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Abstract—The research on the synchronization stability of 

Grid-Following Converter (GFL) is of great significance for the 

stable operation of inverter-based resources. Existing literature 

mainly focuses the stability factors from the point of view of the 

converter and assumes the grid to be an infinite-bus with 

constant frequency. However, faults cause the grid to experience 

interdependent variations of grid voltage amplitudes and phases, 

as well as of its frequency. The impact of these variations on the 

synchronization stability has not been systematically and 

comprehensively studied yet. Here we study the combined effect 

on GFL synchronization stability of all these quantities 

following a large disturbance. The theoretical appraisal shows 

that phase-angle jump affects the initial perturbance of the GFL 

while the grid frequency affects the following transient 

responses and the stability boundary. Simulation results also 

show that the variation of the frequency with higher RoCoF may 

be beneficial for the stability of the GFL, and that the effects of 

the various of the voltage and frequency can be studied 

separately. 

Keywords—Synchronization stability, Phase-Locked Loop 

(PLL), phase-angle jump, frequency variation, combined grid-

disturbance 

I. INTRODUCTION 

Grid-Following converters (GFLs) based on Phase-
Locked Loops (PLLs) are a common grid-interface for 
renewable generation. In a weak grid with high impedance, 
the loss of the synchronization has been reported to be the 
main cause for the GFL instability after a severe fault on the 
grid [1]. This instability may continue even with a sufficient 
reactive power compensation and even after the fault 
clearance [2]. In this context, the synchronization stability of 
GFLs has attracted a great attention in recent years [3]. A 
Quasi-Static Large-Signal (QSLS) model has been proposed 
to reflect the transient response of the GFL with respect to the 
grid fault [4]. Based on the QSLS model, the Equal Area 
Criterion (EAC) method [5], phase portrait method [6] and 
Lyapunov function method [7] have been proposed to assess 
the synchronization stability. Amongst these methods, EAC 
method can visually show the GFL operating point movement 
while the phase portrait method can precisely present the GFL 
stable operational region.  

In the literature, the synchronization stability analysis of 
the GFL focuses on the “converter” itself such as analyzing 
the effect of the converter inherent controls and the PLL 
settings, while the “grid” is assumed to be an infinite-bus. 
However, the synchronization instability of GFL is ultimately 
caused by grid disturbances. Thus, the effect of the dynamic 
behavior of the “grid” on the synchronization stability requires 
a systematic and comprehensive study, which to the best of 
the authors’ knowledge is currently missing. In the literature, 
in fact, grid disturbances are modelled either as a voltage sag 
or as a short-circuit, i.e., voltage sag plus phase angle jump. 
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Frequency variations, which are also common after the 
occurrence of a fault, are not considered. To cover this gap, in 
this letter, we present a systematic analysis on the “grid” 
disturbances, that is, we consider the variation of all grid1 
voltage parameters (magnitude, phase angle, and frequency) 
both independently and combined. The GFL synchronization 
stability analysis is carried out both qualitatively, through the 
EAC and phase portrait method, and quantitatively, though a 
comprehensive set of simulations. 

II. SYNCHRONIZATION STABILITY ANALYSIS 

The synchronization stability is referred to as the ability of 
the GFL to sustain the synchronization after subjecting a large 
disturbance. The analysis of the transient of the GFL is 
generally based on the QSLS model as detailed in [4], as 
follows. The PLL locks the phase at the Point of the Common 
Coupling (PCC), of which dynamics can be represented as: 

{

𝑑(𝛿)

𝑑𝑡
= ∆𝜔𝑝𝑙𝑙 ,                                    

𝑑∆𝜔𝑝𝑙𝑙

𝑑𝑡
= 𝑘𝑝,𝑝𝑙𝑙

𝑑𝑣𝑞

𝑑𝑡
+ 𝑘𝑖,𝑝𝑙𝑙𝑣𝑞 ,        

         (1) 

where 𝛿=𝜃𝑝𝑙𝑙 − 𝜃𝑔, 𝜃𝑝𝑙𝑙  is the phase of the PCC voltage, 𝜃𝑔is 

the phase of the grid voltage, 𝜔𝑔  is the frequency of grid 

voltage, 𝜔𝑛  is the nominal frequency, 𝑘𝑝,𝑝𝑙𝑙/𝑘𝑖,𝑝𝑙𝑙  is the PI 

coefficient of the synchronous reference frame (SRF)-PLL. In 
a weak grid with a significant grid impedance, the PCC 
voltage 𝑽𝑝𝑐𝑐  is no longer constant but varies with the GFL 

output current as indicated following: 

