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Modeling of Short-Term Tidal Power Fluctuations
Gukrún Margrét Jónsdóttir IEEE, Student Member and Federico Milano, Fellow, IEEE

Abstract— This paper proposes the utilization of stochastic
differential equations to model short-term fluctuations of tidal
currents. Two relevant environmental scenarios are considered,
namely, with and without waves. As opposed to the models
currently available in the literature, the proposed models are
based on measurement data and are shown to capture the
statistical properties, i.e. the autocorrelation and the probability
distribution, of such data for both scenarios. The proposed
models can be readily incorporated in tidal turbine models for
short-term stability analysis of power systems.

Index Terms— Tidal generation, tidal current, turbulence,
waves, stochastic differential equations.

I. INTRODUCTION

A. Motivation

The potential of marine and tidal currents for electric power
generation is widely recognized [1], [2] although multiple
techno-economic issues have still to be solved. Historical
projects in this area include, for example, the SeaGen project
in Strangford Lough, Northern Ireland, the Deepgen project
by Tidal Generation Ltd. and a project by ANDRITZ HYDRO
Hammerfest deployed at the European Marine Energy Centre
(EMEC) tidal test site. Notable recent activities are ongoing
within the MeyGen project (Pentland Firth, Scotland) [3] and
the Nova Innovation tidal array (Shetland, Scotland), along
with operations led by Orbital (Orkney, Scotland) and Sabella
(Fromveur Passage, France). These projects demonstrate that
tidal stream generation is a viable source of renewable energy.

Tidal currents have a high long-term predictability com-
pared to other prominent renewable energy sources, e.g. wind
and solar. However, short-term fluctuations (seconds to min-
utes) in the current are less predictable. These short-term
fluctuations are caused by turbulence and waves and they can
negatively impact the power quality and the stability of power
systems including tidal generation. In [4], the fluctuations in
the power output of the SeaGen tidal generators are studied.
There it is shown that the power output of a 600 kW turbine
can ramp up/down by 10 kW in a matter of seconds. Experi-
ence from the ReDAPT tidal project (ETI, UK) shows levels
of power fluctuations far greater, with routine fluctuations,
particularly during winter months, of 20 − 30 % of rated
power per wave-cycle. Thus, understanding and characterizing
these fluctuations is essential for the development, design
and operation of tidal power plants. The modeling of these
fluctuations based on measured data is the subject of this paper.
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B. Literature Review

Several studies have aimed to characterize the current fluctu-
ations due to turbulance [5]–[9]. In [5] the turbulence intensity
within the bottom boundary layer at a height of 5 m is studied
and is measured to be 12 − 13 % in the tidal channel of the
Sound of Islay, Scotland. A study conducted within the Puget
Sound, Washington state, USA reports the turbulence intensity
at approximately the same height as 10 % [6]. In [9] the
turbulence intensity was shown to exhibit strong dependence
on tide direction (between flood and ebb tides) and water
depth. In [7] the current fluctuations with and without waves
present are studied based on measurements from the English
Channel, France. These studies provide valuable understanding
of the statistical properties of these current fluctuations.

In tidal system studies for their integration into power sys-
tems, the fluctuations have typically been modeled as purely
turbulent [10] or as dominated by waves, in particular swell
waves [11]–[14]. Swell waves have been characterized as the
biggest cause of fluctuations and multiple publications have
addressed the damping of said fluctuations using storage or
other additional control [11]–[14]. These publications model
the swells using the first-order Stokes model coupled with the
JONSWAP spectrum [15], [16]. This model is widely used
in ocean engineering for modeling wind and swell waves.
However, the model is not specifically built to model waves
in sites with strong tidal flows, that is where tidal turbines
are likely to be installed. Additionally, such models do not
consider the coupling of the turbulence and waves. Therefore,
these studies might over- or under-estimate the effect of waves
on the tidal current and thereby the control/storage needed
alongside the tidal turbine.

C. Contributions

This paper aims to identify how tidal current fluctuations
differ for scenarios with and without waves. The models are
defined are based on actual measurement data and are thus
able to capture the statistical properties of the current speed
fluctuations for both scenarios. These models are constructed
using Stochastic Differential Equations (SDEs) and can be
readily integrated into time-domain simulations of power
systems. Finally, the proposed model is compared to the first-
order Stokes model coupled with the JONSWAP spectrum
through the equivalent power output of the turbine.

