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Abstract— The paper studies the impact of realistic Wide-
Area Measurement System (WAMS) time-varying delays on the
dynamic behaviour of power systems. A detailed model of
WAMS delays including pseudo-periodic, stochastic and constant
components is presented. Then, the paper discusses numerical
methods to evaluate the small-signal stability as well as the time-
domain simulation of power systems with inclusion of such delays.
The small-signal stability analysis is shown to be able to capture
the dominant modes through the combination of a characteristic
matrix approximation and a Newton correction technique. A case
study based on the IEEE 14-bus system compares the accuracy of
the small-signal stability analysis with Monte-Carlo time-domain
simulations. Finally, the numerical efficiency of the proposed
technique is tested through a real-world dynamic model of the
all-island Irish system.

Index Terms— Time-varying delay, delay differential algebraic
equations (DDAEs), small-signal stability, wide-area measurement
system (WAMS).

NOTATION

a Scale factor of the Gamma distribution

Ay Conventional state matrix

A, State matrix associated with the i-th delay

b Shape factor of the Gamma distribution

f Differential equations

g Algebraic equations

h(X\) Comparison distributed delay term of time-varying delay
I Identity matrix

p Data packet dropout rate

T Normal delivery period for each data packet

ti Arriving time of data packet zy,

u Discrete variables

w Weight function of time-varying delay

x State variables

xy k-th data packet of state variable x

vy Algebraic variables

a Real part of an eigenvalue

£ Imaginary part of an eigenvalue

~ Adjusting coefficient of the guessed constant delay
I' Random number following a Gamma distribution
A()\) Characteristic equation

ot Time at which the next data packet is expected
€ Convergence error
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€ Tolerance for time domain integration algorithm

A Eigenvalue

A Corrected eigenvalue

v A non-trivial vector, eigenvector

v Hermitian conjugate of eigenvector v

7 Measurement delay

7 Mean value of 7

7. Initial-guess delay for the Newton correction

7, Constant component of the WAMS delay model

Tp Quasi-periodic component of the WAMS delay model
/

7, Ideal periodic component of the WAMS delay model

Ts Stochastic component of the WAMS delay model

I. INTRODUCTION
A. Motivation

A Wide-Area Measurement System (WAMS) consists of a
remote measurement device, e.g., a phasor measurement unit,
and a communication network that transmits the measurements
to a power system controller [1]. WAMSs inevitably introduce
delays into the control loop and are thus potential threats to
power system stability [2]. These delays are the result of a
series of processes along the data communication from the
measurement device to the grid, including long-distance data
delivery, data packet dropout, noise, communication network
congestion, etc. [3]. Due to stochastic effects and the com-
munication mechanism, WAMS delays are necessarily time-
variant. This paper proposes a detailed model of WAMS delays
and numerical techniques to estimate their impact on small-
signal stability and time-domain simulation of power systems.

B. Literature Review

In [2], [4]-[6], WAMS delays are regarded as constant for
simplicity. A constant delay model, however, is not able to
accurately define the impact of WAMS delays due to the
Quenching Phenomenon (QP) [7]-[9]. QP appears for time-
varying delays and consists in the change of the stability of a
delay system for different delay types, even though all delays
are within the same range and have the same mean value.

In [10]-[12], WAMS delays are modelled through stochastic
processes. Comparing with the constant delay model, the
stochastic model captures slightly better the effects of a
realistic WAMS delay. Nevertheless, the stochastic model is
still inaccurate as it fails to reflect the actual mechanism of
WAMS delays, which include a quasi-periodic behaviour and
data package dropouts. All these aspects are taken into account
in this paper.



Apart from the lack of a precise WAMS delay model, a
general technique to study the stability of power system with
inclusion of time-varying delays is also currently missing.
The most common approach is based on Lyapunov-Krasovskii
Functionals (LKFs) [3], [13]-[15]. The main limit of LKFs
is their numerical complexity — which prevents applications
to large-size real-world power systems — and the significant
conservativeness of the results [16].

Also frequency-domain approaches, including Integral
Quadratic Constraintss (IQCs) [17], [18] and eigenvalue-based
approach [19]-[22] have been developed. These approaches
are shown to be computationally effective and accurate for
large real-world power systems with inclusion of delays.
Among the frequency-domain approaches, the eigenvalue-
based method shows the lightest computational burden because
it does not require to solve the Linear Matrix Inequalitys
(LMIs) problem.

