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bstract

This paper illustrates the effects of a static var compensator (SVC) device on the stability of a simple “single-machine dynamic-load” system.

irstly, the stability of the test system without SVC is investigated. The analysis is based on bifurcation diagrams, small signal stability analysis and

ime domain simulations. Without the SVC device, the system presents a saddle-node bifurcation. Then, static and dynamic analyses are repeated
or the system with a SVC device located at the load bus. The SVC is able to improve system loadability but leads to a Hopf bifurcation. Finally, a
ulti-parameter bifurcation analysis is presented to study the effect of system parameters on the Hopf bifurcation.
2006 Elsevier B.V. All rights reserved.
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. Introduction

In recent years, voltage stability and voltage collapse phe-
omena have become more and more important issues in power
ystem analysis and control [1,2]. It is well known that a proper
odelling of power system devices, such as generators, loads,

nd regulators is fundamental to properly understand and repro-
uce voltage instability [3,4]. Furthermore, flexible AC trans-
ission systems (FACTS) have been recognized as efficient

olutions to improve power system stability [5,6]. This paper
ocuses on static var compensator (SVC) devices and their
ffects on voltage stability of power systems.

The bifurcation theory provides a set of mathematical tech-
iques for nonlinear differential algebraic equations (DAE).
hus it is adequate for studying power electric systems that

re typically modeled as a set of nonlinear DAE. In particu-
ar, the bifurcation theory is widely recognized as an effective
ool to study voltage stability [7–10]. Relevant results on volt-

Abbreviations: DAE, differential algebraic equations; FACTS, flexible AC
ransmission system; HB, Hopf bifurcation; ODE, ordinary differential equa-
ions; s.e.p., stable equilibrium point; SMDL, single-machine dynamic-load;
NB, saddle-node bifurcation; SVC, static var compensator; u.e.p., unstable
quilibrium point
∗ Corresponding author. Tel.: +86 1381 4005169.
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ge stability are as follows: (i) saddle-node bifurcations (SNB)
ead to a monotonic voltage collapse [10]; (ii) Hopf bifurca-
ions (HB) lead to undamped oscillations of bus voltages and
ikely to voltage collapse [8]; (iii) limited-induced bifurcations,
eriod-doubled bifurcations [9], blue-sky bifurcations [7] and
haos [8,11] are also routes to voltage instability phenomena.
his paper focuses only on SNBs and HBs as these are the most
ommon bifurcations that are induced by SVC devices.

In [12] and [13] it was introduced the concept of “bifurcation
ontrol”, which in turn means that if one is able to “control”
ifurcations, he is also able to avoid voltage instability and/or
oltage collapse. The concept of bifurcation control is used in
his paper for studying the effects of system parameters on the
addle-node and Hopf bifurcations. In particular, this paper dis-
usses the effects of a SVC controller on HBs. Observe that, due
o their flexibility and fast response, FACTS are currently used
n real-world applications for bifurcation control [14].

This paper also shows that SVC and, more in general, FACTS
ontrollers can lead to voltage instability phenomena. This has
o be expected as control loops of FACTS regulators change the
tructure of the DAE of the system. Hence, the need of properly
uning the parameters of FACTS controllers in order to avoid
he occurrence of unexpected bifurcations.
In this paper, a didactic single-machine dynamic-load sys-
em [15,16] is used to illustrate the following issues: (i) Power
ystems generally have a maximum loading condition associ-
ted with a saddle-node bifurcation. (ii) The use of FACTS, in

mailto:WGu@seu.edu.cn
mailto:Federico.Milano@uclm.es
dx.doi.org/10.1016/j.epsr.2006.03.001
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Fig. 1 depicts a simple model of single-machine dynamic-
load (SMDL) system. This didactic system was originally pre-
sented in [16,15] for voltage stability analysis. The following
W. Gu et al. / Electric Power Sy

articular of a SVC, can improve the loadability of the system,
hus avoiding the occurrence of the saddle-node bifurcation and
he voltage collapse. (iii) SVC control parameters must be prop-
rly tuned to avoid the occurrence of Hopf bifurcations. This
nalysis leads to multi-parameter bifurcation diagrams similar
o what was proposed in [17].