D. Organisation

The remainder of this paper is organized as follows. Section
II outlines SDEs and Section III describes the SDE-based
modeling method used to model the current fluctuations.
Section IV illustrates the measurement data utilised to set up
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SDE-based models. The generation of synthetic tidal current
trajectories using the proposed model is discussed in Section V
and the statistical properties of the modeled current compared
to those of measurement data. In Section VI, the tidal turbine
power output of the proposed model is compared to that
of a model from the literature. Finally, Section VII draws
conclusions and outlines future work.

II. OUTLINE OF STOCHASTIC DIFFERENTIAL EQUATIONS

Stochastic Differential Equations (SDEs) are a prominent
mathematical modeling technique and have been utilized in
previous power systems studies, e.g. for modeling loads [17],
wind [18], [19] and solar [20], [21].

A generic one-dimensional SDE has the form:

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), X(t0) = X0,
(1)

where a(t,X(t)) and b(t,X(t)) are referred to as the drift and
diffusion term of the SDE, respectively and are continuous
functions. W (t) represents the stochastic component driving
the SDE. Typically, this component is a Wiener process,
{W (t), t > 0}, which is a random function characterized by
the following properties:

1) W (0) = 0, with probability 1.
2) The function t 7→W (t) is continuous in t.
3) If t1 6= t2, then W (t1) and W (t2) are independent.
4) For ∀ti ≥ 0, all increments, ∆Wi = W (ti+1)−W (ti),

are normally distributed, with mean 0 and variance h =
ti+1 − ti, i.e., ∆Wi ∼ N (0, h).

Wiener processes cannot be integrated in the conventional
Riemann-Stieltjes sense. This is because they are not bounded
and the limit limx→0(W (t+∆t)−W (t))/∆t does not exist. A
specific stochastic integral has to be defined to solve the SDE
in (1). There are several different ways to interpret stochastic
integrals. The most widely used approach is the Itô integral,
which is also the approach used in this paper. An in-depth
discussion on SDEs is outside the scope of this paper. The
interested reader is referred to [22] for details on SDE theory
and numerical methods.

The Ornstein-Uhlenbeck (OU) process is one of the most
widely known SDEs because of its simplicity and versatility.
It has a Gaussian probability distribution and exhibits mean
reversion, i.e. it drifts towards its mean value at an exponential
rate. Moreover, the OU process has a bounded variance which
makes it suitable to model physical processes such as tidal
current fluctuations.

The following 2-dimensional OU is utilized as the building
block of the proposed method to synthesize tidal current speed
models:[

dX(t)

dY (t)

]
=

[
−κ −ψ
ψ −κ

] [
X(t)

Y (t)

]
dt+

[
υ

0

]
dW (t), (2)

where κ > 0, υ > 0, ψ ≥ 0 and W (t) is a standard Wiener
process. The correlation matrix of the SDE in (2) is:

R(τ) = E
[
X(t+ τ)

Y (t+ τ)

] [
X(t) Y (t)

]
= exp(−κτ)

[
cos(ψτ) − sin(ψτ)

sin(ψτ) cos(ψτ)

]
.

(3)

Thus, the process X(t) has the autocorrelation:

RX(τ) = exp(−κτ) cos(ψτ). (4)

In stationary conditions, X(t) is Gaussian distributed with zero
mean and variance υ2/(2κ). For ψ = 0, X(t) and Y (t) are
decoupled and X(t) becomes a conventional 1-dimensional
OU process:

dX(t) = −κX(t)dt+ υdW (t), (5)

with an exponentially decaying autocorrelation:

RX(τ) = exp(−κτ). (6)

The X(t) component of the process in (2) is used in the
remainder of this paper for building the tidal current speed
models discussed in the following section.

III. MODELING OF TIDAL CURRENT SPEED

Tidal generators extract energy from the ocean movement
due to the tidal phenomenon. This phenomenon is due to the
changing gravitational pull of the sun and moon in respect to
the earth’s oceans. It causes large bodies of water to move
towards and away from the shore. These fluctuations are
site specific and each location will experience diurnal tides
(one high, one low in a tidal day), semi-diurnal tides (two
high, two low in a tidal day) or a mixture of the two. Tides
can be predicted far in advance and with a high degree of
accuracy. The modeling and prediction of these variations in
the tidal current due to the tidal phenomenon has been well
defined [23]. However, the focus of this paper is the short-term
behavior of tidal currents and, hence, the predicted average
tidal current is represented as a constant u0, over 10-minute
intervals, throughout this paper [1].