𝑽𝑝𝑐𝑐 = 𝑽𝑔 + 𝑰(𝑍𝑙 + 𝑍𝑔)                         (2) 

Where 𝑽𝑔 is the grid voltage, 𝒁𝑙  is the line impedance, 𝒁𝑔 is 

the grid impedance, 𝑰 is the GFL output current. Assuming 
that the PCC voltage is the reference with the phase at 0 rad, 
then the PCC voltage in the q-axis in the synchronous dq-
frame can be obtained as follows: 

𝑣𝑞 = (𝑟𝑙 + 𝑟𝑔)𝑖𝑞 + (𝜔𝑛 + ∆𝜔𝑝𝑙𝑙)(𝑙𝑙 + 𝑙𝑔)𝑖𝑑 − 𝑉𝑔 sin(𝛿) (3) 

Equations (1)-(3) define the synchronization of the QSLS 
model of the GFL and are illustrated in Fig. 1. We utilize these 
equations to deduce the stability region. Based on the grid 
synchronization loop, the GFL output current flowing in the 
inductance 𝑙𝑙 + 𝑙𝑔  introduces a positive-feedback into the 

synchronism.  
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Fig. 1 Quasi-Static Large-Signal model of synchronization stability analysis. 

In the literature, “large disturbances” have been classified 
into the two main following scenarios: (i) voltage sag: the grid 

voltage amplitude 𝑉𝑔 step reduces; and (ii) short-circuit fault: 

the grid impedance 𝒁𝑔  changes with respect to the short-

circuit impedance, which could be equivalent to 𝑉𝑔𝑒
𝑗𝜃𝑔 +

𝑍𝑔𝐼𝑒
𝑗(𝛿+∠𝑍𝑔)  that the equivalent grid voltage changes with 

respect to both the amplitude and phase. 

According to the classification above, grid faults can be 
actually study in the same framework, i.e., they can be unified 
as an equivalent voltage (phase) change at the receiving 
terminal of the line impedance from the GFL. Existing 
literature emphasizes the analysis of this voltage change on 
the synchronous transients. In reality, however, not only the 
voltage but also the frequency changes during the fault. The 
remainder of the paper analyses the effect of realistic 
disturbances on the synchronization stability. 

III. EFFECT OF GRID STATE VARIATION ON 

SYNCHRONIZATION STABILITY 

Let us assume that the initial grid equivalent voltage is 
𝑉𝑔,0∠(𝜔𝑔,0𝑡 + 𝜃𝑔,0). After the occurrence of the grid fault, the 

voltage changes, say (𝑉𝑔,0 + ∆𝑉𝑔)∠((𝜔𝑔,0 + ∆𝜔𝑔)𝑡 + 𝜃𝑔,0 +
∆𝜃𝑔). Substituting the perturbed voltage into (2) leads to: 

𝑣𝑞 = (𝑉𝑔,0 + ∆𝑉𝑔)sin(∆𝜔𝑔𝑡 + ∆𝜃𝑔 − 𝛿) + 𝑟𝑔𝑖𝑞 ++𝜔𝑝𝑙𝑙𝑙𝑔𝑖𝑑(4) 

In a grid fault, the equivalent grid voltage amplitude in 
general changes, the dynamics of which have been discussed 
in [5]. We use a phase portrait method to analyze the effect of 
the grid voltage variations on the synchronization stability. 
The phase of the PLL 𝜃𝑝𝑙𝑙  cannot step change due to its 

integral feature, while the PLL frequency could have a sudden 
change due to the proportional channel from the input of the 
PCC voltage. After a voltage magnitude sag, the resulting 
perturbance for the PLL dynamics (1) is (𝛿𝑠,0, ∆𝜔𝑝𝑙𝑙@𝑉𝑔

(𝑡0
+)) 

in the phase plane, where: 

𝛿𝑠,0 = 𝑠𝑖𝑛−1 (
𝜔𝑔𝑙𝑔𝑖𝑑 + 𝑟𝑔𝑖𝑞

𝑉𝑔,0
)                    (5) 

∆𝜔𝑝𝑙𝑙@𝑉𝑔
(𝑡0

+) =
𝑘𝑝,𝑝𝑙𝑙∆𝑉𝑔 sin(−𝛿𝑠,0)

1 − 𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
             (6) 

and 𝑖𝑑 /𝑖𝑞  is the GFL current in the synchronous d-q frame, 

𝑟𝑔/𝑙𝑔 is the grid impedance, 𝛿𝑠,0 is the initial phase before the 

voltage sag. ∆𝜔𝑝𝑙𝑙@𝑉𝑔
(𝑡0

+) is the PLL frequency at the instant 

of the grid voltage sag. If this point falls within the stability 
region, the GFL is stable. 

