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Abstract—This letter studies the impact of the frequency spectrum of
stochastic processes on the transient behavior of dynamic power systems.
The Wiener Chaos Random Fourier Series technique is utilized to first
decompose the noise into a series of harmonics with same statistical
properties as the original process and then analyze the influence of specific
frequency regions of the spectrum of the stochastic processes on the
system transient response and stability. Simulation results show that the
coupling between noise and system dynamics does not necessarily occur in
the range of frequencies of the critical modes. These results are illustrated
and duly interpreted through the Kundur’s two-area system.

Index Terms—Stability analysis, stochastic differential equations
(SDEs), Ornstein-Uhlenbeck’s process (OUP), Wiener Chaos Random
Fourier Series (WCRFS).

I. INTRODUCTION

In recent years, a variety works have focused on the impact of the
stochastic disturbances on the transient behavior of power systems
[1]. In [2] and [3], the dynamic response of the grid is studied by
adjusting the standard deviation or auto-correlation coefficient of the
stochastic process. These references show that the auto-correlation
amplifies the amplitude of the whole frequency spectrum of the
stochastic processes, eventually worsening the oscillations of the
critical modes of the system. However, which part of the harmonic
content of the noise causes system instability is not discussed. In
[4], forced oscillations caused by stochastic disturbances are injected
into the system through a frequency window centered in the system
critical mode. The approach in [4], known as power spectral density
(PSD), does not fully capture the statistical properties of the stochastic
processes and, hence, does not reproduce well the overall dynamic
response of system nor its instabilities. Moreover, The PSD does not
allow to properly capture the autocorrelation of the stochastic process
if a certain frequency window is removed. In [5], the probability of
system frequency deviation being in the security range is obtained by
calculating the mean and variance of frequency changes. However, the
technique proposed in [5] is not applicable when some simulations are
terminated midway due to a serious event, such as voltage collapse.
Also, in [4] and [5], the system models are linearized and, hence,
cannot capture saturations, grazing and other nonlinear phenomena.
In [6] and [7], the uncertainty propagation of the stochastic inputs is
quantified efficiently. However, disturbances are assumed to be small
and, as a result, the system is always stable. In [8], the Gaussian
and non-Gaussian stochastic excitations are modeled, but the auto-
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correlation and the instabilities that arise with harmonic resonances
are not studied.

This letter addresses the limitations of the approaches above and
discusses the dynamic coupling between specific regions of the
frequency spectrum of stochastic processes and system stability. With
this aim, the proposed method utilizes the Wiener Chaos Random
Fourier Series (WCRFS) to model stochastic processes. The proposed
formulation fully retains the nonlinearity of the system and allows
reproducing accurately the standard deviation, autocorrelation and
harmonic content of the original processes. Then, specific frequency
regions are removed from the WCRFS models and the impact of the
lack of these regions is studied through time domain simulations.

II. MODELING

Power systems subject to noise can be modeled as a set of
stochastic differential-algebraic equations (SDAEs) [1], as follows:

ẋ = f(x,y,κ) , (1)

0 = g(x,y,κ) , (2)

κ̇ = a(κ) + b(κ) ◦ ξ . (3)

Equations (1) and (2) model the conventional deterministic part
of the dynamic power system. f : Rl+m+n 7→Rl are the differential
equations; g : Rl+m+n 7→Rm are the algebraic equations; x ∈ Rl is
a vector of state variables; y ∈ Rm is a vector of algebraic variables.
In (3), κ ∈ Rn represents the vector of stochastic processes; ξ ∈ Rn

is a vector of n-dimensional Gaussian white noise that represents the
time derivative of the Wiener process; and ◦ represents the element-
by-element product of vectors. Stochastic processes are defined by
a drift, a : Rn 7→ Rn, and a diffusion term, b : Rn 7→ Rn.
Proper characterization of a and b allows reproducing the probability
distribution and autocorrelation of the stochastic processes [9].