Tidal currents are subject to short-term fluctuations within
seconds to minutes. The fluctuations are due to turbulence
caused by bottom and side friction as well as waves which can
be local wind waves and/or remote swell waves. The modeling
of these fluctuations in the current speed are of interest in this
paper. The total tidal current speed is modeled as:

utidal(t) = u0 + η(t), (7)

where η(t) represents the current speed fluctuations. To model
these fluctuations, we adapt the SDE-based approach that was
originally proposed in [19] to model wind speed fluctuations.
This approach can capture an arbitrary autocorrelation and
probability distribution. For simplicity but without lack of gen-
erality, we assume that the probability distribution is Gaussian.
This assumption is reasonable for the short-term analysis and
is also not restrictive as the memoryless transformation utilized
in the procedure proposed in [19] can be readily implemented
to capture any probability distribution.

The method consists in the superposition of OU processes,
as defined in (2) to capture the desired autocorrelation. Thus,
η(t) is a stochastic process defined as the weighted sum of n
SDE processes:

η(t) =

n∑
i=1

√
wiXi(t), (8)
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where Xi(t), i = 1, . . . n, are SDE processes with auto-
correlations RXi(τ), wi > 0 and

∑n
i=1 wi = 1. If all n

processes have an identical Gaussian probability distribution
N (µX , σ

2
X), the stochastic process η(t) has the same Gaussian

probability distribution, N (µX , σ
2
X), and an autocorrelation

which is a weighted sum of the autocorrelation functions of
the n SDE processes, that is:

Rη(τ) =

n∑
i=1

wiRXi
(τ). (9)

If the n SDE processes in (8) are X(t) processes as in
(2), the resulting autocorrelation of η(t) is a weighted sum of
damped sinusoidal and decaying exponential functions and (9)
can be rewritten as:

Rη(τ) =

n∑
i=1

wiexp(−κiτ) cos(ψiτ). (10)

Hence, the superposition of SDE processes allows capturing
any autocorrelation that can be modeled as a weighted sum
of exponential and/or sinusoidal autocorrelation. If the auto-
correlation does not show a periodic behavior, then ψi = 0,
∀i = 1, . . . , n (see the process defined in (5)).

IV. DATA ANALYSIS

This section presents the measured tidal current speed data
used to validate the proposed model presented in Section III.
The current speed data were gathered during the Reliable
Data Acquisition Platform for Tidal project (ReDAPT) in
the European Marine Energy Centre (EMEC) tidal test site
in Orkney, UK. The data is publicly available from [24].
The measurements are collected using a single-beam acoustic
Doppler profiler deployed at the nose of the test Deep-Gen
IV tidal turbine. It measures the velocity directly along the
stream-wise axis. The provided velocity profiles have cell
sizes of 0.5 m. The measured data analyzed in this paper is
the stream-wise tidal current speed measured 10 m upstream
from the turbine at hub height. Further information on field
measurement techniques and subsequent data processing are
discussed in [9].

Two sets of data are analyzed, representing the two follow-
ing scenarios:
• Scenario 1: The short-term fluctuations are exclusively

due to turbulence. Waves are not considered.
• Scenario 2: The fluctuations are both due to turbulence

and waves. The most significant wave height is Hs = 1.9
m and the peak period is Tp = 9 s.

Further details on each scenario are provided in Table I.

TABLE I: Details on the Scenario 1 and 2 data sets.

Scenario Dates Time Sampling rate Sea state
1 2014/08/09 14:00-18:40 2 Hz No waves
2 2014/11/11 21:00-08:55 4 Hz Waves

2014/11/12

An example of the measured time series for Scenario 1 is
shown in Fig. 1.a (grey line), where a trend in the tidal current
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Fig. 1: (a) The measured stream wise tidal current speed (Scenario
1) and the rolling two-sided mean derived using (11). (b) The
current speed fluctuations derived using (12). (c) The rolling standard
deviation and the scaled rolling mean (0.1zt).