A. Effect of phase-angle jumps 

A phase-angle jump does not change the stability region 
of the GFL. This is easy to see as the grid voltage phase angle 
does not appear in the QSLS model. However, a phase-angle 
jump leads to a sudden step change of the phase of the PCC 

voltage 𝜃𝑝𝑙𝑙. Referring to the EAC method in Fig. 2(a), the 

phase-angle jump leads to the operating point move 
horizontally and vary the acceleration area. This leads to 
modify the stability margin of the GFL. Figure 2(b) shows that 
the phase-angle jump shifts horizontally the initial point by 
−∆𝜃𝑔. Moreover, the phase jump can lead to a sudden change 

of the PLL frequency and shift vertically the initial point by 
∆𝜔𝑝𝑙𝑙@𝜃𝑔

(𝑡0
+), where: 

∆𝜔𝑝𝑙𝑙@𝜃𝑔
(𝑡0

+) =
𝑘𝑝,𝑝𝑙𝑙(𝑉𝑔,0+∆𝑉𝑔)[sin(∆𝜃𝑔−𝛿𝑠,0)−sin(−𝛿𝑠,0)]

1−𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
.  (7)  
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(a) EAC                                       (b) phase-plane diagram 

Fig. 2 Effect of the Phase-angle jump. 

From the EAC analysis, in the range of [0, ∆𝜃𝑔,𝑚𝑎𝑥], the 

larger the negative phase jump ∆𝜃𝑔 , the better the GFL 

synchronous response, where ∆𝜃𝑔,𝑚𝑎𝑥 = 𝜋 −
𝜔𝑔𝑙𝑔𝑖𝑑+𝑟𝑔𝑖𝑞

𝑉𝑔,0+∆𝑉𝑔
−

𝜔𝑔𝑙𝑔𝑖𝑑+𝑟𝑔𝑖𝑞

𝑉𝑔,0
. Otherwise, the phase would jump over the 

unstable equilibrium point 𝛿𝑢 and fall into the unstable region. 
From the phase portrait analysis, after the grid fault, the phase 
jump ∆𝜃𝑔 moves the initial point from (𝛿𝑠,0, ∆𝜔𝑝𝑙𝑙@𝑉𝑔(𝑡0

+)) to 

(𝛿𝑠,0 − ∆𝜃𝑔, ∆𝜔𝑝𝑙𝑙@𝜃0(𝑡0
+)+ ∆𝜔𝑝𝑙𝑙@𝑉𝑔(𝑡0

+)) but does not affect 

the stability boundary. 

B. Effect of frequency variations 

The frequency changes with the slope of rate of change of 
frequency (RoCoF), which is a function of time, of which 
maximum rate is restricted by the transmission system 
operator (TSO), e.g., ±4 Hz/s commanded by Irish TSO, 
EirGrid. Then, after the faults, the grid frequency in (3) 
becomes. 

∆𝜔𝑔 = 𝑅𝑜𝐶𝑜𝐹(𝑡)                            (8) 

Substituting (8) into (2) and rewriting (1) obtains: 

{
 
 
 
 

 
 
 
 
𝑑𝛿

𝑑𝑡
= ∆𝜔𝑝𝑙𝑙 − ∆𝜔𝑔,                                                                      

𝑑∆𝜔𝑔

𝑑𝑡
= 𝑅𝑜𝐶𝑜𝐹(𝑡),                                                                  

𝑑∆𝜔𝑝𝑙𝑙

𝑑𝑡
=
𝑘𝑝,𝑝𝑙𝑙(∆𝜔𝑔 − ∆𝜔𝑝𝑙𝑙)𝑉𝑔𝑐𝑜𝑠𝛿

1 − 𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
+                    

+
𝑘𝑖,𝑝𝑙𝑙(𝑟𝑔𝑖𝑞 + (𝜔𝑛 + ∆𝜔𝑝𝑙𝑙)𝑙𝑔𝑖𝑑 − 𝑉𝑔𝑠𝑖𝑛𝛿)