This paper further develops the eigenvalue-based techniques
to solve the small-signal stability of power system by ex-
ploiting the theoretical results given in [7], [16], [23], where
it is proven that time-varying delays can be approximated
with summations of multiple constant delays in the linearized
characteristic equation.

C. Contributions

To the best of our knowledge, this is the first attempt to
propose a detailed model of realistic WAMS delays for power
system applications. The specific contributions of the paper
are the following:

o A realistic WAMS delay model that is able to take into
account all relevant issues introduced by the WAMS
communication system.

« A theorem that states the equivalence of the characteris-
tic equations of Delay Differential Algebraic Equations
(DDAEs) with fast time-varying delays and DDAEs with
distributed delays.

o A discussion on how to implement the WAMS delay model
in a Time Domain Integration (TDI) routine.

o A two-step numerical technique to evaluate the small-
signal stability of the power system with detailed WAMS
delay models. The first step utilizes the theorem above to
estimate an initial guess of the eigenvalues of the DDAE;
then a Newton correction method that takes into account
the Probability Density Function (PDF) of the realistic
WAMS delay improves the results.

D. Organization

The remainder of the paper is organized as follows. Section
II briefly recalls state-of-art techniques to evaluate the small-
signal stability of DDAEs and provides a general theorem to
define the characteristic equation of DDAEs with time-varying
delays. Section III provides a taxonomy of the components
of wAMS delays and defines their numerical models. Section
IV discusses the implementation of the WAMS delay model
in time-domain simulation and small-signal stability analysis.
Section V presents two case studies. The first one is based on
IEEE 14-bus system and discusses features and limitations of

the techniques described in Section IV. The second case study
discusses the computational efficiency of these techniques
when applied to a 1,479-bus dynamic model of the all-island
Irish system. Conclusions are drawn in Section VI.

II. SMALL-SIGNAL STABILITY ANALYSIS OF DDAES
A. DDAESs with constant delays

Power systems with inclusion of delays can be modeled as
a set of DDAE in index-1 Hessenberg form [19]:

w(t) = fx@), yt), (- 7),y(t —7),u(t))
0:g(w(t)vy(t)>w(t_T)7u(t)) ) (1

where u models event, e.g. line outage.
To study the small-signal stability of (1), we consider its
linearization at a given operating point [19]:

tmazx

©(t) = Agz(t) + Y Ai(t—T), )

Each solution of (2) is x(t) = e~*v. The eigenvalues are
numerically equal to the roots of the characteristic equation:

AN =detA(N) =0,

AN =M= Ag—> A, (3)
i=1
The solution of (3) can be approximated through an appro-
priate discretization [19], [24]. Reference [21] shows that the
Chebyshev discretization scheme provides the best threshold
between accuracy and computational burden and, hence, this
is the scheme utilized in the remainder of the paper.

B. DDAEs with inclusion of time-varying delays

Reference [7] provides a theorem to transform fast time-
varying periodic delays into distributed delays. By combining
the mathematical proof of [7] with the definition of distributed
delay given in [23], we deduce the following theorem.

Theorem I: Consider the following linear system with time-
varying delays:

tmax

&(t) = Agz(t) + Z Azt —7i(t) 4)

where 7;(t) : RT = [Tmin, Tmax)s 0 < Tmin < Tmax- If the
delay 7(¢) changes fast enough, the small-signal stability of
(4) is the same as the following comparison system:

min

Tmax

wi(§)z(t —&)ds, (5

where w;(§) is the PDF of the specific delay 7;(¢) = &. The
characteristic matrix of the comparison system is:

AN =M — Ag— > A;h()) | (6)
i=1
where

n = [ " e ()de @

min



The proof of this theorem is in VI-A.

It is important to note that, for slow variations of 7;(t), the
comparison system (5) is only an approximation of (4). The
stability of (4) and (5) are the same only for sufficiently high
rate of change of 7;(¢). Since in physical systems the rate of
change of the delays is always bounded and one cannot decide
a priori where the threshold between slow and fast variations
for a given system lays, the fidelity of the comparison system
(5) can be inferred only through numerical simulations [7].

Reference [16] provides an alternative solution of (6) that
consists in transforming the distributed delay into the summa-
tion of multiple constant delays and compute the eigenvalues
through discretization. Although this approach can success-
fully solve the DDAEs with delays within specific finite range,
it cannot properly handle unbounded and uncertain delays.
Therefore, to develop a more general approach, we consider
another eigenvalue computation technique, namely, the Newton
Correction, which is discussed in the following subsection.

