
simulation time ¢ = 1 s is done. The initial deviations of
Aty5, Affy; and Afjys predicted by the strength indicators for
the given contingency are calculated using (21), (23) and (25),

TABLE I: Dynamic validation results.

Variable Predicted using §’15 Read from TDS Error

Avys (pu) -0.00461526 -0.00461524 -1.273e-08
Af15 (rad) -0.01730211 -0.01730211 6.545e-09
Apis (pu/s) 0.0 2.984e-06 -2.984¢-06
Aw1s (pu/s) 0.0 -4.067e-05 4.067e-05

and compared with the actual trajectories of these variables
observed after a time-domain simulation (TDS). While v(t)
and 6(t) are directly available as they are part of the set
of system DAEs, the exact trajectories of p(t) and w(t) are
calculated using the Complex Frequency Divider Formula
[28]. The results for these four variables are presented in Table
I, which verifies the exactness of the formulation. Regarding
o(t) and (), their trajectories are unfortunately not available
directly from the TDS. However, as they are approximately
equal to p and w (see (8)), their prediction can be compared
to the slope of p and w immediately after the perturbation.
Fig. 3 shows p15, wys and their predicted initial rate of change
(PRoC) based on Acoys and A~ys, respectively. The exactness
of the second-order strength metrics is also verified.

(a) p15 and its PRoC. (b) wis and its PRoC.

0.010 — 5 000 F—"
- PRoC of p15 g ~
= &
£ 0.005 1 £ 0.5 1 \
Q / | — w15
3 PRoC of wis
0.000 = , ~0.10 T T
1.0 1.1 1.2 1.0 1.1 1.2
Time (s) Time (s)

Fig. 3: Trajectories of 7715 and their PRoC.

The system is modified by replacing the SMs marked with
dashed rectangles in Fig. 2 by GFL converters using the
model presented in Section IV-B. For this modified system
and the same perturbation simulated before, Fig. 4 shows
the trajectories of v15, 015, p15 and wis and their respective
PRoC calculated using our strength formulation. A relevant
difference with respect to the original system is that A’ is no
longer null due to the @’ component of GFLs (see (127)). This
implies that 77’ is not continuous anymore, i.e., the CF at buses
can now experience ‘jumps’, as demonstrated in Fig. 4c and
Fig. 4d. The results again verify the accuracy in the prediction
of A’1715, Aﬁll5 and A’F]/ll5.

VI. CONCLUSIONS

This paper establishes the theoretical foundations for a
general and unifying framework for power system strength.
The formulation features a set of twelve indicators organized
in three different dynamical orders that capture the voltage
strength when subjected to current injections changes.

The paper also presents a systematic way to study the
impact of different devices on strength, and shown examples
featuring basic models. For instance, the key parameters of
SMs are the internal reactance, mostly affecting the zero-order
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p (rad/s)

Fig.

(a) v15 and its PRoC. (b) 615 and its PRoC.

—us —0.09 4 — 015
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£ —0.10
. 5
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(c) p15 and its PRoC. (d) wis and its PRoC.
.
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4: Trajectories of 15, 715 and their PRoC in the modified system.

strength, and the inertia, dominating the second-order strength.
Furthermore, a network composed exclusively of SMs forces

the

first-order CF to be continuous, a characteristic that is lost

under presence of GFLs due to their first-order component.
Future work will focus on applications and practical aspects
of the calculation of the proposed metrics.
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Addendum to the Manuscript:
Analytical Framework for Power System Strength

Ignacio Ponce, Graduate Student Member, IEEE, and Federico Milano, Fellow, IEEE

This addendum provides supplementary material to support
the content presented in the above-mentioned manuscript. It
includes three sections:

1) Notation: A detailed explanation of the notation used
throughout the paper.

2) Mathematical proofs: Formal proofs of the properties of
the Delta operator introduced in the paper.

3) Matrix form of complex operators: Equivalent matrix
form of complex operators used in the paper.

These additions are intended to enhance the technical com-
pleteness of the manuscript and facilitate reproducibility for
interested readers.