is noticeable. This trend is due to the tidal phenomenon. As
the aim of this study is to model the short-term variations (in
the seconds to minutes time scale) this trend is removed from
the data. To identify the trend the two-sided rolling mean of
the time series is used. The two-sided rolling mean of a time
series yt is defined as:

zt =
1

2m+ 1

m∑
j=−m

yt−j , (11)

where m is the smoothing parameter that defines the window
to average over. In this case yt is the Scenario 1 time-series.
The two-sided rolling mean of the measured time-series where
m = 10 min is shown in Fig. 1.a (black line). The measured
stochastic process to be modeled in this paper is:

xt = yt − zt, (12)

which represents the measured tidal current speed where the
trend has been removed. In this way, the short-term fluctua-
tions of the current speed are ‘isolated’. Figure 1.b shows that
the standard deviation of the fluctuations is proportional to the
average tidal current. This effect has also been discussed in
the literature [5]–[8]. Figure 1.c shows the rolling standard
deviation of the current speed fluctuations (gray line) and
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the scaled down rolling mean (0.1zt). This demonstrates their
correlation. In the remainder of the paper, thus, we assume
that the standard deviation of the fluctuations is close to 10 %
of the tidal current speed.

V. SYNTHETIC TIDAL CURRENT TRAJECTORIES

In this section, the modeling approach outlined in Section
III is used to model the scenarios presented in Section IV.
To define the parameters of the model for each scenario, the
fitting procedure discussed in [19] is used. An overview of
the fitting procedure is provided in Section V-A, whereas, in
Section V-B, the model simulation procedure is outlined and
the simulated time-series are compared to the measured data
through their statistical properties.

A. Fitting to Data

The SDE-based modeling procedure presented in Section III
consists in fitting the model to measurement data based on
their statistical properties. The result of the fitting procedure
is the determination of the parameters of a set of SDEs that
matches the autocorrelation and the probability distribution
of the original data. The probability distribution describes all
the possible values and likelihoods that the process can take
within a given range. The autocorrelation is a measure of
how the stochastic process evolves over time. That is, the
autocorrelation gives a measure of the relationship between
the processes current value and its past and future values.

To capture the autocorrelation, the superposition of OU
processes defined in (8) is used. Thus, the autocorrelation of
each scenario has to be fitted to the function defined in (10).
This can be done with any conventional curve fitting algorithm.
In this case, a non-linear least squares method, included in the
Python package ScipPy [25] is used. The number of decaying
exponential and/or damped sinusoidal functions used to fit the
autocorrelation can most often be estimated visually or, if not,
by trial and error. Further details on this fitting procedure are
provided in [19].

Table II shows the fitted parameters for the autocorrelation
functions for each scenario. In the table, it is assumed that
ψi = 0 if not provided.

TABLE II: The fitted autocorrelation and probability distribution
parameters for the current fluctuations models of Scenario 1 and 2.

Scenario Autocorrelation Parameters Standard deviation
1 w1 = 0.23 κ1 = −5 σX = 0.09266u0

w2 = 0.32 κ2 = −0.2
w3 = 0.45 κ3 = −0.04

2 w1 = 0.28 κ1 = −5 σX = 0.09702u0
w2 = 0.18 κ2 = −0.2
w3 = 0.46 κ3 = −0.05
w4 = 0.08 κ4 = −0.06

ψ4 = 0.7

In Fig. 1.c, it is shown that there is a correlation between
the mean tidal current speed and the standard deviation of the
fluctuations. Hence, the standard deviation is dependent on the
magnitude of the tidal current speed. The higher the tidal cur-
rent speed the higher the standard deviation of the fluctuations

in the current [5]–[8]. To determine this relationship the mean
of the rolling standard deviation as a function of the rolling
mean is found as follows:

σX
u0

=

∑n
i σri/µri
n

, (13)

where µri and σri are the rolling mean and standard deviation
respectively for the i-th time frame of the n time frames of
data. In this case the time frame is 10 min. In this way, (13)
can give the relation between the tidal current magnitude u0
an the standard deviation σX . The standard deviation for each
measured scenario is shown in Table II. In both cases the
standard deviation is slightly less than 10 % of the tidal current
magnitude. This value can be subject to the tidal conditions
(flood/ebb tides) or the date. This topic is outside the scope
of this work but will be considered for future work.

B. Simulations

The data-fitted models presented in Section V-A are now
utilized to generate synthetic tidal current speed trajectories
whose statistical properties accurately reproduce those of the
actual tidal current data sets. With this aim, (8) needs to be
integrated. To solve the SDE the Euler-Maruyama integration
method is used. Other integration methods for SDEs can be
found in [22] but, given the accuracy of the results discussed
below, the Euler-Maruyama scheme works well and no higher
order method is deemed to be required.