C. Newton Correction

Newton correction is a technique to refine the solution of the
characteristic equation based on an appropriate initial guess,
namely the eigenvalues solved through a direct approach.
According to the symmetry of the eigenvalues, we only need
to correct the eigenvalues A = « + j3,5 > 0. The pseudo-
code below is developed based on [20] and provides an
implementation of the Newton correction specifically designed
for DDAEs. Algorithm 1: Newton Correction for DDAEs:

1) Initialize the eigenvalue to be corrected as Ag; the
characteristic equations of targeted DDAE as A(\g); the
maximal iteration number k., and the tolerance € .

2) Compute rg = A(Xg) and 79 = %b\:/\o .

3) Compute an approximate eigenpair (Ao, o) of the cor-
responding A()g).

4) For k=1,2,..., kyax, compute:

-1
|7k TLVL —TEVj
B vl 0 1—-viv
Vigyl = Vg + Avy, , and >‘k+1 =X+ AN, .

5) Compute 7541 and 741 -
6) If ‘)‘k+1| < AE or ||’l"k+1|‘2 <e

stop with A = Agiq

otherwise: A = null .

Al/k
AXg

Step (3) above is particularly critical for the convergence of
the Newton correction algorithm. There exist a few approaches
to compute an approximated the eigenvector/eigenvalue pair
(A, v). These include Gaussian Elimination and Singular Value
Decomposition (SVD) approach [25]. According to our tests,
the SVD provides the better tradeoff between computational
burden and accuracy. For this reason, all simulation results
shown in the paper are based on SVD.

III. MODELING OF WAMS DELAYS

This section describes the basic communication process
of wAMSs as discussed in [26]. The WAMS delay model is

deduced based on the elements that compose such a com-
munication process. Note that, while other communication
processes are possible, the elements that we consider for the
WAMS delay model, namely, constant, periodic and stochastic
components, are general and can be thus be utilized to define
the dealys of WAMS with architectures other than the one
considered in this paper.

Assume that the WAMS measures a given quantity x(t) of
the power system. The signal is first measured by an appropri-
ate device and digitalized. Then the signal is processed through
a data package concentrator, transmitted and finally processed
through a zero-order holder (ZOH). At last, the resulting signal,
say z(t—7(t)) is passed through device/controller of the power
system [3]. This process is illustrated in Fig. 1.
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Fig. 1: WAMS elements and their interaction with the power system.

As shown in Fig. 1, the quantity collected by the measure-
ment device x(¢) is concentrated and sent as digitalized data
packets z. The data collection, concentration and processing
introduce a constant delay for each packet (see Section III-
B). These data packets are delivered to feed wide-area de-
vice/controller. A ZOH is implemented to avoid the potential
issues resulting from the loss of data packets. The delivery
of the discrete data packets leads to quasi-periodic delays,
as thoroughly discussed in Subsection III-A. Apart from the
two delays above, the network-induced issues, e.g., the data
passing through different media, may introduce additional
stochastic delays, which are also discussed in Section III-B.

A. Periodic Delay Modeling

Consider first the case of an ideal WAMS communication
network. For a given medium, the delivery period of each data
packet is almost the same. Then, the data packet delivery delay
of such an ideal communication network can be modelled as a
periodic function of time [3], as shown in Fig. 2.a. Consider a
data packet arriving at t = t;. The ZOH holds the data received
at t, before obtaining the next data packet; during this period,
the delivery delay 7, becomes:

Tp(t) =t —ty . (8)

Assuming that the next data packet successfully transmitted is
expected to arrive at ¢, the delivery period is:

T =ty —tg . )



In real-world WAMS communication network, the data packet
can be affected by dropout and/or disorder. In this case,
the ZOH holds the latest state as the feedback signal to the
controllers of the power system, until the next data packet
arrives successfully. Thus, a realistic data delivery delay is
quasi-periodic. Figure 2.b shows the case for which one data
packet x4 is lost. The probability of occurrence of a data
packet dropout is called dropout rate, p.
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(a) Ideal delivery delay 7, (t)
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7p(t)
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(b) Delivery delay 7, (¢) with packet dropout

Fig. 2: Time-varying delivery delay in WAMS communication net-
work.