The paper is organized as follows. Section 2 provides out-
ines of voltage stability and bifurcation analysis. In particular,
addle-node and Hopf bifurcations are briefly described. Section
illustrates the single-machine dynamic-load example used in

his paper. Static and dynamic simulations are provided in this
ection to illustrate the saddle-node bifurcation. Section 4 dis-
usses the use of a SVC controller as remedial action to avoid
he saddle-node bifurcation. Static and dynamic simulations are
lso provided in this section to illustrate the effects of the SVC
n the voltage stability and the birth of an unexpected Hopf
ifurcation. Section 5 discusses the effects of a variety of sys-
em parameters on the Hopf bifurcation. Finally, in Section 6,
onclusions are duly drawn.

. Voltage stability outlines

Power electric systems can be represented as a set of dynamic
lgebraic equations (DAE) [18]:

ẋ = f (x, y, p)

0 = g(x, y, p),
(1)

here (f : R
n × R

m × R
k → R

n) is the vector of differential
quations; x ∈ R

n is the vector of state variables associated
ith generators, loads and system controllers; (g : R

n × R
m ×

k → R
m) is the vector of algebraic equations; y ∈ R

m is the
ector of algebraic variables; and p ∈ R

k is the vector of param-
ters. It is assumed that algebraic variables can vary instanta-
eously, i.e., their transients are assumed to be “infinitely” fast.

Eq. (1) can be linearized at an equilibrium point (x0,y0,p0),
s follows:

�ẋ

0

]
=

[
J1J2

J3J4

] [
�x

�y

]
= [J]

[
�x

�y

]
(2)

here J is the full system Jacobian matrix, and J1 = ∂f/∂x|0,
2 = ∂f/∂y|0, J3 = ∂g/∂x|0 and J4 = ∂g/∂y|0 are the Jacobian matri-
es of the differential and algebraic equations with respect to the
tate and algebraic variables, respectively. For the sake of com-
leteness, the dimensions of all Jacobian matrices are given in
he Appendix. If it is assumed that J4 is nonsingular, the vector
f algebraic variables �y can be eliminated from (2), as follows:

ẋ = (J1 − J2J
−1
4 J3)�x = A�x (3)

hus, the DAE can be implicitly reduced to a set of ordinary
ifferential equations (ODE). Observe that if J4 is singular, the
odel of the system have to be revised as the dynamics of some
lgebraic equations cannot be neglected [10]. Thus, it is always
ossible to formulate a set of DAE for which J4 is not singular.

In order to give a rigorous definition of the bifurcations dis-
ussed in this paper, let us assume that we can vary a scalar F
Research 77 (2007) 234–240 235

arameter λ(λ ∈ R), being all other parameters constant. Then,
et us define the vector of functions F as follows:

˙ = F (x, λ) = f (x, y(x, λ), λ) (4)

.e., F is the set of differential equations where the algebraic
ariables y have been substituted for their explicit function of x
nd �. Thus, one has:

= ∂F/∂x|0 (5)

bserve that, from the practical point of view, it is not necessary
o know explicitly the function y(x, λ) since the state matrix A
an be computed from (3).

In this paper, bifurcation points are identified through the
igenvalue loci of the state matrix A. These bifurcations are the
addle-node bifurcation and the Hopf bifurcation. The defini-
ions of these bifurcations are as follows.

Saddle-node bifurcation (SNB): a SNB point is an equilib-
ium point (x0, �0) at which the state matrix presents one zero
igenvalue. SNB are associated with a pair of equilibrium points,
ne stable (s.e.p.) and one unstable (u.e.p.) that coalesce and dis-
ppear. The following transversality conditions hold:

1) The state matrix A has a simple and unique eigenvalue with
right and left eigenvectors υ and ω such that Aυ = ATω = 0;

2) ωT∂F/∂�|0 = 0;
3) ωT[∂2F/∂x2]υ �= 0.

Hopf bifurcation (HB): a HB point is an equilibrium point
x0,λ0) at which the state matrix presents a complex conjugate
air of eigenvalues with zero real part. The following transver-
ality conditions hold:

1) The state matrix A has a simple pair of purely imaginary
eigenvalues μ(λ0) = ±jβ and no other eigenvalues with zero
real part;

2) d�{μ(λ)/dλ|0} �= 0.

The HB gives a birth to a zero-amplitude limit cycle with
nitial period T0 = 2�/β. If the limit cycle is stable the HB is
supercritical”; if the limit cycle is unstable the HB is “subcrit-
cal”.