1) Ornstein-Uhlenbeck’s Process: The Ornstein-Uhlenbeck’s pro-
cess (OUP), also known as the stationary mean-reverting process, is
used in this letter to model the stochastic disturbance. The OUP has
been widely implemented in the literature to model the stochastic
behaviors caused by physical processes, such as stochastic loads and
short-term wind speed fluctuations [9], [10]. The SDE defining the
OUP has the following form:

κ̇ = −α (κ− µ) + β ξ , (4)

where α is the autocorrelation coefficient; β is the coefficient of the
diffusion term; µ is the mean value; and ξ is the white noise. If κ
is a real-valued process following a Gaussian probability distribution
given by N (µ, σ2), where σ is the standard deviation, then β =
σ
√
2α.

2) Wiener Chaos Random Fourier Series: Wiener Chaos Expan-
sion (WCE) consists of two parts: Wiener Chaos Random Fourier
Series (WCRFS) and Polynomial Chaos Expansion (PCE) [11].
WCRFS transforms the SDE to differential equations with a set
of random variables. PCE is utilized to obtain the probabilistic
features of the system response efficiently. In this letter we use
only the WCRFS as a tool to approximate the stochastic process
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with a given number of harmonics. Different from the deterministic
Fourier transformation and Hilbert Huang transformation, WCRFS is
an extension of the traditional Fourier transformation in the field of
stochastic processes theory. According to the WCRFS theorem, the
Gaussian random variable ξi can be expressed as:

ξi =

∫ t

0

mi(s) dW (s) , (5)

where W (s) is a Wiener process {W (s), 0 ≤ s ≤ t}; mi(s), i =
0, 1, 2, ..., are a set of complete orthonormal basis in the Hilbert space
L2([0, t]), as follows:

mi(s) =


1√
t
, i = 0 ,√
2
t
cos( iπs

t
) , i ≥ 1 .

(6)

Note that the orthonormal basis is not unique. It can also be chosen
based on the eigenvalues and eigenfunctions of stochastic process
known as Karhunen-Loeve Expansion [12] or based on Haar wavelets
known as Levy-Ciesielski construction of the Wiener process [13].

Then, W (s) can be orthogonally decomposed as a linear combi-
nation of random variables ξi that follow independent and identically
distributed standard Gaussian distribution:

W (s) =

∫ t

0

χ[0,s](τ) dW (τ) =

∞∑
i=0

ξi

∫ s

0

mi(τ) dτ , (7)

where χ[0,s](τ) =
∑∞

i=0 mi(τ)
∫ s

0
mi(τ) dτ is the characteristic

function of interval [0, s]. For a given truncated order K, the
derivative form of (7) can be approximated with:

dW (s) ≈
K∑
i=0

ξimi(s) ds . (8)

The SDE model (3) can be transformed into an ordinary differential
equation with random variables ξi using (8). Since ξi is fixed at
the beginning of simulations, the Wiener process is projected onto
L2[0, t] for a fixed time t > 0. Moreover, the relationship between the
stochastic process and the corresponding frequency spectrum is built
by the deterministic coefficients (6). This allows easily isolating the
frequency band that triggers system instability by setting to zero the
coefficients of the harmonics in a given range of the expansion. The
first term of (8), i.e., the term i = 0, represents the direct component
of the Wiener processes. The terms for i ≥ 1 are called alternating
components. In this letter, the truncation order K is chosen based
on the following requirements: (i) the approximated moments using
WCRFS are close to the moments of the original OUP; and (ii)
the alternating components of WCRFS contain all system resonant
frequencies. Condition (i) guarantees that WCRFS has statistical
properties similar to the original stochastic process. Condition (ii)
allows capturing the instabilities due to forced oscillations induced
by stochastic processes.