According to Fig. 2.b and (8), during the period that the ZOH
holds in a specific status, the following condition is always
satisfied:

dry,

dt
Then, assuming the data packet dropout rate p € [0,1), the
probability of a successful delivery is 1 — p. A specific data
packet, after a successful delivery, has the following PDF
function:

=1. (10)

wP(T;D) - (1 7p)pn » Tp € [HT, (77,+ 1)T} ,meZ. (11)
The mean value of the delivery delay according to (11) is:
T 3T n+1)T
%p:—+pT+p2f+~~+p”!. (12)
2 2 2
Multiplying p on the each side of (12) leads to:
T nT n+1)T
Py =Dy er?T+~~+p”7 er"“% . (13)
Then, the 7, can be deduced through (12)-(13):
T T T (n+1)T
1—p)F, = — 4. n_ _pntlX 77
A=p)Tp =5 +pg+-+p"5 —p 5
T1-p" nr
= lim 7( ) 7pn+14(n+ ) ]
oo’ 2(1 —p) 2
T
=——". (14)
2(1-p)

Finally, we have:

T
a2 >

B. Constant and Stochastic Delay Modeling

During the WAMS communication, the data collected from
the measurement unit needs to be processed and exchanged
through different devices [3]. In [2], it is suggested that
these steps introduce a constant delay of about 75 ms for
each data packet. Recent technological advances, e.g., syn-
chronized measurement technology and real-time congestion
management [27], allows reducing such a delay. Although the
communication delay is fixed for each data packet, it may
be slightly different for different data packets. Moreover, the
network-induced issues also introduces uncertain delay during
the delivery of each data packet.

Based on these considerations, apart from the quasi-periodic
delay, we consider other two components in the WAMS delay
model. The first is a constant delay 7,, which is the minimal
inevitable constant delay for each data packet. The second one
is a stochastic delay jitter 75, which varies for each data packet.
According to the research on the existing physical delay [28]-
[30], we assume that 7 follows a Gamma distribution. For a

given packet, with the i-th dropout, one has
Ts,i(t) = Gammal(a, b, t) , (16)

Then, to account for the accumulation of the stochastic delay
due to the data packet dropout, (16) is revised as:

_ Gamma(a, b,t)

7s(t) = Zpirs,i(t) =
i=0

L—p
= Gamma(ﬂ,b,t) . 17)
Then, according to Section II-B, the comparison system is:
o0 ¢b-1g—¢/a

7s(t) = | W(b)x(t —&)d¢ , (18)

where a = 1%;;' Finally, the expected mean value of the
Gamma distributed delay is

Ts =ab . (19)

IV. NUMERICAL IMPLEMENTATION

This section discusses the assumptions and the numerical
steps required for the time domain simulation (Subsection I'V-
A) and small-signal stability analysis (Subsection IV-B) of
power systems with WAMS delays.

A. Time-Domain Integration

A standard integration scheme, namely, the Implicit Trape-
zoidal Scheme (ITM), is utilized for the integration of the
DDAEs modeling the power system [31]. The inclusion of
constant delays in a ITM is relatively straightforward [32].
Embedding time-variant delays, however, requires special care
to avoid numerical issues and guarantee accurate solutions.
With this aim, we make the following assumptions:



o The occurrence of the data packet dropout is independent
from the status of the last packet.

o The stochastic delay is still considered even if the data
packet drops.

o The wAMS delay is represented as:

T(t) =71 (t) + 7o + 76(2) . (20)

o At the initial time of the time-domain simulation, say g,
a new data packet is delivered.

The following algorithm details the step required to generate
the WAMS delay 7(¢) during a time domain integration.

Algorithm 2: Time-varying WAMS delay implementation in
a TDI routine:

Initialization:

Dropout rate: p = 7, n,m € Z and n < m;

Time at which the next data packet is expected to arrive:
dt, note that §t € (—oo,0], where ¢ = 0 is the simulation
starting time;

Initial accumulated delay due to packet dropout: Tqrep 1= 0;

Upper bound of stochastic delay: 7.7%%;

Tolerance to avoid numerical issues: €;

Delay parameters: 7', a, b, 7, and initial 7.

For each time ¢; of the time domain integration:

1) Compute 7,, := mod(t;, T) .

2) Decide whether a data packet has arrived:

Evaluate 6t > T — € and 7, > T/2.
If True go to next step, else go to Return step.

