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Abstract—This paper provides a systematic comparison of
three prominent Renewable Energy Sources (RESs) namely,
wind, solar and tidal in regards to short-term volatility and their
impact on the dynamic behavior of power systems. A Virtual
Power Plant (VPP) model obtained through the aggregation
of wind, solar and tidal generation is proposed. The effect
of frequency control provided by wind/tidal turbine frequency
controllers and an Energy Storage System (ESS) embedded in
such a VPP are also considered. Simulation results indicate that
the VPP with ESS is able to increase the reliability of RESs and
effectively reduce short-term frequency fluctuations of the grid.

Index Terms—Energy transition, solar generation, stochastic
modeling, tidal generation, virtual power plant, wind generation.

I. INTRODUCTION

A. Motivation

The Earth has adequate sources of renewable energy to
cover the world’s electrical power demand with the current
technologies available [1]. However, due to the stochastic
nature of the prominent Renewable Energy Sources (RESs),
such as wind and solar, a single source solution will not suffice
for the transition to a low-carbon society. Moreover, due to the
dispersed nature and relatively small capacity of most RESs,
it has to be expected that, in most cases, a mix of several
technologies will be included at the distribution or even low
voltage levels. There is thus the need for aggregated models of
such resources, that are able to retain their stochastic behavior
while allowing efficient simulations of the overall transmission
system. This paper addresses this issue by proposing an
aggregated model of a Virtual Power Plant (VPP) based on
stochastic differential equations. The focus of the paper is on
short-term dynamic analysis.

B. Literature Review

The volatility and uncertainty introduced through stochastic
RESs such as wind, solar and tidal generation can nega-
tively impact the reliability, security and resilience of those
traditional power systems. Stochastic Differential Equations
(SDEs) can be used to model such volatility and uncertainty
in power systems. SDEs are continuous in time and can
be readily incorporated into power system models that are
typically modeled as differential-algebraic equations [2].

SDEs have been used to model the volatility of the indi-
vidual sources of renewable energy. The stochastic modeling
of wind power generation using SDE-based approaches has
been considered in numerous studies. For example, in [3], a
systematic method to build dynamic stochastic models from
real-world wind speed measurement data is studied. Solar gen-
eration is the fastest growing energy source in power systems
worldwide [4]. In [5] a novel solar irradiance model for short-
term power systems analysis is presented where the model
is formulated through SDEs with jumps based on measured
solar irradiance data. The potential of tidal generation has
been promising due to the high long-term predictability of
tidal currents compared to other stochastic RESs. However,
the short-term fluctuations (seconds to minutes) introduced by
tidal currents are challenging to predict and can undesirably
affect the power quality and system stability. A model for
short-term fluctuations of tidal currents using SDEs is pro-
posed in [6] based on real-world data.

The integration of stochastic RESs into power systems
results in the system variables, such as the frequency and
voltages becoming uncertain as well. In [7] a hybrid power
system which includes RESs and Energy Storage System
(ESS) where the uncertainties introduced by wind power,
photo-voltaic (PV) power and loads are modeled is studied.
In [8] the stochastic modeling of the Irish power system with
the inclusion of tidal and wind generation is studied. In [9] a
test case where ESS is used to mitigate the variations in tidal
generation due to waves is studied. However, no power system
study has been presented comparing these three RESs, namely
wind, solar and tidal.

C. Contributions

The specific contributions of this paper are twofold:

• A collective study on stochastic modeling of wind (both
onshore and offshore), solar and tidal generation where
the offshore models take into consideration the effect of
extensive transmission cables to offshore plant sites.

• Study the effect of the volatility introduced to electrical
power systems by a VPP composed of wind, solar and
tidal generation farms alongside RES and ESS frequency
control to supply stochastic load variations.
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D. Organization

The remainder of this paper is organized as follows. Section
II outlines the stochastic models used in the case study
for wind, solar and tidal generation as well as loads. The
frequency control of wind and tidal generation is discussed
in Section III. Section IV outlines the ESS model utilized
alongside the VPP in the case study. In Section V, the test
system is studied for each renewable generation technology
and simulation results are presented. Finally, in Section VI,
conclusion are drawn and future work is outlined.

II. STOCHASTIC MODELING

In this paper, the stochastic processes of the presented
simulations are constructed using the well-known Ornstein-
Uhlenbeck (OU) SDE model due to its simplicity and adapt-
ability. OU processes have been utilized to build stochastic
models for loads as well as wind, solar and tidal generation.
The general form of a OU SDE process is:

dη(t) = α(µ− η(t))dt+ σdW (t) , (1)

where α, σ > 0 and W (t) is a Wiener process. α is the mean
reversion speed of the process, η(t), which defines the slope
of its exponentially decaying autocorrelation. The process η(t)
is Gaussian distributed with mean µ and variance σ2/(2α).

