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Abstract

This paper discusses the impact of the sub-hourly unit commitment problem

on power system dynamics. Such an impact is evaluated by means of a co-

simulation platform that embeds a sub-hourly stochastic mixed-integer linear

programming security constrained unit commitment (sSCUC) into a time do-

main simulator, as well as includes a rolling planning horizon that accounts for

forecast updates. The paper considers different sub-hourly sSCUC resolutions

(i.e., 5 and 15 minutes) and different wind penetration levels (i.e., 25 and 50%).

The focus is on the transient response of the system and on frequency variations

following different sSCUC strategies, and different sSCUC wind power uncer-

tainty and volatility. The case study consists of a comprehensive set of Monte

Carlo simulations based on the 39-bus system.

Keywords: Co-simulation, dynamic performance, frequency stability,

sub-hourly unit commitment, stochastic programming.

1. Introduction1

Transmission system operators (TSOs) rely on hourly unit commitment2

(UC) models to economically operate the system [1]. Since large amounts of3

stochastic renewable energy sources (RES) can significantly impact on the per-4

formance of the system [2, 3], stochastic programming has been introduced in5
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recent years to properly account for uncertainty (e.g., wind) when scheduling6

the system [4]. For example, [5] shows that using a stochastic UC leads to de-7

crease the operating cost and improve system performance. In [6], the authors8

show that a stochastic market-clearing procedure allows greater wind penetra-9

tion compared to a deterministic approach.10

A recent trend in the economic dispatch of power systems with high pen-11

etration of RES is the utilization of sub-hourly scheduling as opposed to the12

conventional hourly dispatch [7, 8]. This is what is currently happening in the13

European electricity market where more and more energy is being traded closer14

to real time (e.g., intraday) [9]. According to the European Electricity Balanc-15

ing guideline [10], all EU countries should implement an Imbalance Settlement16

Period (ISP) of 15 minutes (i.e., switch from one hour to 15 minutes) by no later17

than Q4 2020. Likewise, the Australian Energy Market Operator (AEMO) is18

planning to use a 5 minute ISP by mid of 2021 [11].19

The sub-hourly scheduling is a way to increase flexibility without investing20

in physical assets [12, 13]. In [14], it is shown that sub-hourly modeling allows21

to better capture the costs and the ramping capability of generators. In [15],22

it is shown that sub-hourly dispatch results in lower costs and lower reserves.23

The importance of sub-hourly modeling is also shown in [16], where the authors24

conclude that sub-hourly modeling reveal significant power plant cycling in the25

form of ramping and start-ups.26

The works above study the impact of the sub-hourly modeling in power27

systems from the economic and/or operational point of view. The focus of28

our work, on the other hand, is on the impact of the sub-hourly UC on power29

system dynamics. If sub-hourly scheduling timescales are used, say 15-minute30

or 5-minute, in fact, then these timescales can overlap with long-term dynamics31

[17]. Therefore, it appears useful and timely to embed the UC problem into32

a fully-fledged transient stability analysis software tool [18, 19], and study the33

dynamic behaviour of power systems.34

In the literature, this goal has been studied by including linear constraints35

into the UC formulation [20]. For example, [21] shows that, by including a36
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frequency ramp limit constraint (RoCoF) in the UC formulation, frequency is37

kept within its limits. Similarly, [22] shows that the inclusion of frequency38

constraints in the UC problem significantly affects UC decisions and lead to39

higher operating costs. The works above fail to capture the long-term frequency40

deviations of the system that are an important concern for system operators41

[23, 24].42

Modern power systems embed different technologies such as communication43

networks, demand-side management, electric vehicles, and RES. Co-simulation44

is seen as a useful method to study the interactions of such complex systems45

[25]. This is due to the fact that a co-simulation approach allows the coupling of46

different subdomain models (e.g., power systems and electricity markets), where47

each subdomain is described and solved within its native environment without48

the need of simplifying one or another [26, 27]. For example, in [28] the authors49

propose a simulation platform that couples continuous power system simula-50

tors with discrete communication network simulators. In [29], a co-simulation51

method that couples electromagnetic transient and dynamic phasor simulations52

is proposed.53

1.1. Contributions54

The main contributions of this paper are the following:55

• The development of a flexible co-simulation platform that allows evaluat-56

ing the impact that different stochastic scenarios to model wind generation57

as well as different sub-hourly resolutions included in a UC problem have58

on power system dynamics.59

• A comprehensive sensitivity analysis of the interaction between sub-hourly60

UC and power system dynamics based on Monte Carlo time domain sim-61

ulations of stochastic differential-algebraic equations.62

The proposed co-simulation platform is a tool aimed at helping TSOs to decide63

which UC problem (e.g., deterministic vs stochastic) is more adequate for their64

grid depending on the renewable penetration and the planning horizon. With65
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this aim, the paper compares various UC problem implementations with differ-66

ent approaches to handle uncertainty and volatility and discuss their impact on67

the long-term frequency deviations of the system.68

1.2. Organization69

The remainder of the paper is organized as follows. Section 2 describes70

the dynamic model of power systems based on stochastic differential algebraic71

equations (SDAEs); the modelling of stochastic processes; the mathematical for-72

mulation of the mixed-integer linear programming (MILP) stochastic security-73

constrained unit commitment (sSCUC); and the modelling of the sSCUC un-74

certainty and volatility, and rolling planning horizon. Section 2 also shows how75

the sSCUC and SDAEs interact together. The results of the case studies based76

on the IEEE 39-bus system are discussed in Section 3. Conclusions and future77

work are given in Section 4.78

2. Modeling79

2.1. Power system model80

Power system dynamics with inclusion of stochastic processes can be modeled81

as a set of hybrid stochastic differential-algebraic equations (SDAEs) [30]:82

ẋ = f(x,y,u, z, η̇)

0 = g(x,y,u, z,η)