3) Assign 6t := 6t —t; .

4) Generate a new random value 7, of the Gamma distri-

bution.

5) If 74 > 7.°% then 75 1= 7,08 .

6) Decide whether the data packet has arrived successfully:

Generate a random integer g, uniformely distributed in
the interval [1,m].

If ¢ < n: the data packet has arrived, then 7q,0p := 0 ;
else: the data packet has been lost, then 74,0p := Tdrop +
T and 7, := T, + Tdrop -

7) Return: 7 := 7, + 75 + 7.

Each new integration time ¢; is defined based on the
integration time step, say At, as t; = t;_1 + At. At < T
must hold. Even for small At, however, the calculation of
71’7 may be numerically imprecise close to zero. In step (2),
therefore, we choose to capture the moment that is infinitely
close to the time when 7, = 6t = T..

Figure 3 illustrates the time evolution of a typical WAMS
delay and its components. Note that the plots in Fig. 3 are
not obtained off-line but show the actual results of the time-
domain simulation based on the IEEE 14-bus system that is
discussed in Subsection V-A.

B. Small-Signal Stability Analysis

The proposed small-signal stability analysis of the power
system with inclusion of delay includes two major steps:
(1) evaluation of an initial guess for the eigenvalues; and
(i) Newton correction based on the comparison system. For
simplicity, in this section, we only discuss the implementation
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Fig. 3: Time evolution of a typical WAMS delay and its components.
Parameters are: 6t = 0 T' = 50 ms, 7, = 50 ms, 7."* = 100 ms,
a=001,b=2p=n/m=23/10,and é = 107,

of the single delay case. In the case study, however, both single
and multiple delay cases are considered.

First step: Choose a constant delay 7. to replace the
actual WAMS delay and solve the small-signal stability analysis
through Chebyshev discretization (Section II-A). The constant
delay 7, is:

Te = To +Y(Tp + Ts5) 21

~ can only be found through numerical tests. Based on several
simulations, we found that v € [0.5,2.0].

Second step: Set the eigenvalues obtained in the first step as
the initial guesses; then solve the Newton correction (Section
II-C) based on the comparison system with inclusion of the



WAMS delay. According to the previous sections, we can
deduce the following characteristic equation of the system in
the form of (6):

det(\I — Ag — A1h,(Mhs(N)e ) =0, (22

where hy,(X\) and hs(A) are functions that adjust the charac-
teristic equation to take into account the distribution of the
quasi-periodic and stochastic components of the WAMS delay.
For hy(X), one has:

hp(A) :/ wp(f)e_)\gdf~ (23)
0
Then, substituting (11) into (23):

T 2T
hp(A) = / (1— peéde + /T (1 p)peéde

(n+1)T
e
nT

1- — n
_ Pzpn >\5| +1)T

1—p > .
= “D2p

1P p-1) tm

A n— oo

—p)pteNdE + ...

1 —n)\T

e (1 - (pe
1—pe—™

—AT)n)

]

=T

1 —pe AT

=P

h\ I (24)

Similarly, according to (18), for hs(\), one has:

B 0o ébflefg/d Y:
N e N B VL a=VIE™
=(1+aN) =1+ =N (25)

The deduction of (25) is given in the Appendix.

V. CASE STUDIES

In this section, we consider two systems. The IEEE 14-bus
system is utilized to discuss the accuracy and reliability of
both the time-domain simulation and the small-signal stability
analysis proposed in the previous sections. With this aim,
we solve a sensitivity analysis for a single-delay case. The
second case study is a real-world dynamic model of the Irish
system, which serves to illustrate the computational burden of
the proposed small-signal stability analysis.

All simulations are obtained using the Python-based soft-
ware tool DOME [33]. The DOME version utilized here is
based on Fedora Linux 25, Python 3.6.2, CVXOPT 1.1.9, KLU
1.3.8, and MAGMA 2.2.0. The hardware consists of two 20-
core 2.2 GHz Intel Xeon CPUs, which are utilized for matrix
factorization and Monte-Carlo time-domain simulations; and
one NVIDIA Tesla K80 GPU, which is utilized for the small-
signal stability analysis.

