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Abstract—The paper describes a method to study the transient
behavior of power systems with correlated wind speeds. With this
aim, a generalised method to extract correlation from real-world
measurement data is proposed. This method allows accommodat-
ing data with any sampling rate and any probability distribution.
The case study discusses the impact of correlated wind speeds
on power system dynamics by utilising the well-known two-
area system modified to include a distribution network with
wind power generation. The correlation of wind speeds is set
up using real-world data. Simulation results show that a high
level of correlation among the wind speeds worsens the dynamic
performance of the system.

Index Terms—Wind generation, stochastic differential alge-
braic equations (SDAEs), correlation, aggregated model, power
system dynamics.

I. INTRODUCTION

A. Motivation

Geographically close wind sites show similar variations in
the wind speed [1]. Consequently, the power production of the
wind power plants (WPPs) also shows a degree of correlation
that depends on their location and proximity to each other.
This correlation must be carefully considered when modelling
aggregated WPPs [2], [3]. It is well known, for example, that
inaccurate estimations of the power production of aggregated
WPPs highly affect the results of the unit-commitment and,
in turn, the market clearing price [4]. On the other hand, the
modelling through stochastic differential equations (SDEs) of
correlated wind speeds and the behavior of aggregated WPPs
with correlated wind speeds have not been fully investigated so
far. This paper fills this gap and provides a general approach
to evaluate the correlation between wind speeds from wind
speed measurement data. The effect of wind correlation on the
aggregation of WPPs is also considered. This paper proposes
a method to study power system short-term dynamics with
correlated noise on wind speeds.

B. Literature Review

Due to the granularity of wind sites, wind power plants are
typically connected to the grid in a tree-like topology as shown
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Fig. 1. Typical tree of a power grid with inclusion of wind power generation.

in Fig. 1. This hierarchical structure leads to several levels
at which wind production can be aggregated. It is crucial,
however, that independently from the level at which WPPs
are aggregated, the statistical properties of the power injected
into the grid by the aggregated WPP are similar to the ones
obtained by simulating the detailed network.

In recent years, the modelling of correlated processes such
as wind speeds and load power consumption has become an
important field of research [1]–[3], [5], [6]. Research has also
been carried out on the modelling of aggregated WPPs [7]–
[14]. These works propose various techniques to model an
aggregated WPP that reproduces the behavior of the detailed
network, i.e., generates similar amount of active power at a
given wind speed as in the case of the detailed network.

Some of the works cited above, e.g., [13] and [14], propose a
way to calculate an equivalent wind speed that can be applied
to the aggregated WPP to obtain the behavior of the active
power similar to that generated by the WPPs of the original
network. However, these works model power system dynamics
through deterministic differential-algebraic equations (DAEs).
The drawback of this approach is that the randomness in
wind speeds is included into the set of DAEs only in the
initialization step. Then the wind speed is assumed to remain
constant during the simulation. This paper, on the other hand,
focuses on modelling stochastic wind speed variations in the
time scale of angle and voltage transient stability analysis.

These kinds of variations can be conveniently formulated
in terms of SDEs. SDEs allow a precise modelling of the
statistical behavior of the wind speed process in any time scale
and with any PDF. Among the works that model the wind
speed through SDEs, we cite [15]–[19]. These models can
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be then swiftly included in the set of DAEs that accurately
model the power system dynamic response [20]–[22]. These
works, however, do not model the correlation among stochastic
processes and, hence, cannot study the impact of correlated
wind speeds on the system dynamics.

How to model correlation on stochastic processes is in-
troduced in [23] by modelling correlation on the active and
reactive power consumption of loads by means of correlated
SDEs. The model proposed in [23] can only model correlation
between two stochastic processes. This limitation is removed
in [24], which presents a systematic approach to set up
correlated stochastic differential-algebraic equations (SDAEs)
of arbitrary dimensions.

C. Contributions

Taking as starting point the approach described in [24] to
set up SDEs with correlated processes, this work provides the
following novel contributions.

• A general method to set up correlated wind speeds
for arbitrary time scale and arbitrary PDF that can be
incorporated in power system modelled as SDAEs and
utilised to study their transient behavior.

• A SDE-based technique to properly set up an aggregated
wind speed model such that the equivalent WPP, when
driven by such an aggregated wind speed, accurately
reproduces the statistical and dynamic behavior of the
original network, i.e., detailed representation of the net-
work.

The proposed method and aggregated wind model are duly
tested using real-world measurement data provided by the
Sustainable Energy Authority of Ireland (SEAI) [25] (see
appendices A, and B for details on these data).

D. Organization

The remainder of the paper is organized as follows. Section
II describes the procedure to generate correlated stochastic
processes. In Section III, correlated stochastic processes are
utilised to generate correlated wind speeds with arbitrary time-
scale and arbitrary PDF. In particular, Sections III-A and
III-B present the proposed method to set up correlated and
aggregated wind speed models, respectively. The case study
presented in Section IV discusses the impact of correlation
on the trajectories of the wind speeds and of the power
production of WPPs. The case study also performs time-
domain simulations to study the transient behavior of the
power system undergoing a contingency and with inclusion of
correlated noise on the wind speeds. Section V draws relevant
conclusions.