. Single-machine dynamic-load system
ig. 1. One-line diagram of the single-machine dynamic-load (SMDL) system.
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bifurcation. The voltage collapse is caused by the load dynamic.
However, observe that, as a consequence of the voltage instabil-
ity, also the generator rotor angle presents an unstable trajectory.
36 W. Gu et al. / Electric Power Sy

et of DAE is used to model the system:

δ̇ = ω, ω̇ = 1

M
[Pm − PG(V, δ) − Dω],

V̇ = 1

τ
[QL(V, δ) − Qd] (6)

nd

G(V, δ) = EV

X
sin(δ), QL(V, δ) = V 2

X
+ EV

X
cos(δ) (7)

here δ is the generator rotor angle, ω the generator angu-
ar speed, M the generator inertia constant, Pm the mechanical
ower of prime mover, X the line reactance, E the generator volt-
ge, D the generator damping, τ the voltage time constant of the
ynamic-load, and V the bus voltage of the dynamic-load.

The load power demand is Pd + jQd. For the sake of simplicity
ut without loss of generality, the resistance of the transmission
ine is neglected, i.e. Pm = Pd. Furthermore, it is assumed that the
oad, in steady-state conditions, has a constant power factor, i.e.,

d = kPd, where k is a given constant. Thus (6) can be simplified
s follows:

δ̇ = ω, ω̇ = 1

M

[
Pd − EV

X
sin(δ) − Dω

]
,

V̇ = 1

τ

[
−kPd − V 2

X
+ EV

X
cos(δ)

]
(8)

bserve that algebraic Eq. (7) have been eliminated from (8),
hus leading to a set of ODE. Observe also that eliminating
xplicitly the algebraic variables is possible only in simple sys-
ems such as the one discussed in this paper. The state matrix of
8) is as follows:

(9)

he active power demand Pd of the dynamic-load is the parame-
er that can be varied, i.e. λ = Pd. All other system parameters are
s follows: M = 0.1 s, D = 0.1, X = 0.5 p.u., E = 1 p.u., k = 0.5, and
= 0.001 s. Small signal stability analysis, bifurcation diagrams
nd time domain simulations are used to study bifurcations and
tability as described in the following subsections.

.1. Small signal stability analysis

Fig. 2 depicts the changes of relevant eigenvalues of the
tate matrix A as the active power demand Pd of the dynamic-
oad increases. One eigenvalue crosses the imaginary axis for
d = 0.61805 p.u., thus leading to a saddle-node bifurcation. The
NB point is:
δ0, ω0, V0, Pd0) = (0.5533, 0, 0.5881, 0.61805).

bserve that, at the SNB point, the other two eigenvalues of the
ystem are negative, thus the other system dynamics are stable.
Fig. 2. SMDL system without SVC: Eigenvalue loci.

.2. Bifurcation diagram

The stability of the system can be studied by means of the
ell known bifurcation diagrams. These diagrams are built by

omputing the equilibrium points of the system as one parameter
aries, and then plotting any state variable as a function of that
arameter. Fig. 3 depicts the Pd–V curve for the SMDL system.
s expected the “nose” is the SNB point and the load active
ower demand at the SNB point is Pd = 0.61805 p.u.

.3. Time domain simulation

Fig. 4 depicts the time domain simulation for a step change
f Pd from 0.61 p.u. to 0.62 p.u. for t = 2 s. For t ≥ 4.751 s, the
ystem undergoes a voltage collapse induced by the saddle-node
Fig. 3. SMDL system without SVC: Bifurcation diagram (Pd–V curve).
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Fig. 4. SMDL system without SVC: Voltage collapse induced by a saddle-node
bifurcation.
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. Single-machine dynamic-load system with SVC

SVC devices are commonly used in power systems to control
us voltages and improve stability [5,14]. In this paper, an SVC
s used to control the voltage at the load bus of the SMDL system,
s illustrated in Fig. 5.

The total reactive power absorbed by the load and the SVC
s as follows:

T(V, δ) = −V 2

X
+ EV

X
cos(δ) + V 2BC (10)
he SVC controller is modeled as a first order pure integrator,
s depicted in Fig. 6.

Fig. 5. One-line diagram of the SMDL system with SVC.

c
i
r

r
c
t

Research 77 (2007) 234–240 237

The resulting differential equations of the SMDL system with
VC are as follows:

δ̇ = ω, ω̇ = 1

M

[
Pd − EV

X
sin(δ) − Dω

]
,

V̇ = 1

τ

[
−kPd + V 2

(
BC − 1

X

)
+ EV

X
cos(δ)

]
,

BC = 1

T
(Vref − V ) (11)

here BC is the equivalent susceptance of the SVC, T and Vref
re the SVC time constant and reference voltage, respectively.
n the following, unless otherwise specified, it is assumed that
= 0.01 s and Vref = 1.0 p.u. Observe that, also in this case, it is
ossible to deduce the set of ODE, i.e., the algebraic variables
an be explicitly expressed as a function of the state variables
nd the parameters.