η̇ = a(x,y,η) + b(x,y,η) ξ ,

(1)

where f are the differential equations; g are the algebraic equations; x are the83

state variables, e.g. generator rotor speeds; y are the algebraic variables, e.g. bus84

voltage angles; u are the inputs, e.g. load forecast and active power schedules;85

z are discrete variables, e.g. status of the machines); η represent stochastic86

perturbations, e.g. wind speed variations, which are modeled through the last87

term in (1); a and b represent the drift and diffusion of the stochastic differential88

equations (SDEs), respectively; and ξ represent the white noise vector.89
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Equations (1) are solved using numerical integration techniques for SDAEs.90

Since our analysis is based on long-term dynamic simulations, it is desirable91

that the model includes both electro-mechanical models and long-term dynam-92

ics models. In particular, (1) includes the dynamic models of synchronous ma-93

chines, turbine governors (TGs), automatic voltage regulators, power system94

stabilizers, wind power plants, automatic generation control (AGC), and the95

discrete model of sSCUC. These are standard models used for transient sta-96

bility analysis that are found, for example, in EuroStag and PSS/E software.97

TGs are modelled as a conventional droop (R) and a lead-lag transfer function,98

whereas the AGC is represented by an integrator with gain ko. Wind power99

plants are represented by aggregated models, which implement a 5-th order100

Doubly-Fed Induction Generator (DFIG) with voltage, pitch angle and MPPT101

controllers [31].102

2.2. Modelling of stochastic processes103

Modelling the stochastic nature of wind power is critical in power system104

dynamic studies [32]. In this context, (1) includes only wind power variations105

with respect to the forecast wind generation as a stochastic perturbations. An106

Ornstein-Uhlenbeck Process (OUP) is used to model the stochastic nature of107

the wind speed vs that enters into the wind turbine, as follows:108

vs(t) = vs0 + ηv(t)

η̇v(t) = αv(µv − ηv(t)) + bvξv

(2)

where vs0 is the wind speed initial value; ηv is the stochastic variable that is109

dependent on the drift αv(µv − ηv), and diffusion term bv of the SDEs; α is110

the mean reversion speed that indicates the rate at which ηv tends to the mean111

value µv; and ξv represents the white noise.112

2.3. Stochastic Unit Commitment Formulation113

As the penetration of highly variable RES increases so does the uncertainty114

in power systems. This complicate the real-time balance between generation115
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and demand. Therefore it is of particular importance to model the uncertainty116

when scheduling the system. There are different methodologies and techniques117

proposed for optimization under uncertainty, with one of the most popular be-118

ing the two-stage stochastic programming. In the context of UC, the two-stage119

stochastic UC makes use of a probabilistic model for the uncertain input param-120

eters, e.g. wind generation, and is usually approximated by a set of scenarios121

representing the plausible realizations of these random parameters [4].122

In this work, a standard MILP sSCUC problem is implemented based on

[33], in which wind power production is considered as an uncertain parameter

of the system, as follows:

min
H,W

∑
t∈T

∑
g∈G

(CFg z
F
g,t + CSUg zSUg,t + CSDg zSDg,t ) (3)

+
∑
ω∈Ω

πω

[∑
t∈T

∑
l∈L

CVg pg,t,ω +
∑
t∈T

∑
l∈L

CLLSHl,t,ω

]

such that

zSUg,t − zSDg,t = zFg,t − zFg,t−1 (4)

(∀g ∈ G,∀t ∈ {2..., T})

zSUg,t − zSDg,t = zFg,t − ISg (5)

(∀g,∀t ∈ {1})

zSUg,t + zSDg,t ≤ 1 (6)

(∀g,∀t ∈ {1..., T})

zFg,t = ISg (7)

(LUPg + LDWg > 0,∀g,∀t ≤ LUPg + LDWg )
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t∑
τ=t−UTg+1

zSUg,τ ≤ zFg,t (8)

(∀g,∀t > LUPg + LDWg )

t∑
τ=t−DTg+1

zSDg,τ ≤ 1− zFg,t (9)

(∀g,∀t > LUPg + LDWg )∑
g∈Gn

pg,t,ω −
∑
l∈Ln

Ll,t +
∑
l∈Ln

LSHl,t,ω +
∑
f∈Fn

Wf,t,ω (10)

−
∑
f∈Fn

WSP
f,t,ω =

∑
m∈Mn

(δn,t,ω − δm,t,ω)

Xn,m

(∀n,∀t, ∀ω ∈ Ω)

pg,t,ω ≤ Pmax
g zFg,t (11)

(∀g,∀t, ∀ω ∈ Ω)

pg,t,ω ≥ Pmin
g zFg,t (12)

(∀g,∀t, ∀ω ∈ Ω)

pg,t,ω ≤ (P ISg +RUg)z
F
g,t (13)

(∀g,∀t ∈ {1},∀ω ∈ Ω)

pg,t,ω ≥ (P ISg −RDg)z
F
g,t (14)

(∀g,∀t ∈ {1},∀ω ∈ Ω)

pg,t,ω − pg,t−1,ω ≤ (2− zFg,t−1 − zFg,t)PSUg (15)

+ (1 + zFg,t−1 − zFg,t)RUg)

(∀g,∀t ∈ {2, ..., T},∀ω ∈ Ω)

pg,t−1,ω − pg,t,ω ≤ (2− zFg,t−1 − zFg,t)PSDg (16)

+ (1− zFg,t−1 + zFg,t)RDg)

(∀g,∀t ∈ {2, ..., T},∀ω ∈ Ω)

LSHl,t,ω ≤ Ll,t (17)

(∀l,∀t,∀ω ∈ Ω)

WSP
f,t,ω ≤Wf,t,ω (18)

(∀f, ∀t,∀ω ∈ Ω)
7



− Pmax
n,m ≤

(δn,t,ω − δm,t,ω)

Xn,m
≤ Pmax

n,m (19)

(∀n,m ∈Mn,∀t,∀ω ∈ Ω)

pg,t,ω, L
SH
l,t,ω,W

SP
f,t,ω ≥ 0 (20)

(∀g,∀l,∀f, ∀t,∀ω ∈ Ω)

zFg,t, z
SU
g,t , z

SD
g,t ∈ {0, 1} (21)

(∀g,∀t)

and the initial state conditions are as follows:

ISg =

1 if ONg > 0

0 if ONg = 0

LUPg = min{T, (UTg −ONg)ISg}

LDWg = min{T, (DTg −OFFg)(1− ISg)}

Equations (3) represent the total cost to be minimized which includes the fixed,123

start-up, shut-down and variable cost of the generating units, as well as the cost124

of involuntarily demand curtailment. Equations (4)-(6) model the logical ex-125

pression between the binary variables (i.e., start-up and shut-down of generating126

units). Equations (7)-(9) model the minimum and maximum up- and down-time127

constraints. The power balance constraint is modeled through equations (10).128

While the capacity limits of generating units are modeled through equations129

(11)-(12) and their respective ramping limits through (13)-(16). Equations (17)-130

(18) model the limits of the involuntary demand curtailment and wind power131

spillage, respectively. Transmission capacity limits are enforced by equations132

(19). Finally, equations (20)-(21) refer to the variable declarations.133

The model shown in (3)-(21) is the deterministic equivalent of the original134

two-stage stochastic programming problem. It is called a two-stage problem135

since there are first-stage and second-stage variables, also known as here-and-136

now and wait-and-see variables, respectively [4]. In particular, zFg,t, z
SU
g,t , z

SD
g,t137

are first-stage decision variables that represent the status of generating unit g138
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in time period t (i.e., ON/OFF status, start-up and shut-down). These deci-139

sions do not depend on uncertainty realization ω, and are generally made one140

day in advance. Similarly, pg,t,ω, L
SH
l,t,ω,W

SP
f,t,ω, δn,t,ω are second-stage decision141

variables that represent the active power dispatch of generating units g in time142

period t and scenario ω, the involuntary power curtailment from load l in time143

period t and scenario ω, wind power spillage from wind production unit f in144

time period t and scenario ω, and voltage angle at node n in time period t and145

scenario ω, respectively. All second-stage decision variables depend on uncer-146

tainty realization ω. Further details of the sSCUC can be found in [33] and147

references therein.148

2.4. Scenarios and Rolling Horizon within the sSCUC149

To illustrate the modelling of sSCUC wind uncertainty and volatility, and

rolling planning horizon used in this paper, we show below the power balance

equations of the sSCUC, as follows:∑
g∈ΩGn

pg,t,ω −
∑
l∈ΩLn

Ll,t +
∑
l∈ΩLn

LSHl,t,ω +
∑

k∈ΩKn

Wk,t,ω (22)

−
∑

k∈ΩKn

WSP
k,t,ω =

∑
m∈ΩMn

(δn,t,ω − δm,t,ω)

Xn,m
, (∀n, ∀t, ∀ω ∈ Ω)

where pg,t,ω is the active power of conventional generating units g, at time150

period t, and scenario ω (i.e., equivalent of the second-stage variable uf,t,ω in151

section 2.3); Ll,t is the demand for load l at time period t; LSHl,t,ω is the power152

curtailment from load l, at time period t, and in scenario ω; Wk,t,ω and WSP
k,t,ω153

represent the power generation and curtailment, respectively, from wind unit154

k, in time period t, and scenario ω; Xn,m is the reactance of line n−m; δn,t,ω155

represent the voltage angle at node n, time period t, and scenario ω; and ΩKn
,156

ΩMn are the sets of stochastic power generation (i.e., wind) located at node n,157

and nodes m ∈ N connected to node n by transmission line, respectively.158

2.4.1. Modelling wind uncertainty159

Similar to [34], a wind power penetration level Wk,t,ω is defined as a per-160

centage of the demand Ll,t, and named the medium scenario, WM
k,t,ω. Then,161
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Figure 1: Wind power 15min rate of change for 12 typical day in the Irish system in 2018.

high and low wind power scenarios (WH
k,t,ω,W

L
k,t,ω) are built as percentages of162

the medium scenario, as follows:163

WL
k,t,ω = WM

k,t,ω × (1− j/100)

WH
k,t,ω = WM

k,t,ω × (1 + j/100)
(23)

where j is the percentage of deviation of the the high and low scenarios with164

respect to the medium one.165

The consistency of the wind power scenarios with real-world information is166

compared using wind power data of the Irish system[35]. Specifically, the 15167

minute rate of change of wind power is determined based on one typical day168

per each month of 2018 (see Fig. 1). Based on these data, wind power does not169

appear to be able to change more than 10% in 15 minutes. For this reason, in170

the case study, j = 10% is assumed.171

2.4.2. Modelling wind volatility172

Wind power volatility is modelled as small fluctuations with respect to the173

average value for a given period. Hence, uncertainty is related to wind power174

forecast, e.g. wind scenarios, while volatility is considered as a percentage,175
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Figure 2: Wind power profile for two typical days (Jan, Jul) in the Irish system in 2018.

e.g. standard deviation, on top of the wind power forecast [36]. A normal176

distribution N(µ, σ2) with zero mean and given standard deviation is attached177

to each wind power scenario, as follows:178

WL1
k,t,ω = WL

k,t,ω +N(0, σ2)

WM1
k,t,ω = WM

k,t,ω +N(0, σ2)

WH1
k,t,ω = WH

k,t,ω +N(0, σ2)

(24)

where WL1
k,t,ω,W

M1
k,t,ω,W

H1
k,t,ω are the new low, medium and high wind power179

scenarios, respectively, after adding the volatility.180

An important aspect to keep in mind when building the scenarios is the181

relationship between the wind power level and its standard deviation σ. With182

this aim, two typical days are analysed for two months, namely January (high183

wind) and July (low wind). The wind power profile for these typical days is184

shown in Fig. 2. It appears that wind varies more in January than in July.185

More specifically, the standard deviation of wind power generation is found to186

be 234.78 MW and 68.46 MW, for January and July, respectively, and that high187

wind leads to higher σ.188

Note that the goal is not to propose new sSCUC models to deal with wind189
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power uncertainty and volatility, but rather to study the impact of a well as-190

sessed sSCUC formulation on power system dynamics. For this reason, it is not191

necessary to consider more sophisticated sSCUC models. As a matter of fact,192

the case study shows that, depending on the wind penetration and planning193

horizon, a sSCUC might not be needed at all.194

2.4.3. Modelling the rolling planning horizon195

Scheduling the system frequently (i.e., more than once a day) allows having196

better wind and load forecats. As a result, less reserves are required [5]. In this197