III. CASE STUDY

The well-known Kundur’s two-area system is considered in this
section. Two cases where stochastic loads are connected to Areas
1 and 2 respectively are studied. The first case serves to illustrate
the features of the proposed method by comparing the accuracy
with the Monte Carlo method (MC) which is set as benchmark.
The second case demonstrates the performance of WCRFS when
instability occurs in the system. Moreover, for Case 2, we show how
to use the frequency decomposition of the WCRFS model to identify
the parts of the noise spectrum that couple dynamically with the
critical modes of the system.

Wiener processes are integrated with the Euler-Maruyama method
with step size h = 0.01 s, while the drift term and deterministic DAEs

are integrated using the trapezoidal method with ∆t = 0.01 s. The
total simulation time is set to 200 s. 1000 time-domain simulations
are carried out in both WCRFS and MC methods. All simulations
are carried out using the power system analysis software tool Dome
[14]. The types of synchronous machines and AVRs are the same as
those described in [15].

A. Case 1: Stochastic Load in Area 1

A stochastic load is connected to bus 7 of the two-area system. The
means of active and reactive power consumption of the stochastic
load are set equal to the initial value and standard deviations are
σ = 0.4% of the means. To verify the correctness and compare the
approximation accuracy of WCRFS, two scenarios, namely α = 0.1
Hz and 1 Hz, are discussed. For each scenario, the order of WCRFS
is set to 5, 50 and 500 respectively. In all scenarios, the mean values
and autocorrelations of all WCRFS models are highly accurate and
are thus not discussed below.

By setting the results of MC as the benchmark, the Average
Absolute Error (AAE) e is used as performance comparison index:

e =

∑N
i=1

∣∣uMC
i − uWCRFS

i

∣∣
N

(9)

where uMC
i and uWCRFS

i are statistical moments (e.g., mean or
standard deviation) of the variables obtained with MC and WCRFS
at the i-th time step, respectively; and N is the total number of steps.

For the discussion presented in this section we consider the active
and reactive load consumptions at bus 7 (PL7, QL7), that is, the quan-
tities the Wiener stochastic processes of which are directly expanded
through the WCRFS. The AAE comparison of the stochastic load
for different autocorrelations and orders of WCRFS is summarized
in Table I. In this table, mean and standard deviation are indicated
with M. and S.D, respectively. The mean of both PL7 and QL7

is accurate, as expected. The WCRFS, in fact, only modifies the
diffusion term of the Wiener process while retaining the drift term,
which includes the information on the mean value. Since the mean is
not altered by WCRFS, the AAE of the mean can be regarded as an
error caused by the uncertainty of the stochastic process itself. For an
expansion order equal to 500, the AAE of the standard deviation is
of the same magnitude as that of the mean, thus it can be considered
that the process using WCRFS captures all the relevant features of
the original process at this time. Also, the AAE of standard deviation
decreases as the order of the WCRFS increases. This is a consequence
of the convergence of the WCRFS. Note also that, as α increases, the
accuracy of the standard deviation decreases. This happens because
a bigger α leads to bigger amplitudes of the frequency spectrum [2],
and, consequently, high-frequency components, which are truncated
in low-order WCRFSs, have a non-negligible impact on the stochastic
process.

Since the results for state variables and algebraic variables are
similar, only the rotor speed of synchronous generator G2 (ω2) and
the voltage amplitude of bus 3 (v3) are selected as representatives
of state variables and algebraic variables respectively. The evolution
of the standard deviation using WCRFS and MC when α = 0.1 Hz
and 1 Hz are shown in Figs. 1 and 2, respectively. The error between
WCRFS and MC decreases as the order of the WCRFS increases,
as expected. Moreover, the higher the WCRFS order, the more small
fluctuations of ω2 and v3 are correctly captured during the simulation.
In addition, an increase in α leads to a decrease in the accuracy as
that of stochastic inputs. Finally, different variables have different
sensitivities to the WCRFS order. For example, the accuracy of ω2

using 50-th order WCRFS is relatively high in the upper panel of
Fig. 2, while that of v3 is lower in the lower panel of Fig. 2. Note
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that each realization per se of MC and WCRFS might look different,
see, e.g., Fig. 1 and Fig. 2. However, what really matters are the
statistical properties, and these are substantially the same for the MC
and the WCRFS with 500 harmonics.
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Fig. 1. Comparison of the standard deviation of the MC and WCRFS of
orders from 5 to 500 for α = 0.1 Hz. Upper panel: rotor speed of machine
2; Lower panel: voltage magnitude at bus 3.
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Fig. 2. Comparison of the standard deviation of the MC and WCRFS of
orders from 5 to 500 for α = 1 Hz. Upper panel: rotor speed of machine 2;
Lower panel: voltage magnitude at bus 3.