The synthetic models are simulated to produce 1 · 106 data
points with the time step 0.01. To test the accuracy of the
developed models the statistical properties of the simulated
synthetic processes are compared to those of the actual data.
These comparisons are carried out in the remainder of this
section.

1) Probability Distribution: A Gaussian probability distri-
bution is characterized by its mean (µ) and standard deviation
(σ). The mean of the fluctuations is in theory 0 as is the
case for both the measured and simulated data as is shown
in Table III.

TABLE III: The mean (µ), standard deviation (σ) and the standard
deviation of ramps for a 1, 10 and 50 s time step (σf=1s, σf=10s

and σf=50s) for Scenario 1 & 2 measured and simulated.

Scenario 1 Scenario 2
Measured Simulated Measured Simulated

µ 0.0010 0.0013 0.0006 0.0030
σ 0.1723 0.1740 0.1597 0.1569
σf=1s 0.1366 0.1360 0.1360 0.1353
σf=10s 0.2003 0.1989 0.1858 0.1845
σf=50s 0.2410 0.2385 0.2244 0.2213

The standard deviation of the simulated trajectories can be
set through the parameter σx in (8). Based on the average
tidal current speed, u0, the standard deviation can be set,
for example, as shown in Table II. In these simulations the
models are assumed to have the standard deviation of the
whole data sets shown in Table III. The synthetic simulated
current processes capture the standard deviations of the actual
measured fluctuations for the two scenarios. The standard
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Fig. 2: The autocorrelation of the data set, the fitted autocorrelation
function and the autocorrelation of the simulated SDE model for: (a)
Scenario 1 and (b) Scenario 2.

deviation of the simulated time series is within 2 % error
with respect to the standard deviation of the measured data
for both scenarios.

The standard deviation of the data of Scenario 1 is slightly
bigger than that of Scenario 2. However, these values are not
comparable as the two data sets are gathered over different
times of the day. What is comparable, however, is the standard
deviation as a function of the mean tidal current. With this aim,
Table II shows that the standard deviation for Scenario 2 is
slightly bigger or about 9.7 % compared to 9.2 % of the mean
current for Scenario 1.

2) Autocorrelation: The method presented in Section III
is designed to capture the desired autocorrelation. The fitting
procedure presented in Section V-A is used here to fit the data
to an autocorrelation function that the modeling method can
capture. For Scenario 1 the autocorrelation can be captured
through the superposition of three OU processes. In this
scenario, the fluctuations are primarily due to turbulence. Thus,
no periodicity is identified in the autocorrelation. In Fig. 2.a
the autocorrelation of the data for Scenario 1 is shown, as well
as the fitted autocorrelation function and the autocorrelation of
the simulated synthetic time-series derived from the model.

For Scenario 2, periodic behavior driven by the waves in
the tidal current is observable in the autocorrelation. Thus, in
this case, an additional OU process is needed to capture the
periodicity. The autocorrelation of the data for Scenario 2, the
fitted autocorrelation function and the autocorrelation of the
simulated process are shown in Fig. 2.b.

The behavior of the autocorrelation for Scenario 2 indicates
that the waves are periodic with a frequency around 0.1 Hz.
In the proposed model, the periodicity is set through the
parameter ψ4 = 0.7 rad/s presented in Table II. In particular,
for Scenario 2, a frequency of 0.11 Hz, which corresponds to a
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Fig. 3: The power spectral density for the measured data and the SDE
simulated time-series for: (a) Scenario 1, (b) Scenario 2.

period of 9 s, has been determined. This matches the specified
peak period of the measured data as specified in Section IV.

For both scenarios the model is able to capture the desired
autocorrelation. By capturing the autocorrelation the model
ensures that the generated stochastic trajectories evolve in
time in the same way as the measured time-series. Further
statistical comparisons to support this statement are shown in
the following subsections.

3) Power Spectral Density: The power spectral density
of a time series measures the time series power content
versus frequency. It is defined as the Fourier transform of the
autocovariance and can be viewed as the frequency-domain
equivalent of the autocovariance. Figures 3.a-b show the power
spectral densities of the two scenarios measured and simulated.
The power spectral densities for both scenarios look similar
for most frequencies except around 0.1 Hz, where a spike is
visible for Scenario 2. This is the contribution of the waves in
the power spectral density of the measured time series as is
discussed in Section V-B.2. For both scenarios the simulated
processes have spectral densities that have a very similar trend
to those shown by the measurement data.