A. IEEE 14-bus system

This subsection investigates the feasibility and sensitivity
with respect to WAMS delay parameters of the numerical
approach discussed above based on IEEE 14-bus system, with
a WAMS-based Power System Stabilizer (PSS) connected at
generator 1 and 20% load increase. All parameters of the grid
can be found in [31] and all parameters of the PSS are the
same as in [16], except for the gain of the PSS that is taken
as K, = 3.0.

The rightmost post-contingency eigenvalues of IEEE 14-bus
system following the line 2-4 outage is —0.1366 + j0.0121
if including a non-delayed PSS and 0.0352 4 j8.8251 without
PSS. Intuitively, the system can be unstable for a delayed PSS,
as the effect of the PSS is null if the delay is large enough.

Assuming that the WAMS-based PSS introduces a delay with
same parameters as that of the delay 7(¢) shown in Fig. 3,
we investigate first the sensitivity of the system stability with
respect to the data packet dropout rate p.

Four delay models with same mean value are considered:

o M1 Realistic delay model: 7(t) = 7,(t) + 75 + 75(t);

o M2 Quasi-periodic time-varying model: 7,,(t) = 7,(t) +

Ts + To
e M3 Gamma distributed stochastic time-varying model:
To(t) = Tp + Ts(t) + Tos
o M4 Constant delay model: T = 7, + 75 + To.
The results of the small-signal stability anlaysis are shown in
Table 1. The eigenvalues shown in the table are the rightmost
ones for the post-contingency operating point, the contingency
being line 2-4 outage. The percentages shown in the rightmost
column are the probability that a time-domain simulation
(TDS) considering realistic delay model 7(¢) (M1) is stable.
100 time-domain simulations per each value of p are solved.

According to Table I, for a fast-varying WAMS delay,
the small-signal stability analysis of the comparison system
indicates that the original system remains stable after the
occurrence of the line outage only for small values of the
dropout probability p. As p increases, the system becomes
unstable. These results confirm the well-known conclusion that
a fragile WAMS communication network can jeopardize the
stability of the whole power system.

The different results obtained considering different delay
models, namely 7(t), 7,(t), 75(t) and 7 are typical effect
of the quenching phenomenon. The WAMS delay model ()
and 7,(t) can effectively predict the small-signal stability of
the system with inclusion of realistic-modeling measurement
delays, while 75(t) and 7 are less reliable. This indicates that
the dominant effect of the delay on the system stability is
caused by the quasi-periodic component. This conclusion is
in accordance with the discussion in Section III.

The dropout rate sensitivity test above proves the accuracy
of the small-signal stability analysis approach with a fast-
varying delay. However, according to the hypothesis of com-
parison system (see the discussion of Theorem 1), as the data-
delivery period T increases, the accuracy of the comparison
system has to decrease.

Table II shows the sensitivity of the IEEE 14-bus system
stability with respect to the period 7, for a given dropout value,



TABLE I: Sensitivity of the data packet dropout rate p for the IEEE 14-bus system with WAMS-based PSS, 7" = 50 ms.

% of stable TDI tests

Parameter Small-Signal Stability Analysis

» 7(®) (1) 7 (1) 7 ()
10% —0.02571 £ 58.863470 | —0.02630 + 58.863889 | 0.05227 £ ;j8.818914 —0.13645 + j0.013156 100%
20% —0.02100 £ 58.867552 | —0.02167 & 58.868155 | 0.05178 £ j8.817714 | —0.07423 £ 510.461538 100%
30% —0.01456 £+ 58.871650 | —0.01530 + 58.872521 | 0.05093 £ ;j8.816039 0.09067 + 510.349429 100%
40% —0.00580 + 58.875183 | —0.00660 £ 58.876413 | 0.04928 + ;8.813644 0.29547 + j10.178284 100%
50% 0.00583 =+ 58.876983 0.00513 =+ 58.878795 0.04576 + 58.810326 0.53497 4 59.908095 95%
60% 0.02030 =+ 58.874997 0.02003 =+ 58.877614 0.03754 + 58.807040 0.76520 4 79.469742 43%
70% 0.03590 =+ 58.866353 0.03684 + 58.869917 0.02030 + 58.814373 0.80451 =+ 58.762563 5%
80% 0.04732 + ;8.848858 0.05122 + 58.852571 0.04887 + j8.836270 0.20383 + 510.083820 2%
90% 0.04409 + j8.827572 0.05144 + j8.824285 0.01770 + 58.827534 0.33595 + 58.469411 1%

TABLE II: Sensitivity of the data delivery period T for the IEEE 14-bus system with WAMS-based PSS, p = 20% .