TABLE I
AAE OF THE STOCHASTIC LOAD IN DIFFERENT AUTOCORRELATION AND

ORDERS OF WCRFS

Method α K
ePL7

[×10−3] eQL7
[×10−4]

M. S.D. M. S.D.
WCRFS 0.1 5 1.63 11.89 2.18 12.69
WCRFS 0.1 50 2.06 1.57 1.78 1.93
WCRFS 0.1 500 1.88 1.27 2.12 1.28
WCRFS 1 5 1.47 28.95 1.43 30.18
WCRFS 1 50 1.60 13.18 1.61 13.74
WCRFS 1 500 1.63 1.70 1.60 1.89

TABLE II
COMPARISON BETWEEN MC AND WCRFS MODELS OF DIFFERENT

ORDERS

Method Order Freq. upper # of unstable
bound [Hz] trajectories

MC – – 290
WCRFS 140 0.350 3
WCRFS 150 0.375 9
WCRFS 160 0.400 56
WCRFS 170 0.425 188
WCRFS 180 0.450 243
WCRFS 190 0.475 263
WCRFS 200 0.500 264
WCRFS 210 0.525 268
WCRFS 500 1.250 286

B. Case 2: Stochastic Load in Area 2

In this case, the noise introduced by the load triggers unstable
oscillations. We use this case to illustrate the ability of the proposed
WCRFS model of the processes to identify which frequencies couple
with the critical modes of the system. The mean, standard deviation,
and autocorrelation of the stochastic load in bus 9 are set to the initial
value, σ = 0.6% of the mean and α = 0.5 Hz, respectively.

Table II shows the number of unstable trajectories using MC and
WCRFS models of different orders. The corresponding frequency
upper bound of a given order of WCRFS is calculated using (6). The
dominant electro-mechanical modes of the system and corresponding
frequency, damping and most participating area are shown in Table
III. We consider WCRFS up to the 500-th order, which is the order for
which not only the WCRFS model and the MC lead to similar number
of instabilities but covers the frequency of the dominant mode.

Table II also shows that the unstable trajectories increase signif-
icantly between 0.375 and 0.475 Hz. Remarkably, this range of
frequencies does not include the frequency of the dominant mode
in Table III. It is relevant to note that in all realizations for which
the system collapses, the instability is due to an increase of the
load consumption that leads to the saturation of the AVRs of the
power plants. The modification of the eigenvalue corresponding to
the critical electro-mechanical modes (i.e., modes 1 to 3 in Table
III) for various saturations of the AVRs are calculated and analyzed.
Results indicate that, for different AVRs saturation scenarios, the
frequency of the least damped modes does not change significantly
and they are all stable. The instability, thus, is not related to the
critical electro-mechanical modes, but rather to mode 4, which is
linked to the dynamics of the AVRs of all machines but mostly to
those of machines 3 and 4 in area 2. We also note that when the AVRs
of machine 3 and 4 of those of machines 1 and 2 saturate, then the
system become unstable (one real positive eigenvalue in steady-state)
which drives the system to voltage collapse.