The similarity of the two scenarios can be observed also in
the fitted autocorrelation parameters in Table II. The weights
wi differ, but the first three κ parameters are very similar. The
fourth process component of Scenario is really modeling the
contribution of the wave. Thus, the first three process compo-
nents can be said to be capturing the turbulence contribution.

4) Ramps: An important aspect of modeling time-series is
the ability to capture ramp rates. This is particularly relevant
when tidal power fluctuations are considered and that the
resulting SDE-based model is able to properly distinguish
between ramps and turbulence. Ramp rates are computed as:

∆fwt = wt − wt−f (14)
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for a time lag f where wt is the current speed at time t. Then,
the probability of getting a certain ramp rate over a time step
f can be computed. This is done for a 5 s time step as shown
for both scenarios in Fig. 4.a-b. The ramps are shown to be
Gaussian and that the model is able to capture the probability
of each ramp rate for this time frame. The model is also tested
for three other time frames, as shown in Table III. There the
standard deviation of ramps with a time step of 1, 10 and 50
s are presented. The results for the simulated time series are
close to the measurement data and, thus, the ramp rates of the
measurement data are accurately reproduced.

VI. GENERATED POWER

This section presents the current fluctuations model used
most commonly in the tidal power studies in the literature.
This model will be hereinafter referred to as the Stokes model
and is presented in Section VI-A. This model and the proposed
model discussed in Section V-B provide the input for the tidal
turbine model outlined in Section VI-B. Through this model
the turbines power output is modeled. In Section VI-C the
equivalent power output for the proposed model and the Stokes
model are compared. Concluding remarks on the comparison
are provided in Section VI-D.

A. Stokes Model

In the literature on tidal power, short-term fluctuations
are assumed to be mainly due to swell waves [11]–[14].
Swell waves are long wavelength waves that originate in a
remote region of the ocean and propagate out of their area of
generation. Generally, these waves have been modeled using
the first order Stokes model representing a random sea-state

[26]:

uswell(t) =

N∑
i=1

aiωi
cosh[ki(h+ d)]

sinh(kid)
cos[ωit−kix+φi], (15)

where h is the vertical distance from the sea surface to the hub
height of the tidal turbine, positive upwards, and d is the sea
depth. φi are random phases uniformly distributed between 0
and 2π, ωi is the frequency of the i-th frequency component,
ki is the wave number of the i-th frequency component. With:

ai =
√

2S(ωi)∆ωi (16)

being the amplitude of the i-th frequency component defined
from the frequency spectrum, S(ω), of the waves. In this case,
the frequency spectrum used is the JONSWAP spectrum. The
wave angular frequency ωi is within the frequency band ∆ωi.

The JONSWAP spectrum is defined as:

S(ω) =
αg2

ω5
exp

(
− 1.25

(ωp
ω

)4)
γY , (17)

where ω is the wave angle frequency, g is the acceleration due
to gravity, ωp is the peak frequency of the spectrum and γ is
the peak enhancement factor which controls the sharpness of
the peak. α is the intensity of the spectrum and can be defined
for North Sea applications [15] as:

α = 5.058

(
Hs

T 2
p

)2

(1− 0.287lnγ), (18)

where Hs is the significant wave height, Tp is the peak wave
period and

Y = exp

(
−
(
ω − ωp√
2ωpσY

)2)
, (19)

where

σY =

{
0.07 if ω ≤ ωp
0.09 if ω > ωp.

(20)

The parameters for the Stokes model coupled with the JON-
SWAP spectrum are set as in the swell wave case studied
in [11]. There the number of frequency components and the
frequency range used for (16) was not specified. In this work,
the frequency range is set to [ωmin, ωmax] = [0.1, 1] rad/s and
the number of frequency components is N = 30. Also, the
significant wave height is set to Hs = 1.9 m and the peak
wave period is set to be Tp = 9 s as for the measured data in
Scenario 2.

The randomness in the sea-state is expressed through the
JONSWAP spectrum, as presented in (17). Other spectrum
such as the Pierson-Moskowitz and the Ochi-Hubble spectrum
can also represent the random sea-state of the location. How-
ever, the JONSWAP spectrum is the most common choice
in the literature [11]–[14]. Note that the parameters of this
spectrum, such as γ, are location dependent. The values of the
wave angular frequency of the spectrum for the measurement
location are not available to the authors. Thus, the parameters
of the JONSWAP spectrum considered in this paper do not
represent the specific sea-state of the measurement location
discussed in the case study.