I. NOTATION
A. Mathematical objects
The paper requires using a variety of mathematical objects.
First, a bar over a symbol indicates a complex quantity:

veC, V=04 + JVq, (D

where vq,v4 € R and 7 is the imaginary number. Complex
numbers are widely used for representing electrical variables
in three-phase balanced systems. Unfortunately, some sources
of asymmetry that arise when generalizing system strength
raise the need for a higher dimensional representation of them.
A double bar below a symbol indicates a two by two square

matrix:
v
12] : )

v
= RQXQ, v = 11
- - V22

V21
where v11,v12, V21,22 € R. This object will typically repre-
sent a complex quantity, in which case the diagonal elements
are equal to the real part, and the off-diagonal elements are
the imaginary part and its additive inverse:

vERP?, p= [”d ‘”‘4] 3)
= - Vq V4

Nevertheless, these objects are not restricted to a matrix
representation of complex quantities, as, in general, they have
four degrees of freedom instead of two. Finally, it is also
convenient to define another object for representing complex
quantities as a two-element vector. A single bar below a
symbol denotes this object:

v T
veR¥™ = { d} = [va, vq] “)
Vq

This work is supported by the Sustainable Energy Authority of Ireland
(SEAI) by funding I. Ponce and F. Milano under project FRESLIPS, Grant
No. RDD/00681.

where vq,v4 € R and T is the transpose operator.

We also require notation to distinguish vectors and matrices
representing a set of electrical quantities for the network. Bold
lowercase letters (e.g., v) denote column vectors containing
variables for every bus of the network. Bold uppercase letters
(e.g., Y) denote square matrices containing variables that
relate every pair of buses of the network. Whenever bars are
used above or below bold letters, it indicates that each of their
elements are of the corresponding type. Some examples are
given below for an n-bus system:

e © € C™ ! contains the voltage at every bus, each one
represented as a complex quantity:

1_11 Vd1 + JVq1
Ug Vd2 + JVq2

o=|-|=| - | 5)
Un, Vdn + JVqn

where vy, vqr are the d-axis and g-axis voltages at bus
k, respectively.

e s € R contains the complex power injected at
every bus, each one represented as a two element vector:

T
§1 [p17 CI1]T
S (P2, 2]
Sn [pna Qn]T

where py, qi are the active and reactive power injected
at bus k, respectively.

e Y € R2X2""" ig the admittance matrix of the network,
whose elements are represented using two by two matri-

Ces:
gll gln
Y= ]

:gnl —nn

g1 —bu gin  —bin 7
b1 gn bin  gin

921 _b21 9nn _bnn

L b21 921 bnn 9nn

where gpi, bpi are the real and imaginary parts of the
hk-th element of the admittance matrix of the network,
respectively.



B. Time derivative

A dot over a scalar quantity denotes its time derivative:

d
x—%{m} )

Regarding objects with bars above or below, anytime the
reference frame is fixed, a dot over the object simply denotes
the time derivative of its components:

s=p+1q. €))

In turn, special care has to be taken when calculating time
derivatives of dynamic objects, such as dynamic Clarke vectors
(e.g., v) or its equivalent representation in matrix or vector
form (e.g., v or v). This is because their total time derivative
depends on the motion of the reference frame used to define
the components of the object. In this paper, we do not
need to evaluate the total time derivative, but the motion of
dynamic objects relative to a common stationary reference
frame rotating at the fundamental frequency wg. Therefore, a
dot over a dynamic object denotes its time derivative relative
to this reference. For instance, considering the dynamic Clarke
vector v = vq + Jvq:

V=104 +70q+ 7 (waq — wo) T, (10)

where wqq is the angular speed of the dq coordinates of v. In
case it matches the fundamental frequency, i.e., wqq = wo, the
time derivative of the vector is simply equal to the derivative
of its components ¥ = 9q + JUq -

II. MATHEMATICAL PROOFS

e Property 1: A of a constant with time is null.

Proof. Applying the definition of the A operator:

Aa=at —a~. (11)

Since ot =a” =
Aa=a—a=0. (12)
O

o Property 2: Linearity.
Proof. Applying the definition of the A operator:
Aaf(t)+Bg(t)} =’ fT + 879"
— (" f+87g7).
Using Property 1, (13) yields:
Aaft)+Bg(t)} = af " +Bg" —af™ =By~ (14

13)

=a(ft—f)+8t-9) (15)
= aAf(t) + BAg(t). (16)
O

e Property 3: Multiplication rule.

