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Validating Two Novel Equivalent Impedance Estimators
Paul Cuffe, Member, IEEE, and Federico Milano Fellow, IEEE

Abstract—Various local voltage stability indices use an equiva-
lent impedance to characterise the wider power system. This letter
proposes two new ways of inferring an appropriate equivalent
impedance from a power system’s admittance matrix. Continu-
ation power flow simulations are used to validate the quality of
the new estimators, and to benchmark them against some earlier
approaches.

I. INTRODUCTION

Circuit theory shows that the maximum power deliverable
to a load will occur when its impedance matches the feed-
ing Thévenin impedance, and this concept underpins various
approaches to appraising a bus’ voltage stability [1]–[3] Such
indices typically infer an equivalent impedance using sequen-
tial samples of local voltage and current [4]. A recent review
[5] noted one shortcoming of such approaches: “these indices
are very sensitive to the small change of the data” and went on
to suggest that future work in voltage stability should propose
a measure that “considers the Thévenin network impedance
and is insensitive to the small change of the two consecutive
measurement data” Accordingly, the present letter proposes
and compares two new ways to directly infer an equivalent
impedance from a system’s admittance matrix. While an equiv-
alent impedance alone cannot capture all aspects of voltage
stability (due to e.g. machine reactive power limits) their more
accurate estimation can offer insights on how network structure
affects bus loadability.

II. METHODOLOGY

Alongside the two novel approaches, two established tech-
niques are also used to populate the vector of network equiv-
alent impedance estimators as seen by each load, zL.

A. Proposed new estimators
1) Load submatrix impedance: The Y bus is reordered, per

[1], such that the m generator buses and n load buses are
grouped together:[

iG
iL

]
=

[
Y GG Y GL

Y LG Y LL

] [
vG

vL

]
(1)

Manipulation of (1) gives:

vL = ZLLiL + FLGvG (2)

Where ZLL = Y −1LL and FLG = −ZLLY LG. Recent
work [6] has shown that the rows of FLG sum close to
one with negligible imaginary components: it thus shows the
different participation each generator has in establishing the
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no-load voltage at a particular bus. Therefore, the diagonal
elements of ZLL have a clear interpretation as system effective
impedances at each bus, as they explicitly describes the voltage
drop caused by local current consumption (see [7] for more
on this paradigm) Therefore, an impedance estimate is given
by:

zSub
L = diag(ZLL) (3)

2) Klein resistance distance: The Zbus matrix (elements
zij) is the inverse of the Y bus matrix. According to Klein [8],
the Thévenin impedance between buses i and j is calculated
using these elements of the Zbus matrix:

zkij = zii + zjj − zij − zji (4)

Various works have used the intuition that the electrically-
nearest generator to a load represents information relevant
to creating a Thévenin equivalent [9], [10]. While those
works used approximations, the full Zk matrix of internode
impedances allows the extraction of the explicit Thévenin
distance between each load and its nearest generator:

zNear
L = min

j∈L
zkij , i = 1, ...,m (5)

B. Comparative estimators
1) Shortest path impedance: Work in [9] used network

traversal techniques to find the shortest topological path be-
tween each load and its nearest generator. The sum of branch
impedances along this geodesic path was used in [9] as an
estimate of the system equivalent impedance: zTopo

L .
2) Driving point impedance: The main diagonal of the Zbus

matrix contains driving point impedances which describe the
short circuit power available at a bus. Some authors have
likened these with a Thévenin equivalent of the system, at
least under faulted conditions [11].

zDriving
L = diag(Zbus) (6)

C. Estimator quality assessment
Each estimators is used to predict the maximum loadability

at each bus. For a unity power factor, the forecasted maximum
active power is given as function of zL(= rL+ jxL) by [12]:

p+ =
v2
L

2(
√

r2L + x2
L + rL)

(7)

The empirical steady state loading limits at each bus are
calculated using continuation power flow techniques [13],
where each load is individually increased. The extra load is
served from local generators as identified in the FLG matrix,
without regard to machine active or reactive power limits (this
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Fig. 1. Scatterplots showing the predictive efficacy of each estimator for maximum active power loadability in the nesta_case118_ieee system

TABLE I.
MAPE OF LOADABILITY FORECASTS p+ BASED ON EACH zL

zSub
L zNear

L zTopo
L zDriving

L

nesta_case30_ieee 16 26 46 89
nesta_case39_epri 27 35 38 74
nesta_case57_ieee 12 14 40 80
nesta_case73_ieee_rts 14 28 37 52
nesta_case89_pegase 20 52 53 100
nesta_case118_ieee 7.7 25 39 47
nesta_case162_ieee_dtc 46 24 41 187
nesta_case189_edin 40 43 41 69
nesta_case300_ieee 24 28 38 49

simplified procedure identifies just saddle-node, rather than
limit-induced, bifurcations)

Comparisons between the predicted and empirical maximum
loadings can then be used to gauge the quality of the different
zL estimators.

III. RESULTS & CONCLUSIONS

The estimators and loadabilities were calculated in [13]
using nine medium sized test systems from [14]. In each case,
vL was set = 1 for consistency, although the FLG matrix
could perhaps be used to calculate a more accurate Thévenin
voltage estimate. The quality of the p+ predictions for each
estimator, on each system, are shown in Table I, which uses
conditional formatting to show the Mean Average Percentage
Error (MAPE) of these forecasts. The zSub

L estimator exhibits
the best performance, again showing the insights that the ZLL

matrix can offer. The Klein resistance distance approach also
shows some promise, with the zNear

L estimator outperforming
zTopo
L , as the latter doesn’t consider the inherently paralell

nature of impedances with a meshed transmission system.
Finally, Table I shows that zDriving

L is wholly unsuited to
predicting saddle-node loadability limits.

Another view of the data is given in Fig. 1, which shows
predicted versus empiric loadabilities for each estimator on the
nesta_case118_ieee system. The clear linear trend for
the zSub

L estimator is apparent, with most datapoints clustered
tightly around the regression line.
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