Parameter Small-Signal Stability Analysis ‘ % of stable TDI tests
T [ms] 7(t) 7p () 75 (t) T 7(t)
10 —0.13650 £ j0.012863 | —0.13655 + j0.012598 | —0.13651 % 50.012862 —0.13649 £ ;j0.012945 100%
30 —0.00732 £ 58.850850 | —0.00783 & 58.851217 | —0.00239 + 59.193280 —0.13646 + j0.013108 100%
50 —0.02100 £ j8.867552 | —0.02167 £ ;j8.868155 0.05178 + 58.817714 —0.07423 £+ j10.461538 100%
70 —0.03321 £ j8.893056 | —0.03401 £ ;8.894025 0.05062 + 58.815531 0.09154 + 510.348788 100%
90 —0.03799 £ j8.919839 | —0.03880 =+ ;8.921193 0.04918 + 58.813519 0.23454 + 510.233620 98%
110 —0.03585 £ j8.945412 | —0.03658 + j8.947123 0.04747 + 58.811719 0.35650 + 510.118319 19%
130 —0.01671 £ j8.986618 | —0.01703 £ ;j8.988843 0.05307 + 58.821853 0.45966 + j10.004321 3%
150 0.00442 £ 79.006973 0.00447 £ 79.009390 0.05300 + 58.821488 0.54616 + 79.892624 0%

namely, p = 20%. The results show that, for this system, the
small-signal stability analysis becomes inaccurate for delays
with relatively large period T, i.e., T' > 90 ms. In this case,
the time-domain simulation is thus the most reliable tool to
evaluate the system stability for large values of 7.

B. All-island Irish Power System with multiple delays

This subsection aims at investigating the computational
burden of the numerical techniques proposed in the paper.
With this aim, we consider a real-world model of the all-island
Irish grid. The grid consists of 1,479 buses, 1,851 transmission
lines, 245 loads, 22 conventional synchronous power plants
with AVRs and turbine governors, 6 PSSs and 176 wind power
plants. The topology and the steady-state operation data of
the grid are provided by the Irish TSO, EirGrid. Dynamics
data, however, are defined based on the technology of the
generators and do not represent any actual operating condition.
The topology of the Irish power system is shown in Figure 4.

We assume that the 6 PSSs are WAMS-based, each of them
introduces a delay with same parameters as that shown in Fig.
3. The contingency consists in the outage of the synchronous
power plant connected to bus 1378. The time step of TDI is
0.001 s. We consider two scenarios: the system with realistic
low PSS gains and with high PSS gains. Both scenarios are
stable if WAMS no delays are considered.

1) Scenario I: Low PSS Gains: In this scenario, the com-
putational time required to calculate the initial guess of the
eigenvalues is 115.8 s. Then completing the Newton correction
applied to the 43 eigenvalues with R(A) > —0.3 requires
1,309 s.
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Fig. 4: All-island Irish power system map (available at:

www.eirgridgroup.com).

After the completion of the Newton iteration, the
20 rightmost eigenvalues have real parts in the range
[—0.074038, —0.221988]. As these dominant eigenvalues have
negative real parts, the post-contingency grid is expected to



be stable. This conclusion is confirmed with 100 time-domain
simulations, all of which are stable after the occurrence of the
contingency. The computational time of each 50 s time-domain
simulation ranges from 120 to 124 s. For illustration, Figure
5 shows the dynamic variation of the frequency of the Center
of Inertia (COI1) for one of the 100 time domain simulations.
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Fig. 5: Transient behaviour of the frequency of the COI for the all-
island Irish grid with low PSS gains following a power plant outage.

According to simulation results, the all-island Irish system
with low PSS gains is always stable and WAMS delays have
no relevant impact on system stability.