In this paper, the stochastic models are built using the
technique presented in [3] for modeling wind speed. This
technique enables modeling stochastic processes with non-
exponentially decaying autocorrelations and, thus, allows re-
producing processes that are a combination of fast and slower
stochastic dynamics. Using this method a stochastic process
ρ(t) with an autocorrelation that can be described as a
weighted sum of decaying exponentials:

Rρ(t) =

n∑
i=1

wiexp(−αiτ) , (2)

can be defined, where wi > 0. This is achieved by defining
ρ(t) as a weighted sum of n OU processes as defined in (1):

ρ(t) =

n∑
i=1

√
wi ηi(t) , (3)

Further details on SDEs and this technique can be found in [3].
The stochastic models used in the case study of this paper for
modeling loads, wind speed, solar irradiance and tidal current
speed are all OU-based and presented here below.

A. Load Modeling

The stochastic load model is developed based on the widely
known voltage dependent load model coupled with OU pro-
cesses, as presented in [2]:

pL(t) = (pL0 + ηp(t))(v(t)/v0)
k ,

qL(t) = (qL0 + ηq(t))(v(t)/v0)
k ,

dηp(t) = αp(µp − ηp(t))dt+ σpdW (t) ,

dηq(t) = αq(µq − ηq(t))dt+ σqdW (t) ,

(4)

where pL(t) and qL(t) are the active and reactive power of the
load, respectively, and pL0 and qL0 are parameters representing

active and reactive load powers at t = 0. v(t) is the voltage
magnitude at the bus where the load is connected and v0 is
the value of this voltage magnitude at t = 0.

Through the exponent k, the model in (4) can define whether
the load is a constant power load (k = 0), a constant current
load (k = 1) or a constant impedance load (k = 2). The
volatility is modeled through the stochastic processes ηp(t)
and ηq(t) which are formulated as OU processes, where the
parameters α, µ and σ have the same meaning as in (1). In the
case study, the uncertainty is set as 10 % of the nominal load
power and the mean reversion speed is set to αp = αq = 0.02.

B. Wind Speed Modeling

The stochastic variation in wind speed within a 10-minute
time period can be assumed to be Gaussian distributed around
a certain mean wind speed [10]. Therefore, the wind speed
model considered in the case study is in two parts. A constant
mean wind speed vc and a Gaussian stochastic process, ρw(t).
The wind speed model utilized for each wind farm connected
to the test system is:

vwind(t) = vc + ρw(t) , (5)

where vwind(t) is the modeled wind speed time-series and
ρw(t) is a stochastic process defined as (3). Hence, ρw(t) has
the probability distribution N (µρw , σ

2
ρw) and an autocorrela-

tion as in (2). The assumptions made for the wind speed model
are listed in [8]. For the case study presented in this paper the
standard deviation of the wind speed model is set to be 20%
of the mean wind speed vc for a onshore plant and 10% for a
offshore plant. The parameters used to set the autocorrelation
of the wind speed model are presented in [8] based on previous
data analysis in [3].

C. Solar Irradiance Modeling

The solar irradiance model utilized in the case study is pro-
posed in [5]. It models the clear-sky index of solar irradiance
based on measured data. In that way, the flickers in the solar
irradiance due to cloud movement are only considered as these
are the variations that are of concern in short-term analysis of
power systems. An OU process, ηs(t), as presented in (1) is
utilized to represent the solar clear-sky stochastic variations in
the clear-sky index. The blockage of clouds passing the PV
are modeled as jumps. The jumps in the model do not depend
on the stochastic variable ηs(t). Hence, they are additive noise
and are directly added to ηs(t) with the purpose of simplifying
the numerical integration. The jumps are modeled as:

H(t) = mP (t) , (6)

where m is the jump amplitude assumed to be a normally
distributed random number, namely, m ∼ N(µm, σ

2
m). P (t)

is a step function that is either 0 or 1, where the number of
transitions per period are determined with a Poisson distribu-
tion. The duration of each jump is determined with a normal
distribution δ ∼ N(0, σ2

δ ). P (t) remains constant for a time δ
whenever it is switched from 0 to 1 or vice versa.

This model represents the solar irradiance as measured at
a single PV panel. The aggregation of a whole plant of PV
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panels is represented through the low-pass filter presented in
[11], as shown in Fig. 1. The cut-off frequency of the filter
is directly dependent on the square root of the plant area S,
measured in Ha.

Further details on this stochastic solar irradiance model are
provided in [5]. The parameters of the model used for this
papers case study are based on the parameters found in [5]
using the data set presented [12].