The state matrix of (11) is as follows:

(12)

mall signal stability analysis, bifurcation diagrams and time
omain simulations are used to study bifurcations and stability
s described in the following subsections.

.1. Small signal stability analysis

Fig. 7 depicts relevant eigenvalues for the SMDL system with
VC. A complex conjugate pair of eigenvalues crosses the imag-

nary axis for Pd = 1.4143, thus leading to a Hopf bifurcation.
he HB point is:

δ0, ω0, V0, BC0, Pd0) = (0.7855, 0, 1, 1.2930, 1.4143).

.2. Bifurcation diagram

Also in this case, the parameter chosen for drawing the bifur-
ation diagram is the load demand Pd. Since the bus voltage
s regulated, V = Vref at any equilibrium point. Thus, it is not
elevant to plot the Pd–V curve. Fig. 8 depicts the Pd–δ curve.
The solid and the dashed lines represent s.e.p. and u.e.p.,
espectively. Observe that the Hopf bifurcation point does not
orrespond to the point of maximum loadability of the sys-
em. However, as the parameter Pd increases over Pd > 1.4143

Fig. 6. SVC control scheme.
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Fig. 7. SMDL system with SVC: eigenvalue loci.

he system does not present stable equilibrium points. At
d = 2.0001 p.u. a pair of complex eigenvalues with negative

eal part change to one positive and one negative real eigenval-
es. This is the maximum loading condition corresponding to
= π/2, as follows:

δ0, ω0, V0, BC0, Pd0) = (1.5708, 0, 1, 3, 2.0001).

bserve that this maximum loading condition is an u.e.p., thus
t is just a theoretical point as the system cannot reach it.

.3. Time domain simulation

Fig. 9 depicts the time domain simulation for a step change in
d from 1.41 to 1.42 p.u. for t = 2 s. For t > 2 s the system does not

resent a stable equilibrium point and shows undamped oscilla-
ions (likely an unstable limit cycle), as expected from the P–δ

urve of Section 4.2. For t = 2.57 s, the load voltage collapses.
ote that, in this case, the generator angle shows an unstable

Fig. 8. SMDL system with SVC: bifurcation diagram (Pd-δ curve).

r

5

t
a
r
c
o

c
d

r
P
d
r

5

o

ig. 9. SMDL system with SVC: voltage collapse induced by Hopf bifurcation.

rajectory only after the occurrence of the voltage collapse at the
oad bus.

. Multi-parameter bifurcation analysis

Sections 3 and 4 have considered a single scalar parameter,
amely the load active power demand Pd. In this section, a multi-
arameter bifurcation analysis method is carried out to study the
ffect of a variety of time constants, such as M, T and �, on the
alue of the load active power demand Pd for which the HB
ccurs.

Two scenarios are discussed: (i) the effects of the rotor inertia
and the load time constant τ on the HB of the SMDL system,

nd (ii) the effects of the SVC regulator time constant T and
he load time constant τ on the HB of the SMDL system. Final
emarks are given in subsection 5.3.

.1. Effects of M and � on the HB of the SMDL system

Fig. 10 illustrates the effects of different values of M and τ on
he load active power PdHB, which corresponds to the load level
t which HBs occur. It is assumed that both M and τ vary in the
ange of [0.1,1.9] s. Fig. 10 also depicts the loci of HB points
orresponding to constant Pd values, for different combinations
f M and τ values.

Results show that the system load PdHB increases as time
onstant τ increases. On the other hand, the system load PdHB
ecreases as the rotor inertia M increases.

Observe also that the variation of the rotor inertia M in the
ange of [0.3,1.9] has, in general, a small effect on the value of
dHB at which the HB point occurs. The maximum load power
emand for which a HB occurs is Pmax

dHB = 1.7 p.u., which cor-
esponds to M = 0.1 s and τ = 1.9 s.
.2. Effects ofT and � on the HB of the SMDL system

Fig. 11 illustrates the effects of different values of T and τ

n the load active power PdHB, which corresponds to the load
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d

parametrized with respect to generator inertia M
nd load time constant τ.

evel at which HBs occur. It is assumed that T and τ vary in
he range of [0.01,0.1] s and [0.1,1.9] s, respectively. Figure 11
lso depicts the loci of HB points corresponding to constant Pd
alues, for different combinations of T and τ values.