work, we use a rolling planning approach for updating the wind power forecast198

(Wk,t,ω) with a planning horizon of 24h. During the first hour of the planning199

horizon, the high/low wind scenarios increase/decrease as a linear function from200

the medium scenario and after that they have a fixed error, e.g. j = 10%. The201

sSCUC model is solved at every time period t during the first 12h with a planning202

horizon of 24h. When rolling forward, the status of the units of the previous203

horizon serve as an initial status for the next horizon. Between two scheduling204

events of the sSCUC, e.g. 15 or 5 minutes, wind and load profiles are modelled205

as linear ramps.206

2.5. Interaction between sSCUC and SDAEs207

It is time to merge all of the above in a single framework. Generally speak-208

ing, the goal is to embed equations (3)-(21) and (23)-(24) into equations (1).209

One has two ways to do so: embed sSCUC and equations (23)-(24) into an ex-210

isting dynamic model, or the other way round. This paper proposes the former211

approach, i.e., embedding the sSCUC problem (3)-(21) and equations (23)-(24)212

into the TDS routine of dome [37].213

The sSCUC model (3)-(21) uses the active power of the generators, namely,214

pg,t,ω, as a second-stage decision variable. In other words, pg,t,ω adapts to the215

uncertainty realization ω. Since we are interested in having a single power216

dispatch for each generator and for each time period, a reasonable tradeoff217

consists in taking a weighted-sum of the scenarios ω. In the literature, one218
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may find different formulations of sSCUC with respect to the active power of219

generators. For example, in [38], the authors use the active power as a first-stage220

decision variable (pg,t, set-points) and then use up/down reserve deployment221

(production changes) as a second-stage decision variable to accommodate wind222

variability (real-time).223

Figure 3 shows the overall structure of the recently proposed co-simulation224

framework. The tool is composed of two parts, namely, the dynamic model of225

power systems (SDAEs) and the discrete model of sSCUC. dome coordinates226

the co-simulation, i.e., the exchange of information between the sSCUC and227

the SDAEs. In particular, the output of the sSCUC model, namely, the active228

power of generating units, pg,t,ω, serves as an input to the SDAEs, i.e. change229

the power set point of the turbine governors of the power plants. Finally, a230

Monte Carlo method is utilized to simulate large sets of realizations of the231

stochastic processes of wind and loads. Each realization defines the “reality”232

that needs to be updated to solve the next sSCUC problem. Such a feedback233

is needed to update the forecast of wind (Wk,t,ω) and loads as utilized in the234

sSCUC problem.

Dynamic Data

TG

TG(Gurobi)

sSCUC

SDAEs

sSCUC Data

Grid

Forecast

Wind & Load Forecast

Actual Wind & Load
DOME Framework

Static &

pg,t,ω

Figure 3: Interaction between the sSCUC problem and the dynamic model of the turbine

governors, the synchronous machines and the grid.

235
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3. Case studies236

From a system operator point of view, it is useful to study the impact that237

different levels of uncertainty and volatility, e.g. wind forecast errors, within238

the sSCUC model have on power system dynamic performance. Since TSOs239

still mostly rely on deterministic security-constrained UC (SCUC) formulations,240

a comparison between SCUC and sSCUC approaches is relevant. Also, since241

different TSOs use different scheduling timescales and/or different rolling ap-242

proaches, e.g. every 15 minute [39], or every 5 minute [8], a comparison of the243

effect of these strategies is also carried out in this section. Moreover, the im-244

pact of contingency and renewable penetration on the transient response of the245

system and long-term frequency deviations, respectively, using different sSCUC246

strategies is shown as well. Finally, the impact of different wind power scenarios247

of the sSCUC on the dynamic response of the system is discussed.248

All simulations are based on a modified IEEE 39-bus system [40], with the249

data of the sSCUC taken from [41]. Whereas the value of load curtailment is250

assumed $1000/MWh [4], and the marginal cost of wind is considered zero. The251

focus is on the first 12 hours of the planning horizon. During these hours the252

demand increases from 700 MW in the first hour to 1500 MW in the 12 hour. For253

simplicity, a wind profile that follows the demand is modelled. In other words,254

we assume the same wind penetration level for the medium scenario during255

these hours, namely, 25%, and based on this we build the low and high scenario256

accordingly. Such a relationship between demand and wind power corresponds257

to a typical day in 2018 in the Irish system. It should be noted here that one258

may choose any other profile for the demand and wind but according to our259

studies that does not change the relevant conclusions. Wind generation is given260

by three wind power plants connected at bus 20, 21 and 23, respectively, with261

a nominal capacity of 300 MW each.262

The total number of state and algebraic variables of the SDAE model for263

all scenarios are 173 and 277, respectively. Regarding the sSCUC variables, the264

model includes three first-stage variables, namely, the ON/OFF, start-up and265
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shut-down status of generating units, and four second-stage variables, namely,266

the active power of conventional units (set-points), the demand and wind power267

curtailment, and the bus voltage angle, respectively. The total numbers of268

the first-stage and second-stage variables for the 15-minute model are 2,880269

and 20,448, respectively. While the total numbers of these variables for the 5270

minute model are 8,640 and 61,344, respectively. Therefore even considering271

only three wind power scenarios, shortening the time period of sSCUC, lead272

to a huge increase in the size of the sSCUC model. In fact, this is one of the273

main limitations of sSCUC approaches, especially when considering their use274

for real-time operations of power systems.275

Finally, a Monte Carlo method is used in all scenarios (100 simulations are276

solved for each scenario). The standard deviation of the frequency of the COI,277

σCOI, (computed as the average of the standard deviation obtained for each278

trajectory) is utilized as an index to evaluate the impact of sSCUC on the279

dynamic response of the system. The sSCUC is implemented in the Python280

language and solved using Gurobi [42], while all simulations are obtained using281

dome, a Python-based software tool [37]. dome includes a set of dynamic282

models similar to the ones provided by commercial software tools but with283

the additional feature of being able to model and properly integrate stochastic284

processes.285

3.1. 15-Minute Scheduling286

In this case study, a 15-minute scheduling time period is used. The average287

value of the objective function is found to be approximately $412,000, hence,288

lower than the value found in, for example, [41]. This is due to the fact that289

wind generation is explicitly accounted in the objective function, and since its290

marginal production cost is considered zero, it leads to lower operational costs.291

Each scenario is characterized by a relevant amount of wind stochastic varia-292

tions. When solving the sensitivity analysis, the sSCUC probabilities are varied,293

and their impact on the standard deviation of the frequency of the system (σCOI)294

is observed.295
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Figure 4: 15-minute scheduling – Trajectories of ωCOI for 12h.