Proof. Applying the definition of the A operator:
A{f)gt)} =FfTg" —f 9. (17)

A conveniently chosen zero is added to (17) by adding
and subtracting the quantity f+g~:

A{ftyg®)y=frgt —frg —f g +ftg (18)
=gt =9 )+g (ST=f7) 19
= fTAg(t) + 9  Af(t). (20)

Starting back from (17), this time the quantity f~ g™ is
added and subtracted. Analogously to the procedure in
(18)-(20), it can be shown that:

A{f(t)g()} =g " Af() + f~Ag(t). 2D
Adding (20) and (21):
20{f(t)g(t)} = fTAg(t) + g~ Af(t)

+gTAf() + fAg(), (22)
A{f(B)g(0)} = A f(t)@{zg*)
(Fr+f) (23)
+ Ag(t)f .

Finally, recalling the definition of the instantaneous arith-
metic mean:

A{f(g(t)} = Af(1)3(t) + () Ag(t) . (24)

O
Property 4: Division rule.
Proof. Applying the definition of the A operator:
A {f(t)} — ﬁ — - (25)
g@) ) gt g
ta— — gt
= ngr# . (26)
g9

A conveniently chosen zero is added to the numerator of
(25) by adding and subtracting the quantity f*g*:

e
g(t) gty
_ [t - 971+_9+(f+ —f7) g
+ ! +g
_ Ag(t)++_g Af®) 29)
gty

Starting back from (25), this time the quantity f~¢g~ is
added and subtracted. Analogously to the procedure in
(27)-(29), it can be shown that:

f(t)} _gTAf() — fTAg(Y)
8 { g(t) f gtg - G0
Adding (29) and (30):

FO _ —frAglt) +9"Af(@)
28 { g(t) } B gty a1
g~ Af() — fAg(?)
" 99~ ’

(gT+97) _ 47
A{f(t)} _ AT - ,Ag(t) 2 . (32
g(t gty




Finally, recalling the definitions of the instantaneous
arithmetic mean and the instantaneous geometric mean:

SO\ AR — A
A{gu)}‘ PR S

O

Property 5: Chain rule of the complex exponential func-
tion:

Proof. Applying the definition of the A operator:
Aexp(sf(t)) = exp(2f ") —exp(sf 7). (34)
Using Euler’s formula:
Aexp(sf(t) = cos(f7) + ysin(fT)

35
—eos(fT) —gsin(f) )
= J(sin(f") —sin(f 7))
+cos(fT) —cos(f7). (36)
Consider the following trigonometric identities:
cos(a) — cos(fB) = —2sin <a—;—ﬂ> sin <a;ﬂ> ,
(37)
sin(a) — sin(8) = 2 cos (a—;—ﬁ) sin (a ; 5) .
(38)

Using (37) and (38), (36) becomes:

Aexp(gf(t)) = 2jcos (W) sin (JH_;f_)

—9gin (f++f_> sin (JH__f_>
2 2 '
(39

Recalling the definition of the instantaneous arithmetic
mean and the A operator:

Aexp(2f(t)) = 2ycos(f(t))sin(Af/2)
—2sin(f(t))sin(Af/2)
= 2sin(Af/2) (cos(F(1) +ysin(F(1))) (4D

(40)

= 2sin(Af/2) exp(s£(t)) . (42)
Finally, note that (42) can be equivalently rewritten as:
- sin(Af(1)/2)

Aexp(pf(t)) = exp(3£(t)) JAF(L). (43)

O

Af(t)/2

III. MATRIX FORM OF COMPLEX OPERATORS
Consider a complex number z = a + 7b. The real part,
imaginary part, and conjugate operators applied to z are:
R{z} =a; S{z} =0, 44)
Z¥=a—1b. (45)
Using a two dimensional vector form of the complex quantity,

ie, z = [a b}T. The equivalent 2x2 matrix form of the
operators presented above are:

INERPPR B 8} m - |9, (46)
3z} =b e [8 (1)} [‘b’] = 8] : (47)
z*:a—jb(:}[é 01} Z :{ab] (48)