1 − 𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑

(9) 

where it appears that the grid frequency change affects the 

transients of both ∆𝜔𝑝𝑙𝑙  and 𝛿 . The smaller ∫ (∆𝜔𝑝𝑙𝑙 −
𝑡

𝑡0
+

∆𝜔𝑔), the smaller the phase movement and the better the 

synchronization transients. At one aspect, after the fault 

occurrence, the PLL frequency from ∆𝜔𝑝𝑙𝑙@𝑉𝑔
(𝑡0

+) is 

controlled to track ∆𝜔𝑔 , while ∆𝜔𝑔  influences the tracking 



speed of ∆𝜔𝑝𝑙𝑙 , i.e. 
𝑘𝑝,𝑝𝑙𝑙∆𝜔𝑔𝑉𝑔𝑐𝑜𝑠𝛿

1−𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
 in (9); At another aspect, 

∆𝜔𝑔  changes at the rate of 𝑅𝑜𝐶𝑜𝐹(𝑡) . If the incremental  
𝑘𝑝,𝑝𝑙𝑙∆𝜔𝑔𝑉𝑔𝑐𝑜𝑠𝛿

1−𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
 in 

𝑑∆𝜔𝑝𝑙𝑙

𝑑𝑡
 is less than the 𝑅𝑜𝐶𝑜𝐹(𝑡)  in 

𝑑∆𝜔𝑔

𝑑𝑡
, 

then the slope of the 
𝑑(∆𝜔𝑝𝑙𝑙−∆𝜔𝑔)

𝑑𝑡
 decreases and the phase 𝛿 

at its peak value increases resulting in a lower stability margin. 

Referring to the phase portrait of (9) in Fig. 3, the negatively 

increase in RoCoF shrinks the stability boundary and may 

lead to the loss of the synchronization. At the instant of the 

fault occurrence, only the grid voltage step changes while the 

frequency keeps unvaried due to the inertia in the power 

system. Hence, the initial effect of the perturbance on the 

phase-space trajectory of the converter is the same as that 

consisting in a grid voltage amplitude sag, i.e. 

(𝛿𝑠,0, ∆𝜔𝑝𝑙𝑙@𝑉𝑔(𝑡0
+)). 
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(a) grid frequency increase              (b) grid frequency decrease 

Fig. 3 Effect of the frequency variation. 

C. Effect of combined grid voltage and frequency variations 

We consider in this section combined variations of both 
the voltage phase and the grid frequency after a fault. In this 
scenario, the initial point at the instant of the fault occurrence 

can be obtained by substituting (𝑉𝑔,0 + ∆𝑉𝑔)∠((𝜔𝑔,0 +

∆𝜔𝑔)𝑡 + 𝜃𝑔,0 + ∆𝜃𝑔) into (2), as follows: 

{
 
 

 
 
∆𝛿𝑝𝑙𝑙@𝑐(𝑡0

+) = 𝛿𝑠,0 − ∆𝜃𝑔,                                                             

∆𝜔𝑝𝑙𝑙@𝑐(𝑡0
+) =

𝑘𝑝,𝑝𝑙𝑙(𝑉𝑔,0 + ∆𝑉𝑔) sin(∆𝜔𝑔𝑡 + ∆𝜃𝑔 − 𝛿𝑠,0)

1 − 𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
+

+
−𝑘𝑝,𝑝𝑙𝑙𝑉𝑔,0 sin(−𝛿𝑠,0)

1 − 𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
.

(10) 

Equation (9) shows that ∆𝜔𝑝𝑙𝑙@𝑐(𝑡0
+)  equals to 

∆𝜔𝑝𝑙𝑙@𝜃𝑔
(𝑡0

+)+∆𝜔𝑝𝑙𝑙@𝑉𝑔(𝑡0
+). This is because at the instant of 

the fault occurrence, ∆𝜔𝑔(𝑡0
+) = 0, and the initial perturbance 

is only affected by the voltage magnitude change. However, 
from (9), it appears that the phase jump only has an impact on 
the initial perturbance while the grid frequency influences the 
transient behavior of the GFL.  