Figure 5: 15-minute scheduling – Trajectories of wind speeds for 12h. Dashed lines indicate

the high, medium and low scenarios, respectively, while grey line indicate the same scenarios

with inclusion of volatility.

In order to compare results, a base-case scenario is considered with the296

following properties: sSCUC probabilities for the low, medium and high wind297

power scenarios are set to 20%, 60%, 20%, respectively. Similarly, when we298
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run the Monte Carlo TDS (MC-TDS), the system is assumed to be with the299

following probabilities: 20%, 60%, 20% for the low, medium and high wind300

power scenario, respectively. As mentioned in the rolling planning section, the301

low and high scenario differ from the medium scenario by 10%. This base case302

is shown in Fig. 4, 5, while Fig. 4 shows the trajectories of ωCOI and Fig. 5303

shows the trajectories of the wind speed scenarios.304

It is interesting to note that, in Fig. 4, the frequency jumps due to a change305

in the operating point of the machines forced by the sSCUC, i.e. new schedules.306

These jumps are very similar to real-world power systems behaviour observed307

in, for example, the continental European grid [24, 43]. Finally, it is worth308

mentioning that the wind speed profile in Fig. 5 is obtained by adding some309

stochastic noise on each of the three wind scenarios.310

3.1.1. Impact of different sSCUC strategies on power system dynamics311

Table 1 shows some of the most relevant results of the sensitivity analysis.312

Specifically, scenario 1 assumes a sSCUC with wind probabilities 20%, 60%,313

20% and a MC-TDS with the same probabilities. Thus, it is assumed that what314

was forecast by the sSCUC will actually happen in the reality. σCOI for this315

scenario is 0.000847. In Scenario 2 the probabilities of the sSCUC differ from316

that of the system by a relevant value. The value of σCOI is 0.000859, and thus317

higher than scenario 1 due to the error in the sSCUC probabilities.318

Scenario 3 assumes a sSCUC with 100% low wind (one scenario, equivalent319

to SCUC). The value of σCOI for this scenario is 0.000867 and so higher than320

scenario 1 for the same reason above. Similarly, Scenario 4 assumes a sSCUC321

with 100% medium wind. This leads to higher frequency variations compared322

to scenario 1, with σCOI = 0.000872. Next, Scenario 5 assumes a sSCUC with323

100% high wind. Quite surprisingly this scenario appears to be the best from324

the dynamic point of view with σCOI = 0.000802.325

To analyse this relevant case, more scenarios are considered. In Scenarios326

6 to 9 in Table 1, the probabilities of sSCUC are varied from a sSCUC with327

100% high wind to a sSCUC with 100% medium, and it can be seen that σCOI328
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Table 1: 15-minute scheduling – σCOI for different sSCUC probabilities with j = 10%.

Scenario sSCUC MC− TDS σCOI (10−4)

1 20% 60% 20% 20% 60% 20% 8.47

2 40% 50% 10% 20% 60% 20% 8.59

3 100% 0% 0% 20% 60% 20% 8.67

4 0% 100% 0% 20% 60% 20% 8.72

5 0% 0% 100% 20% 60% 20% 8.02

6 0% 20% 80% 20% 60% 20% 8.17

7 0% 40% 60% 20% 60% 20% 8.32

8 0% 60% 40% 20% 60% 20% 8.41

9 0% 80% 20% 20% 60% 20% 8.52

increases almost linearly. Therefore, even though Scenario 5 assumes an error329

in the sSCUC probabilities, synchronous machines and the respective controls330

(primary and secondary) can regulate it very fast.331

To further analyse this, in Table 2 the wind power uncertainty level is in-332

creased from j = 10% to j = 30% with a step of 10% for both, Scenario 1333

and Scenario 5, respectively. For j ≥ 30%, Scenario 1 gives the better dynamic334

behaviour. It appears that, if the wind forecast error is small, then from the335

dynamic performance viewpoint of the system, it is better to solve a SCUC with336

high wind power.337

It is worth observing that the differences on the long-term frequency devi-338

ations of the system between scenarios are marginal (maximum of 3.5 mHz).339

This is mainly due to the fact that, since the scheduling is repeated with a340

short period, it reduces the forecast error, which in turn leads different sSCUC341

strategies to produce similar schedules for the generators. This indicates that342

system operators may prefer to use deterministic approaches when scheduling343
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Table 2: 15-minute scheduling – σCOI for different sSCUC probabilities and different j.

Scenario j sSCUC MC− TDS σCOI (10−4)

1 10% 20% 60% 20% 20% 60% 20% 8.47

1 20% 20% 60% 20% 20% 60% 20% 12.58

1 30% 20% 60% 20% 20% 60% 20% 17.20

5 10% 0% 0% 100% 20% 60% 20% 8.02

5 20% 0% 0% 100% 20% 60% 20% 12.41

5 30% 0% 0% 100% 20% 60% 20% 17.37

Table 3: 15-minute scheduling – σCOI for different sSCUC probabilities with j = 10%.