The modular structure of the WCRFS model allows determining
the specific window of harmonics of the noise that causes the
instability. We proceed as follows. First we set the order of WCRFS



4

TABLE III
LEAST DAMPED MODES AND CORRESPONDING FREQUENCY, DAMPING

AND MOST PARTICIPATING AREA

Mode Eigenvalue f [Hz] Damping [%] Area
1 −0.322± j7.224 1.150 4.45 2
2 −0.320± j7.077 1.126 4.52 1
3 −0.204± j3.051 0.486 6.65 2
4 −0.691± j1.526 0.243 41.26 2

TABLE IV
NUMBER OF UNSTABLE TRAJECTORIES AFTER REMOVING WCRFS

FREQUENCY WINDOWS

Removed Removed freq. # of unstable
harmonics window [Hz] trajectories
140-150 0.350-0.375 156
150-160 0.375-0.400 120
160-170 0.400-0.425 89
170-180 0.425-0.450 180
180-190 0.450-0.475 230
190-200 0.475-0.500 233

to 500 to reproduce precisely the dynamic effects of the original OUP
process on the system. Then, we systematically remove a window of
frequencies from the WCRFS model. The removed window does not
modify the overall statistical properties of the process, nevertheless
can significantly change the effect of such a noise on the system
dynamic response.

Table IV shows that the most critical range of frequencies that
affects the stability of the system is between 0.4 and 0.425 Hz. This
range is roughly a multiple of the frequency of mode 4 when an AVR
saturates (see Table V). As the nonlinearity of the system is retained,
the frequency relationship is not exactly the same or multiple. The
sequence of event is thus as follows: for some realizations, the load
power consumption increases above a certain threshold; this triggers
the saturation of one of the AVRs of the power plants. Depending
on the frequencies included in the WCRFS model, the dynamics
of the remaining AVRs can be less damped until, eventually an
additional AVR saturates thus leading the system to the collapse. On
the other hand, removing the range of frequencies between 0.475 and
0.5 Hz, that is, the frequencies around that critical inter-area modes
of the system, does not significantly impact the number of unstable
simulations which means the generalized forced oscillation [4] is not
the main cause of the system instability.

Note that retaining nonlinearity is an advantage of the proposed
method with respect to existing techniques which are linear or based
on linearized methods, e.g., [4], [5]. Moreover, as the proposed
method analyzes the system stability through numerical simulation,
it can be utilized for any unstable phenomenon triggered by noise,
such as AVR saturation in our second case study or generalized forced
oscillation [4]. The generation of the WCRFS of Wiener processes
is a relatively inexpensive technique and, if needed, it can be easily
parallelized. In this specific study, the number of buses and modes of
the system does not impact on the robustness or on the conclusions.
The proposed method is applicable to any stochastic process that is
constructed starting from a Wiener process, thus including processes
with non-Gaussian distributions (e.g. Weibull, Gamma, etc.) and non-
exponential autocorrelation.

IV. CONCLUSIONS

The letter proposes the utilization of WCRFS theory to model
stochastic processes. This model can be made perfectly equivalent
to Wiener processes in terms of statistical properties, provided that a
sufficient number of harmonics is considered. We also show however,

TABLE V
MODIFICATION OF THE EIGENVALUE CORRESPONDING TO MODE 4 FOR

VARIOUS SATURATIONS OF THE AVRS

Eigenvalue f [Hz] Damping [%] AVRs
−0.691± j1.526 0.243 41.26 All
−0.496± j1.241 0.213 37.13 2, 3, 4
−0.436± j1.097 0.188 36.92 1, 3, 4
−0.503± j1.193 0.190 38.83 1, 2, 4
−0.440± j1.033 0.164 39.19 1, 2, 3

that not all harmonics are equally relevant. The WCRFS model allows
identifying which harmonics are most critical for the system. These
are not trivially the ones associated with the least damped mode
of the system. Future work will focus on exploiting the diagnostic
features of the WCRFS model and designing corrective actions e.g.,
the implementation of band-stop filters or parameter adjustment, to
improve the system stability. Another relevant future work direction
is the study of data-based Gaussian and non-Gaussian stochastic
processes. Finally, we will also further investigate on the convergence
analysis and simulation verification of different expansion forms of
the Wiener process.
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