2) Scenario II: High PSS Gains: In order to further in-
vestigate the impacts of different delay models, we increase
the gains of the PSSs. This increases the damping of elec-
tromechanical oscillations but also increases the sensitivity to
measurement delays. In this scenario, the computational time
required to calculate the initial guess of the eigenvalues is
251.5 s. Then, completing the Newton correction applied to
the 42 eigenvalues with $(\) > —0.3 requires 1,406 s. The
100 time domain simulations for Irish system with inclusion
of WAMS delay requires about 190 s

The five rightmost eigenvalues/eigenvalue pairs of the all-
island Irish system for three different case: without measure-
ment delay, with constant delay 7 and with realistic-modelling
delay 7(t) of PSS signal are shown in Table III. Figure 6
shows a typical TDI results. According to the results of the
small-signal stability analysis shown in Table III, after the
contingency, the system remains stable without any measure-
ment delay, while it becomes unstable if either constant or
time-varying delay is introduced. This conclusion is verified
through TDI, which shows that the constant delays included
in the input signals of the PSSs give birth to a small limit-
cycle while the time-varying measurement delays lead to larger
frequency oscillations.

VI. CONCLUSION

The paper proposes a detailed delay model that is able to
emulate the physical behaviour of WAMS. This model allows
tracking the sensitivity of the WAMS communication issues on
the power system stability, e.g., the data packet dropout and
data delivery period. Based on the proposed model, the paper
defines both time-domain and frequency-domain techniques to
evaluate the impact of WAMS delays on power system stability.
These techniques are shown to be efficient and accurate for
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Fig. 6: Transient behavior of the frequency of the coI for the all-
island Irish grid with high PSS gains following a power plant outage.

the fast-varying WAMS delays. However, both the theoretical
discussion and the case study identify the limitations of
the frequency-domain analysis when dealing with slow time-
varying WAMS delays. The time-domain analysis is thus the
only reliable tool for these cases. Future work will focus on
improving the accuracy of the frequency-domain analysis for
slow time-varying delays.

APPENDIX
A. Proof of Theorem 1

Proof: Let L{x(t)} = X (s) be the Laplace transform of
x(t). Then, if the delays 7;(t), i = 1,...,4max change fast
enough, s.t. we can assume a specific delay 7;(t) = &, by
applying the Laplace transform into (2), we have

L{a(t)} = AoL{z(t)} + Z Ail{x(t - &)} .

By using L{x(t)} = sX (s) — o, where x( = c is the initial
condition of (2) that, if not given, is equal to a constant vector
c; and L{z(t — &)} = e ¢ X (s) for t > ¢ and O for t < &;
the above expression takes the form

sX(s) —xg=AoX(s)+ ZAie_ng(s) ,
i=1

or, equivalently,
(sX(s) — Ap — ZAie_sg)X(s) =cl, (26)
i=1
and consequently

AX(s)— Ag— > Aje 27)
i=1

is the characteristic polynomial. If we apply the Laplace
transform into (5), we get

Tmax

L{E(t) = Aoﬁ{az(t)}JrZ Aiﬁ{ /

min

wi(§)e(t-€)ds | |
whereby using into the above expression

of [ w9l - 9ac) = Lw}X (o)

min



TABLE III: Rightmost eigenvalues of the all-island Irish system with high PSS gains and different delay models.

Delay model | 1 2 3 4 5
No delay —0.0958 —0.1229 | —0.1315 + 50.3865 —0.1403 —0.1408
T 0.5403 £ 79.3230 —0.0958 —0.1229 —0.1315 £ j0.3865 | —0.1403
7(t) 1.5949 + 511.1040 | —0.0958 —0.1229 —0.1408 —0.1423
and the definition of the Laplace transform of the PDF w;(t) REFERENCES

of the specific delay &:
L{w(t)} = Ble™*¢] = e,

we obtain (26), and consequently (27). |

B. Gamma Distributed Delay

This appendix provides the steps that lead to the deduction
of (25) for the Gamma distributed delay. As a starting point,
recall that well-known property that states that any PDF f(€)
must satisfy the condition [34]:

/0 T He)de=1. (28)

For the PDF of a Gamma distributed function f,(§), we

have:
00 ¢b—1,—¢/a
[ St
0

/0 fy(€ a.b)de

abT(b)
_ 1 b-1 1 —1¢b—1 _—&/ajoo
- abr(b)( £ a) 5 € |0 .
(29)
Assume:
b—1 1
Ula,b) = (——= — =) teb—te=¢/a)0 (30)
13 a
According to (28) and (29), we can expect:
Ula,b) = a°T'(b) . (31)
Comparing (25) with (30), the hs()\) can be rewritten as:
ho(A) = ———U(ay, b) (32)
s - de(b) ty )
where a; = ﬁ . Thus, the right-hand side of (25) is:
a:I'(b) ~\\—b
= = 1 .
ha(N) = Zirgpy = L+ (33)
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