Scenario sSCUC MC− TDS σCOI (10−4)

1 0% 0% 100% 0% 0% 100% 8.01

2 0% 100% 0% 0% 100% 0% 2.90

3 100% 0% 0% 100% 0% 0% 1.46

the system as the complexity of the stochastic one does not provide a solution344

with a significant added value for the operation of the system.345

Finally, Table 3 compares three deterministic cases, namely, low, medium346

and high sSCUC wind power scenarios. The deterministic low wind power347

scenario leads to better dynamic behaviour (lower σCOI).348

3.1.2. Impact of sSCUC wind uncertainty on power system dynamics349

To simulate the impact of the sSCUC wind power uncertainty, the uncer-350

tainty level is increased from j = 10% to j = 40% with a step of 10% (volatility351

is kept constant). Four σCOI are calculated and Fig. 6 shows σCOI as a function352

of wind power uncertainty. The higher wind uncertainty, the higher σCOI. This353

relationship is almost linear within the used range. This suggests that as power354
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Figure 6: 15-minute scheduling – σCOI as a function of wind uncertainty and volatility.

systems accommodate larger amounts of RES, i.e. higher uncertainty, TSOs will355

have to make sure that they have the necessary sources (power reserve) to cope356

with this uncertainty.357

Figure 7 shows the total cost as a function of wind uncertainty. The higher358

the wind uncertainty, the higher the cost due to more ramp-up and ramp-359

down of generators. Hence, despite RES being a cheap source of energy, their360

intermittent nature, requires more reserves to cope and so there will be an361

increase of the cost of ancillary service. These results confirm the conclusions362

of previous works, e.g. [34].363

3.1.3. Impact of sSCUC wind volatility on power system dynamics364

To study the impact of sSCUC wind power volatility on power system dy-365

namics, different level of volatility are considered, i.e., higher standard devi-366

ations means high wind volatility. The standard deviation of wind scenarios367

is increased from 10% to 40% with a step of 10% while uncertainty is kept368

constant.369

Figure 6 shows σCOI as a function of wind power standard deviation. The370

higher the wind power volatility, the higher the frequency variations. Similarly371
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Figure 7: 15-minute scheduling – Expected cost as a function of wind uncertainty and volatil-

ity.

to the results shown in Fig. 6, this relationship appears to be almost linear372

within the considered range. As mentioned above, this supports the idea for373

increased ancillary services by TSOs in the future.374

Figure 7 shows the total cost as a function of wind volatility where it can375

be seen that higher wind power volatility leads to higher costs due to higher376

ramping of generating units. Wind power volatility has thus a greater impact377

than uncertainty on costs.378

3.2. 5-Minute Scheduling379

In this scenario, the wind power uncertainty level is assumed proportional380

lower compared to the 15-minute scheduling time period (j = 3.33%). This381

assumption is made based on the 15-minute rate of change of wind power shown382

above (Fig. 1). Next, the base case scenario is depicted in Fig. 8, 9. Compared to383

the base-case scenario in the 15-minute case study (Fig. 4), frequency variations384

are lower (Fig. 8). Also, it is interesting to note that high frequency variations385

correspond to the wind ramp-up. Regarding the total operating cost, its average386

value is found to be approximately $408,000, and hence, lower than in 15-minute387

case study due to lower uncertainty.388
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Figure 8: 5-minute scheduling – Trajectories of ωCOI for 12h.

Figure 9: 5-minute scheduling – Trajectories of wind speeds for 12h. Dashed lines indicate

the high, medium and low scenarios, respectively, while grey line indicate the same scenarios

with inclusion of volatility.

3.2.1. Impact of different sSCUC strategies on power system dynamics389

This section perform the same sensitivity analysis that is carried out for the390

15-minute scheduling. Table 4 show the relevant results of such an analysis. A391
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Table 4: 5-minute scheduling – σCOI for different sSCUC probabilities with j = 3.333%.

Scenario sSCUC MC− TDS σCOI (10−4)

1 20% 60% 20% 20% 60% 20% 5.45

2 40% 50% 10% 20% 60% 20% 5.51

3 100% 0% 0% 20% 60% 20% 5.44

4 0% 100% 0% 20% 60% 20% 5.70

5 0% 0% 100% 20% 60% 20% 5.48

6 0% 20% 80% 20% 60% 20% 5.53

7 0% 40% 60% 20% 60% 20% 5.55

8 0% 60% 40% 20% 60% 20% 5.55

9 0% 80% 20% 20% 60% 20% 5.59

reduction of the value of σCOI is observed for all scenarios. This is due to the392

lower level of wind power uncertainty. In particular, if we compare scenarios 1, 3393

and 5, respectively, we can see that the differences are less significant. It appears394

that, if the uncertainty level is low and the system is scheduled more frequently,395

then differences between SCUC and sSCUC becomes less evident. This result396

can be explained by the fact that, even if there is an error in the forecast, the397

machines and the relevant controls will easily account for it. Therefore, if shorter398

interval of sSCUC are used and the system is scheduled more frequently, like, for399

example, in Australia [8], then system operators can still rely on deterministic400

approaches without compromising the dynamic performance of the system.401

While the sensitivity analysis in case of the perfect forecast is shown in Table402

5. The deterministic case with low wind gives the better dynamic behaviour,403

thus confirming the conclusions drawn for the 15-minute sSCUC.404
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Table 5: 5-minute scheduling – σCOI for different sSCUC probabilities with j = 3.333%.

Scenario sSCUC MC− TDS σCOI (10−4)

1 0% 0% 100% 0% 0% 100% 5.46

2 0% 100% 0% 0% 100% 0% 3.38

3 100% 0% 0% 100% 0% 0% 2.43

3.2.2. Impact of sSCUC wind uncertainty on power system dynamics405

This section focus on the impact of wind power uncertainty on power system406

dynamics using a 5-minute scheduling. Similar to the 15-minute case, the wind407

power uncertainty level is increased from j = 10% to j = 40% with a step of408

10%.409

Figure 10 shows σCOI as a function of wind power uncertainty. Again, we410

can see that such a relationship is almost linear within the used range. This411

suggests that, even using shorter sSCUC timescales, e.g. 5 minute, higher shares412

of RES will likely affect the dynamic performance of the system.413

3.2.3. Impact of sSCUC wind volatility on power system dynamics414

Following the same procedure as in the 15-minute case study, the standard415

deviation of wind power scenarios is increased from 10% to 40% with a step of416

10%. Then, Fig. 10 shows σCOI as a function of wind power volatility. This417

relationship is almost linear within the considered range, and so these findings418

just support the conclusions made above. Finally, the impact of wind power419

volatility on costs is shown in Fig. 11. Results indicate that the higher the wind420

power volatility, the higher the cost due to more ramping of generating units.421