1

1+(
√
S

2π·0.021)s
Single

PV Clear
Sky Index

Aggregated
Clear Sky
Index

Fig. 1. The low-pass filter that represents the smoothing effect of a PV plant.

D. Tidal Current Speed Modeling

The tidal current speed model utilized throughout this paper
vastly follows the proposed model in [8] which consists of
three critical parts.

a. The predicted tidal current speed is modeled as a con-
stant, vtc. The fluctuations in the current speed due to
the tidal astronomical phenomenon vary with a period of
6 to 12 hours hence, the mean tidal current speed over a
10 minute interval can be modeled as constant vtc.

b. The stochastic turbulence, ρt(t), in the current speed is
modeled using a stochastic process as defined in (3) and
it is characterized in a similar way as for the wind speed
(refer to Section II-B). The standard deviation of the tidal
current speed is set to be 10% of the current speed and the
autocorrelation parameters are set based on data analysis
in [6].

c. Finally, vwaves(t) represents the effect of waves on the
tidal current. These are modeled through the Stokes
model coupled with the JONSWAP spectrum presented
in further detail in [8].

The complete model for the modeled tidal current speed is:

vtidal(t) = vtc + ρt(t) + vwaves(t) . (7)

III. FREQUENCY CONTROL

To mitigate the uncertainty in the frequency introduced by
variable renewable energy sources the utilization of frequency
control of the energy source has been discussed, particularly
for wind turbines. A common approach for wind turbine
frequency control is to bypass the Maximum Power Point
Tracking (MPPT) and set the power output based on the devi-
ation of the measured frequency (droop control) and/or Rate
of Change of Frequency (ROCOF) control. The combination
of the two strategies proposed in [13] for wind turbines is
used in the case study of this paper. The similarity between
tidal and wind turbines allows for this frequency control to be
adapted for tidal turbines as discussed in [8].

The frequency control used for both wind and tidal in the
case study is shown in Fig. 2. The droop controller, with gain
1/R, is comparable to the primary frequency controller of a

synchronous machine. The ROCOF controller consists of a
low-pass filter with time constant Tl , the time derivative of
the frequency measurement and a gain Kl. The two controllers
are complementary. The ROCOF control is faster and has
its main effect in the very first instants after the frequency
drop. However, the droop control is slower and mitigates the
frequency deviation [13].
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Fig. 2. The frequency control for wind and tidal turbines used in the case
study.

IV. ENERGY STORAGE SYSTEM

Energy Storage Systems (ESSs) have shown substantial
potential in enhancing the transient stability of electrical power
systems to maintain a smooth power production profile. The
International Energy Agency (IEA) indicates that the addition
of energy storage to stochastic RESs is particularly important
for the Sustainable Development Scenario, where the share of
variable renewable reaches 40% worldwide by 2040, and more
than that in some regions [14]. Furthermore, the combination
of ESSs with non-dispatchable RESs enhances the competi-
tiveness of green technology within the energy market.

To represent the ESS in the case study in Section V the
simplified ESS model presented in Fig. 3 is used [15]. The
ESS is represented through decoupled active and reactive
power controllers. The input signal ω is the systems Center
of Inertia (COI) frequency that is regulated through the active
power. The voltage at the point of connection vac is regulated
through the ESS reactive power. The physical behavior of the
storage system is synthesized by two lag blocks with the time
constants TP,ESS and TQ,ESS.
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Fig. 3. The simplified ESS used in the case study.
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V. CASE STUDY

The test power system used for this case study is the
Western System Coordinating Council (WSCC) 3-machine,
9-bus system. The system has three synchronous generators
with Automatic Voltage Regulation, Power System Stabilisers
and Turbine Governors. All dynamic data of the WSCC 9-bus
system as well as a detailed discussion of its transient behavior
are provided in [16].

The following modifications are made to the test system for
this case study:

• The capacity of the synchronous generator, connected at
Bus 2 is reduced by 20 MW.

• A renewable energy plant is connected to the system at
Bus 7 with the power capacity 20 MW.

• An ESS is located at bus 8 in the modified system.
• The three loads of the system are modeled as stochastic

using the model in (4).
In this case study five different sources of renewable energy

are connected at Bus 7 individually. These are onshore wind,
offshore wind, solar, tidal as well as a VPP that consists
of a combination of onshore wind, solar and offshore tidal
generation. In Fig. 4 the modified test system with the VPP
connected at Bus 7 is shown. For both offshore wind and
tidal generation the effect of extensive transmission cables to
connect the offshore plant sites to the system are considered.
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Fig. 4. The modified test power system used for the aggregated model study.

Dome, a Python-based software tool for power system
analysis, was used to carry out all simulations [17].