Considering that the grid code restricts the frequency 

variation and phase-angle jump within a limited range, e.g., ±
1.5 Hz in and 30°in the Chinese grid code, the effect of the 

grid frequency variation and phase-angle jump on the GFL 
transient response can be approximated in a linear process 
compared with that of the voltage change. Then at a given grid 
voltage 𝑉𝑔, the state space of (9) can be obtained as follows: 

[
∆𝜃𝑝𝑙𝑙 

∆𝜔𝑝𝑙𝑙
 
] = [

0 1
𝐴 𝐵

] [
∆𝜃𝑝𝑙𝑙
∆𝜔𝑝𝑙𝑙

] + [
0 −1
𝐴 −𝐵

] [
∆𝜃𝑔
∆𝜔𝑔

]        (11) 

Where

{
 
 

 
 𝐴 = −

𝑘𝑖,𝑝𝑙𝑙(𝑉𝑔,0+∆𝑉𝑔)𝑐𝑜𝑠𝛿𝑠,1

1−𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
                       

𝐵 = −
𝑘𝑝,𝑝𝑙𝑙(𝑉𝑔,0+∆𝑉𝑔)𝑐𝑜𝑠𝛿𝑠,1−𝑘𝑖,𝑝𝑙𝑙𝑙𝑔𝑖𝑑

1−𝑘𝑝,𝑝𝑙𝑙𝑙𝑔𝑖𝑑
       

𝛿𝑠,1 = 𝑠𝑖𝑛−1 (
𝜔𝑔𝑙𝑔𝑖𝑑+𝑟𝑔𝑖𝑞

𝑉𝑔,0+∆𝑉𝑔
)        

. 

This proves that one can decouple the combined grid 
disturbances into a serial of the single disturbance (i.e. grid 
voltage and frequency). Figure 4 compares trajectory of the 
phase portrait from the combined grid disturbances with the 
synthetic results from single disturbance, which proves the 
effect of the combined disturbances on the synchronization 
transients is the superposition of the effects of each 
disturbance. 
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Fig.4 Effect of the superposition in combined grid disturbances 

IV. SIMULATION VERIFICATION 

This section verifies the analysis of the effect of the grid 
disturbances on the synchronization stability through an EMT 
model of a 10 kV/50 Hz GFL built in Matlab/Simulink. The 
line impedance is set to be 0.1 H and 1 Ω, and the PLL PI 
coefficient is 0.022/0.392. 

A. Effect of phase-angle jumps 

This case aims at validating the effect of voltage phase-
angle jumps. The grid voltage sags to 0.34 pu with the phase 
jump at 2s. As expected, when the phase of the GFL 
equilibrium point is positive, a positive phase jump can 
enlarge the acceleration area and over amplify the PLL 
frequency change. In extreme cases, this effect can result in 
the loss of synchronization of the GFL. 
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Fig. 5 Effect of the phase-angle jump. 

B. Effect of grid frequency variations 

This case aims at validating the effect of grid frequency 
variations. The grid voltage sags with the frequency variation 
at 2s. The grid frequency does not influence the instant change 
on the GFL frequency. Interestingly, the grid frequency 
increase helps enhance the synchronization stability, and, 
even more interestingly, the higher the RoCoF, the better the 
transient response. On the other hand, a decrease of the grid 
frequency has a negative impact on the synchronization 
stability, and the GFL becomes unstable for high values of the 
RoCoF. 



C. Effect of combined grid voltage and frequency variations 

This case aims at validating the use of superposition in 
the analysis of the effect of the combined grid disturbances on 
the synchronization stability. The grid voltage drops to 0.4 pu 
with both the phase-angle jump and the frequency change at 2 
s. Figure 7 compares the result from the combined grid 
disturbances with the synthetic results from single disturbance. 
As expected, since the phase jump only affects the initial 
perturbance while the frequency affects the rest of the process 
after the initial perturbation, the GFL transients from the 
combined grid disturbances can be precisely represented by 
the transients from the separate disturbance. 
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  (a) The grid voltage drops to 0.334 pu and ∆𝜔𝑔 = 2 Hz. 
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(b) The grid voltage drops to 0.337 pu and ∆𝜔𝑔 = −2 Hz.  

Fig. 6 Effect of the grid frequency variation. 
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Fig. 7 Effect of the superposition in combined grid-state variation. 

V. CONCLUSIONS 

This letter analyzes the effect of different grid 
disturbances on the synchronization stability. The phase-angle 
jump influences the initial GFL response at the instant of the 
fault occurrence while the grid frequency influences the GFL 
following transient response after the initial perturbance and 
the stability boundary. The most relevant conclusions of this 
work are: (i) the variation of the frequency with higher RoCoF, 
in scenario of that makes the phase difference between the 
GFL and the grid reduce, is beneficial for the stability of the 
GFL; and (ii) the effects of the various variations of the 
voltage and the frequency can be studied separately, as they 
are either decoupled in time or superpose linearly in the model 
of the GFL. Based on these results, the authors are working on 
further enhance the synchronization stability of GFLs through 
the synthesis of novel controllers. 
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