3.3. Impact of contingency on the transient response of the system using sSCUC422

and SCUC423

In this section, we discuss whether a contingency leads to different dynamic424

behaviour of the system if using a sSCUC or SCUC. With this aim, the com-425
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Figure 10: 5-minute scheduling – σCOI as a function of wind uncertainty and volatility.
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Figure 11: 5-min scheduling – Expected cost as a function of wind uncertainty and volatility.

parison is performed using scenario 1 (stochastic) and scenario 5 (deterministic)426

from Table 1.427

A three-phase fault is applied at t = 900 s and cleared after 200 ms by428

disconnecting line 1. The impact of the contingency is shown in Figs. 12 and429

13. Specifically, Fig. 12 depicts the trajectories of the rotor speed of the rele-430

vant machines during the contingency when using a sSCUC. Similarly, Fig. 13431
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Figure 12: sSCUC and 25% wind penetration – Trajectories of the rotor speed of relevant

machines following a contingency.

Figure 13: SCUC and 25% wind penetration – Trajectories of the rotor speed of relevant

machines following a contingency.

depicts the trajectories of the rotor speed of the relevant machines during the432

contingency when using a SCUC. Results indicate that for the considered case433

study the impact of contingency is almost identical. This is due to the fact434

that the generator schedules obtained with the sSCUC and SCUC do not differ435
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Figure 14: sSCUC and 50% wind penetration – Trajectories of the rotor speed of relevant

machines following a contingency.

Figure 15: SCUC and 50% wind penetration – Trajectories of the rotor speed of relevant

machines following a contingency.

significantly.436

The same contingency is applied for the case of 50% wind penetration. Fig-437

ures 14 and 15 show the trajectories of the rotor speed of the relevant machines438

during the contingency when using a sSCUC and SCUC, respectively. In this439
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case, the sSCUC leads to a better transient response of the system following440

a contingency. It appears that, one cannot know a priori which strategies of441

sSCUC are better from the dynamic viewpoint of the system before solving both442

sSCUC and SCUC problems.443

3.4. Impact of renewable penetration on long-term frequency deviations using444

different sSCUC strategies445

Increasing the penetration levels of RES changes the stability and dynamic446

performance of the system as well as makes real-time system operation more447

difficult for TSOs [2]. In this context, this section focuses on the impact of high448

penetration levels of RES, namely 50%, on the long-term frequency deviations449

using different sSCUC strategies. With this aim, and similar to Subsection 3.1.1,450

a sensitivity analysis with respect to different sSCUC probabilities for the low,451

medium and high wind power scenario is carried out.452

Table 6 shows some relevant results of the analysis. There is a significant453

increase in the value of σCOI in all scenarios compared to the case of 25% of454

wind penetration. This is to be expected as fewer synchronous generators that455

provide frequency regulation (primary and secondary) are now scheduled to be456

online and more power is being produced by stochastic sources.457

It is interesting to note that the deterministic scenario with high wind power458

(scenario 5) is the worst with σCOI = 0.002618. Scenario 5, in fact, schedules459

fewer synchronous generators to be online compared to the same scenario in460

Section 3.1.1. In other words, there is less frequency regulation available online461

to cope with wind power uncertainty. Therefore, depending on the level of wind462

power uncertainty, as well as wind penetration level, TSOs can solve a sSCUC463

or SCUC with high wind. Specifically, according to our results, for low wind464

power uncertainty (j < 30%) and 25% wind penetration level, it is better to465

solve a SCUC with high wind power. On the other hand, if the wind penetration466

level is 50% then TSOs can solve a sSCUC and/or SCUC with medium and low467

wind power, respectively.468
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Table 6: 15-minute scheduling – σCOI for different sSCUC probabilities with j = 10% and

50% wind penetration.

Scenario sSCUC MC− TDS σCOI (10−4)

1 20% 60% 20% 20% 60% 20% 19.03

2 40% 50% 10% 20% 60% 20% 18.95

3 100% 0% 0% 20% 60% 20% 19.09

4 0% 100% 0% 20% 60% 20% 19.09

5 0% 0% 100% 20% 60% 20% 26.18

3.5. Impact of the number of sSCUC wind scenarios on the dynamic response469

of the system470

In this section, we compare the impact of the number of sSCUC wind scenar-471

ios on the dynamic behaviour of power system. The comparison is performed472

using a 15 minute scheduling time period and 25% wind penetration. With this473

aim, we consider 10 wind power scenarios and perform a sensitivity analysis474

similar to Subsection 3.1.1. Wind power scenarios are built according to the475

wind maximum variation width j (see Fig. 1). In order to compare the results,476

a base-case scenario is considered with the following properties: sSCUC proba-477

bilities for the 10 scenarios (starting from low to high wind) are set as follows:478

5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5%. Similarly, when we run479

the MC-TDS, the system is assumed to be with the folowing probabilities: 5%,480

5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5%, starting from low to high wind481

scenario, respectively.482

Figure 16 shows the trajectories of ωCOI for this base case scenario. Com-483

pared to Fig. 4 (3 sSCUC wind power scenarios), there is no significant difference484

in the dynamic behaviour of the system. To further support this, Table 7 shows485

some of the relevant results of the sensitivity analysis. As it can be seen, the486

long-term frequency deviations are similar to those in Table 1 and do not differ487
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Figure 16: 15-minute scheduling – Trajectories of ωCOI for 10 sSCUC wind power scenarios.

Table 7: 15-minute scheduling – σCOI for different sSCUC probabilities with j = 10% and 10

wind power scenarios.