Results show that the system load PdHB increases as time con-
tants T decreases and τ increases. The maximum load power
emand for which a HB occurs is Pmax

dHB = 1.5 p.u., which cor-
esponds to T = 0.04 s and τ = 1.9 s. Furthermore, the sensitivity
f PdHB with respect of T is noteworthy.

.3. Remarks

Observe that, while generator inertias M cannot be regulated,
he load and SVC dynamic response can be varied by means of
dequate controls, thus leading to the possibility of an effective
ifurcation control.
It is interesting to observe also that the best stability condition
f the system, i.e., the highest load Pd for which a HB occurs, is
btained for the SVC time constant T = 0.04 s. Hence, the need
f properly tuning SVC control parameters.

ig. 11. Maximum load Pmax
d

parametrized with respect to SVC regulator time
onstant T and load time constant τ.
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As a final remark, note that the Hopf bifurcations is inherent
“robust”) in this system. As a matter of fact, the HB is induced
y SVC and load dynamics and cannot be eliminated by simply
djusting system parameters.

. Discussion of results and conclusions

This paper has presented a didactic case study on the effects
f a SVC controller on the stability of single-machine dynamic-
oad test system. The stability analysis is based on the well
nown bifurcation theory. The main results obtained in this paper
re summarized as follows:

1) The SMDL without SVC presents a SNB point that limits
the loadability of the system. If the load active power is
increased over the SNB point, the system experiments a
voltage collapse. If an SVC device is placed at the load bus,
the loadability of the system can be increased.

2) The use of the SVC device gives a birth to a new bifur-
cation, namely a Hopf bifurcation. This Hopf bifurcation
cannot be removed by simply adjusting system parameters.
However, SVC and load dynamics can be coordinated so
that the loadability of the system can be increased.

Due to the “robustness” of the Hopf bifurcation, the results
btained in this paper are valid in general and can be extended
o more complex systems.

Future work will concentrate on studying different FACTS
evices and their effects on the stability of the power systems
nd the synthesis of a general “bifurcation control” technique
or FACTS controllers.
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ppendix A. List of symbols

This Appendix provides the notation of all functions, vari-
bles and parameters used in this paper. For the sake of com-
leteness, abbreviations are also provided in this section.

unctions
differential equations (f : R

n × R
m × R

k → R
n)

differential equations (F : R
n × R

k → R
n)

algebraic equations (g : R
n × R

m × R
k → R

m)

tate variables
C susceptance of the SVC
load bus voltage
generic state variable vector (x ∈ R

n)
generator rotor angle
generator rotor speed
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A
P
Q
Q
y

P
D
E
k

M
p
P
P
P

P

T
V
X
�
τ

(

A
J
J
J
J
J
β

μ

υ

ω

N
k
m
n

R

[

[

[

[

[

[

[

[17] A.A.P. Lerm, C.A. Canizares, Multiparameter bifurcation analysis of the
South Brazilian power system, IEEE Trans. Power Syst. 18 (2) (2003)
40 W. Gu et al. / Electric Power Sy

lgebraic variables
G generator active power
d load reactive power demand
L load reactive power

generic algebraic variable vector (y ∈ R
m)

arameters
generator damping
generator regulated bus voltage
constant used for simulating a constant power factor
load (k = tanφ)
generator rotor inertia
generic parameter vector (p ∈ R

k)
d load active power demand
m generator mechanical power
dHB load active power demand corresponding to the HB

point
max
d load active power demand corresponding to the SNB

point
SVC controller time constant

ref voltage reference of the SVC controller
transmission line reactance.
scalar parameter used for bifurcation analysis
load time constant

Eigenvalues, eigenvectors and Jacobian matrices
All Jacobian matrices are computed at the equilibrium point

x0,y0,p0). Dimensions are in parenthesis.

state matrix (n × n)
full system Jacobian matrix (n + m × n + m)

1 Jacobian matrix ∂f/∂x, (n × n)
2 Jacobian matrix ∂f/∂y, (n × m)
3 Jacobian matrix ∂g/∂x, (m × n)
4 Jacobian matrix ∂g/∂y, (m × m)

imaginary part of the eigenvalue complex pair at the
HB point
generic eigenvalue of the state matrix A
right eigenvector of the state matrix A
left eigenvector of the state matrix A

umbers

number of parameters p
number of algebraic variables y
number of state variables x

[
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