For the results presented in Fig. 5-8, the test system is
simulated once with a time step of 0.01 s for 100 s for
each scenario. Figure 5 shows a comparison of the generated
power of the RES supplied to Bus 7 for the different sources.
This figure illustrates the different stochastic properties for
each RES technology. Onshore and offshore wind generation
have the smoothest active power profile, with offshore wind
varying slightly more than onshore. During normal operation
the tidal generation has a similar output as the wind generation.

However, the tidal current can be disturbed by waves as is
the case in this case study. This is the worst case scenario
for tidal generation. Solar generation during a clear sky has
the smoothest generation output. However, when clouds pass
over the PV panels the generated output will ramp up and
down. This can be seen in Fig. 5 at about 60 s where the solar
generation output starts to ramp down.

The generation profile of the VPP shows that its variations
are still greater than that of only wind and the rapid variations
due to the tidal and solar generation do disturb the VPP out-
put. However, by combining the different renewable sources
the rapid fluctuations are smoother. This averaging effect of
combining several stochastic processes is indeed a promising
feature of VPPs obtained by the aggregation of RESs.
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Fig. 5. The renewable generation supplied at Bus 7 in the test system.

The stochastic fluctuations of RESs impact on the system
variables such as the bus voltages and frequency. In this paper
we study the effect on the systems COI frequency, shown in
Fig. 6 for the different RESs without any frequency control.
The variations in the frequency are similar to the respective
generation output variations. The frequency variations due to
the different sources are up to 1% of the nominal frequency.
These frequency variations can result in the system becoming
unstable. Thus, they need to be mitigated. This can be done
by installing frequency control.

In Fig. 7 the frequency control of wind and tidal has been
installed as presented in Section III. It can be seen that the
frequency control does not have much of an effect on the
frequency variations due to wind speed variations. However,
the frequency control works very well with the tidal turbines
and thereby also the VPP. As the same frequency control is
applied to both wind and tidal this difference can be mostly
explained by the stochastic properties of the source that is the
wind and tidal current speed. The frequency control seems to
work better with a source that has a oscillatory output, like
the tidal generation.

The system COI frequency for the test system with ESS is
shown in Fig. 8. In this case the frequency variations have been
reduced to be within 0.1% of the nominal system frequency
for all the RESs.
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Fig. 6. The COI frequency of the system without control.
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Fig. 7. The COI frequency of the system with wind/tidal turbine frequency
control.

These results give an idea of the kind of volatility scenarios
that can be expected in the system due to the different kinds
of RESs. However, these results only show a single scenario
for each source. To be able to study the effect of the different
sources on the system frequency statistically the system is
simulated using Monte Carlo method 1000 times for a duration
of 200 s with a time step of 0.01 s. The resulting standard
deviation of the COI system frequency for each case studied
is shown in Table I. The results show that in all cases the fre-
quency variations are reduced with installing the ESS. While
the frequency control only improves the cases where tidal
and VPP are the installed renewable generation. Statistically,
the solar generation leads to the greatest variations in the
frequency and the VPP will result in the lowest frequency
variations with or without the ESS or frequency control of
wind/tidal installed in the system.
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Fig. 8. The COI frequency of the system with ESS.

TABLE I
STANDARD DEVIATION OF THE COI FREQUENCY FOR THE DIFFERENT

SCENARIOS CONSIDERED IN THE CASE STUDY

Renewable Generation
Standard deviation of COI frequency [Hz]

no control with freq control with ESS
Onshore Wind 0.079 0.077 0.013

Offshore Wind 0.082 0.080 0.012

Tidal 0.086 0.035 0.013

Solar 0.096 NA 0.020

VPP 0.066 0.034 0.009

VI. CONCLUSIONS

This paper provides a case study comparing the effect of the
fluctuations of different sources of renewable energy on the
system frequency. The RESs compared are on- and offshore
wind, solar and tidal generation. An aggregated VPP is also
proposed and studied, combining onshore wind, solar and
offshore tidal generation. To mitigate the frequency variations
introduced by the variable RESs both frequency control of
wind/tidal and an ESS are installed in the system.

It is shown that the sources of renewable energy studied
result in different kinds of frequency variations and can present
different challenges. The tidal turbine frequency control can
successfully mitigate frequency variations introduced by waves
in the tidal current speed. The frequency variations for all
RESs can be smoothed to acceptable levels with installing
an ESS along side the source. Furthermore, using VPPs is a
promising way to minimize the system frequency variations
introduced through the RESs.

Future work will focus on introducing coordination between
the RESs and the controllers and studying the integration of
such an aggregated VPP model for electrical power systems
such as the Irish grid.
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