Scenario sSCUC MC− TDS σCOI (10−4)

1 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.74

2 20%, 5%, 5%, 10%, 10%, 5%, 10%, 10%, 5%, 20% 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.77

3 100%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0% 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.82

4 0%, 0%, 0%, 0%, 100%, 0%, 0%, 0%, 0%, 0% 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.99

5 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 100% 5%, 5%, 10%, 10%, 30%, 10%, 10%, 10%, 5%, 5% 8.90

sigificantly between scenarios. It appears that, for the considered case, increas-488

ing the number of sSCUC wind power scenarios from 3 to 10 does not have a489

significant impact on the dynamic response of the system. Furthermore, these490

results support the above conclusion that a highly sophisitcated sSCUC might491

not be necessary if the scheduling is repeated with a short period.492

3.6. Remarks and Recommendations493

The results obtained in the case studies can be grouped in two categories,494

namely, as expected and less expected.495
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3.6.1. As expected496

• Simulation results show that there exist a relationship between sSCUC in-497

tervals and frequency deviations. Shortening the sSCUC interval, e.g. from498

15 to 5 minutes, leads to lower frequency fluctuations. These findings are499

in line with the results that were observed in real-world power systems500

[43].501

• In case of perfect forecasts, simulation results show that the scenario with502

low wind gives a better dynamic behaviour compared to the medium and503

high wind power scenario.504

• All simulation results show an almost linear relationship between sSCUC505

wind uncertainty and volatility and frequency variations. This means that506

as the penetration of RES increases, i.e., higher wind uncertainty and507

volatility, it will be more and more difficult for TSOs to manage the real-508

time balance between generation and demand. Therefore, there is a clear509

need for linear increase of the spinning reserves. Actually, these results510

support the idea that in systems with high RES penetration, e.g. Denmark511

and Ireland, the main concern for TSOs will be on how to cope with512

high ramp-up and ramp-down of RES rather than the traditional N − 1513

contingency criteria.514

• In general, higher RES penetration leads to lower costs. However, simu-515

lation results indicate that while the total operating cost will be reduced,516

the reward of ancillary services will increase due to more ramping of gen-517

erating units.518

• Increasing the number of sSCUC wind power scenarios, namely, from 3 to519

10, leads to very similar long-term frequency deviations of the system.520

3.6.2. Less expected521

• Different sSCUC strategies leads to very similar long-term dynamic be-522

haviour of the system.523
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• For low wind uncertainty (j < 30%) and 25% wind penetration level,524

solving a SCUC with high wind gives a better dynamic behaviour. Never-525

theless, as uncertainty increases, it is recommended that a sSCUC should526

be used. When the wind penetration level is 50% then it is better to527

solve a sSCUC and/or SCUC with medium and low wind power, respec-528

tively. Moreover, when shortening the sSCUC interval and scheduling529

the system more frequently, the differences between these strategies are530

negligible. This is an important information for system operators since531

they still rely on deterministic approaches. Therefore, depending on the532

level of wind penetration and uncertainty, they can solve a SCUC without533

compromising the dynamic behaviour of power systems.534

• According to our results, in case of 25% wind penetration, there is no535

significant difference on the transient response of the system following a536

contingency when using a sSCUC or SCUC. However, when increasing537

the wind penetration to 50% then a sSCUC leads to a better transient538

response of the system. Note that the 50% penetration is not a fixed539

threshold but depends on the considered grid, generator bids and available540

wind generation.541

• Finally, results show that wind power uncertainty has a greater impact542

than volatility on the dynamic performance of the system, while the other543

way round is true for the impact on the expected cost.544

4. Conclusions545

This paper analyses the impact of the sub-hourly UC problem on power546

system dynamics. More specifically, the paper focuses on the impact of different547

strategies of sSCUC as well as different wind uncertainty and volatility scenarios548

included in the sSCUC on frequency variations. With this aim, a sub-hourly549

sSCUC is used to capture wind variability, while the uncertainty is captured550

through a stochastic sSCUC. Then, the sub-hourly sSCUC is embedded into a551
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time domain simulator (TDS), and a rolling approach is used to account for wind552

and load forecast updates. Embedding the UC problem into a TDS provides an553

useful simulation tool for TSOs in order to understand the impact interactions554

of UCs models with the actual dynamic response of the grid.555

Simulation results based on MC-TDS show that there is no significant dif-556

ference on long-term frequency deviations of the system when using different557

sSCUC strategies. Results also suggest that for low wind uncertainty, and 25%558

wind penetration level, system operators may want to solve a SCUC with high559

wind. However, as the sSCUC wind uncertainty increases then a sSCUC ap-560

proach is to be preferred. In addition, in case the system is scheduled more561

frequently, then differences between stochastic and deterministic approaches562

becomes less evident. Regarding the impact of sSCUC wind scenarios, the case563

study shows that, increasing the number scenarios does not lead to any sig-564

nificant difference in the long-term frequency deviations. Furthermore, results565

show that sSCUC wind power uncertainty has a greater impact than volatility566

on the dynamic behaviour of the system.567

The case studies show an almost linear relationship between higher sSCUC568

wind uncertainty and volatility, and higher frequency variations. From a TSO569

point of view, this means a challenge for future operation as the penetration of570

RES is expected to increase. Hence, the safe integration of RES indicate a need571

for linear increased ancillary services (spinning reserves) in order to ensure a572

reliable operation of power systems.573

Results suggest that for 25% wind penetration, both sSCUC and SCUC leads574

to almost identical transient response of the system following a contingency. On575

one hand, sSCUC leads to a better transient response of the system in case of576

50% wind penetration. On the other hand, when the wind penetration level577

reaches 50%, solving a sSCUC and/or SCUC with medium and low wind power,578

respectively, leads to lower long-term frequency deviations of the system.579

Future work will focus on designing a feedback control that will take a signal580

from the system and send it to the sSCUC. Other works will also consider the581

interaction between sSCUC, microgrids and DAEs. Finally, a study on the582
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impact of sub-hourly UC with inclusion of voltage constraints on long-term583

dynamic behaviour of the system will be considered.584

Acknowledgements585

This work was supported by Science Foundation Ireland, by funding T. Kërçi586
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[13] I. D. López, D. Flynn, M. Desmartin, M. Saguan, T. Hinchliffe, Drivers for622

sub-hourly scheduling in unit commitment models, in: IEEE PES General623

Meeting, 2018, pp. 1–5.624
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