7

B. Tidal Turbine Model

The modeled current speed is the input to the tidal turbine
model. The tidal turbine model determines the mechanical
power for the generator rotor based on the input current speed.
The turbine power output is modeled as:

Pturbine =
1

2
· ρwater ·A · Cp(λ, β) · V 3, (21)

where ρwater [kg/m3] is the sea water density, A [m] is the
swept area of the rotor and V [m/s] is the equivalent current
speed. Cp(λ, β) is the power coefficient of the blades which is
a function of the tip speed ratio (λ) and the blade pitch angle
(β [deg]). The tip speed ratio is:

λ =
ωr ·R
V

, (22)

where ωr [m/s] is the rotational speed of the tidal current
turbine.

The tidal turbine modeled in this example is a three-bladed
horizontal-axis 1.5 MW turbine. The power coefficient is
modeled as [27]:

Cp(λ, β) = c1

(
c2
λi
− c3 ·β− c4

)
exp(−c5/λi) + c6 ·λ, (23)

where the power coefficient parameters are set to: c1 = 0.35,
c2 = 100, c3 = 0.4, c4 = 3.93, c5 = 17.25 and c6 = 0.013
and

1

λi
=

1

λ+ 0.08·
− 0.035

β3 + 1
. (24)

C. The Output Power

The Stokes model and the proposed model (for Scenario 2)
are utilized to generate the synthetic tidal current processes
shown in Figs. 5.a-b, respectively. From Fig. 5 it can be
observed that the tidal current variations are assumed to be off
a larger scale in the Stokes model than the proposed model.

The equivalent power output for both the Stokes model
(gray line) and the proposed model (black line) are shown
in Fig. 5.c. The Stokes model generates a power output which
fluctuates in the worst case almost the full range of the output
power of the tidal turbine within 10 s, that is 1.5 MW.
On the other hand, the proposed model produces a power
output where the power does ramp up and down between
0.5− 1.3 MW over approximately the same time frame.

D. Remarks

Figure 5 shows that the Stokes and the proposed models pro-
duce very different tidal current speeds. This is to be expected
as the two models have different goals. The Stokes model
considers only the effect of waves and neglects turbulence.
Moreover, such a model does not represent the location or the
sea-state. The proposed model, on the other hand, is aimed at
accurately reproducing the statistical properties of a specific
location based on measurement data that include both waves
and turbulence. The data for Scenario 2 has an underlying
wave component that affects the current speed as shown in
Fig. 2-3. However, the effect of the turbulence on the current
speed results in the wave component not being prominent.
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Fig. 5: (a) Generated synthetic tidal current speed using the Stokes
model. (b) Generated synthetic tidal current speed using the proposed
model and the measured data time series for Scenario 2. (c) Equiva-
lent power output generated using the turbine model in (21).

Despite their differences, both models are useful. If mea-
surements are available, the proposed model is the better op-
tion as it captures the combined effect of waves and turbulence
of the sea-states for a specific site. The Stokes model, on the
other hand, is a suitable option whenever measurement data
are not available.

VII. CONCLUSIONS

The paper deals with the modeling of tidal current speed
for short-term analysis. A SDE-based technique is utilized to
model current fluctuations. The models are defined from the
autocorrelation and probability distribution of current measure-
ments. The proposed modeling approach is general and can be
systematically applied to model any sea-state, if a sufficiently
large set of current speed measurements is available.

In the case study, two scenarios are considered. In the
first scenario, fluctuations are due exclusively to turbulence
whereas, in the second scenario, fluctuations are due to tur-
bulence and waves. As expected, the proposed SDE-based
models are able to capture the statistical properties of the
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measured data for both scenarios. Finally, the equivalent power
output of the tidal turbine is simulated using the proposed
model and the Stokes model coupled with the JONSWAP
spectrum. It is shown that the power output for these two
models is very different. This highlights the importance of
using measurements to build site specific models that consider
turbulence and wave scenarios.

Future work will focus on the effect of different tidal condi-
tions on the standard deviation and the probability distribution
of the turbulence. We also plan to utilize the proposed model
to study the impact of marine current generation on power
system short-term dynamics.
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