II. MODELLING OF CORRELATED STOCHASTIC
PROCESSES

The dynamic behavior of power systems with inclusion of
n correlated stochastic processes can be defined using the

following set of n-dimensional correlated SDAEs:

ẋ = f(x,y,η) , (1)
0 = g(x,y,η) , (2)
η̇ = a(η) + b(η)⊙ ζ . (3)

where f : Rl+m+n 7→ Rm, and g : Rl+m+n 7→ Rl represent
the differential, and algebraic equations, respectively. x ∈ Rl,
and y ∈ Rm are the vectors of state, and algebraic variables,
respectively. Equation (3) describes a set of n-dimensional
correlated SDEs constructed using correlated noise elements
[24]. In (3), η ∈ Rn is the vector of correlated stochastic
processes; a : Rn 7→ Rn is the vector of so called drift
term; b : Rn 7→ Rn is the vector of so-called diffusion
term; ⊙ represents the Hadamard product, i.e., the element-
by-element product of two vectors; and ζ ∈ Rn is a vector of
n-dimensional correlated Gaussian white noise, as follows:

ζ = C ξ , (4)

where ξ ∈ Rn is the vector of uncorrelated Gaussian white
noise, and C ∈ Rn×n is lower triangular and can be computed
through Cholesky decomposition of the correlation matrix R ∈
Rn×n such that:

R = CCT . (5)

The correlation matrix R defines the correlation between the
increments of noise elements of SDEs and is written as:

R =


1 r1,2 r1,3 . . . r1,n
r2,1 1 r2,3 . . . r2,n
r3,1 r3,2 1 . . . r3,n

...
...

...
. . .

...
rn,1 rn,2 rn,3 · · · 1

 ,
where ri,j represents the correlation between the increments
of any two noise elements i.e., ri,j = corr[dWi(t), dWj(t)],
with ri,j = 1 if i = j, since the correlation of any variable
with itself is always 1. R is positive semi-definite for most
of the power system applications. Note that if R = I, where
I is the identity matrix, then the SDE in (3) becomes the
conventional uncorrelated SDE. The details on the calculation
of the elements of R from real-world data are given in
Appendix B.

The vector of uncorrelated white noise processes ξ(t) is
defined as the time derivative of the Wiener process, as
follows:

ξ(t) dt = dW (t) , (6)

where W ∈ Rnw is a vector of uncorrelated standard Wiener
processes i.e, there exists no correlation between the elements,
say Wi(t), i = 1, . . . , nw, of W . A standard Wiener process
W (t) has the following properties:

1) W (0) = 0.
2) W (t) is a continuous function of t.
3) W (t) has unbounded variation in every interval.
4) W (t) has Gaussian increments, i.e., ∀t ≥ 0, dW =

W (t + h) − W (t) is normally distributed with mean
zero and variance h.
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5) The increments of W (t) are independent of past values
of W (t), i.e., ∀t ≥ 0, dW = W (t + h) − W (t) are
independent of W (s), s ≤ t.

Equations (1)-(3) are nonlinear and are thus usually solved
by numerical integration schemes. The integration of (3) in-
volves the calculation of the increments of the Wiener process
with sufficiently small time steps. Hence, the integral form
of the SDE in (3) is obtained by substituting (6) into (3) as
follows:

η(t) =

∫
t

a(η(τ)) dτ +

∫
η

b(η(τ))⊙ [Cdη(τ)] , (7)

where the first integral involving the drift term is the con-
ventional Riemann-Stieltjes’ integral, and can be solved by
employing any usual numerical integration schemes [26]. On
the other hand, the integral of the diffusion term is carried out
through Itô’s calculus [27], [28]. The analytical solution of an
Itô’s integral is not known in most cases. Hence, numerical
methods are employed. The most popular choice in power
systems is the Euler-Maruyama scheme that involves time
discretization [29], [30].

III. MODELLING CORRELATED WIND SPEEDS

Modelling a stochastic process, such as the wind speed,
requires the definition of appropriate functions for the drift and
the diffusion terms of (7). The drift term of the wind speed
process, observed from empirical data from different wind
sites [31], can be defined through a mean-reverting function,
as follows:

ai(ηi) = −αi (ηi − µi) , i = 1, . . . , n, (8)

where αi is the autocorrelation coefficient, ηi is the i-th
stochastic process, and µi is the mean of the i-th stochastic
process. The principal effect of the mean reversion is to bound
the standard deviation of the diffusion term of the SDE. This
property is thus appropriate for processes that show constant
standard deviations in stationary conditions, such as the wind
speed.

Once the drift term is defined, the diffusion term is deter-
mined based on the required PDF of the underlying stochastic
process using a technique such as that based on the stationary
Fokker-Plank equation in [32] or a memoryless transformation
as in [16].

The resulting SDE that models the wind speed as a stochas-
tic stationary process with desired drift term in (8), and the
diffusion term for arbitrary PDF is written as:

ẇi = −αwi(wi − µwi) + bwi(wi)ξwi , i = 1, . . . , n, (9)

where wi is the wind speed, and bwi
(wi) is the diffusion term,

which in general depends on wi. Finally, the set of SDEs that
describe the correlated wind speeds with arbitrary PDFs can
be written as:

ẇ = −αw ⊙ (w − µw) + bw(w)⊙ ζw , (10)

where w is the vector of wind speeds, αw is the vector of
autocorrelation coefficient; µw is the vector of mean; bw(w) is

the vector of diffusion term; and ζw is the vector of correlated
white noise defined in (4). Note that (10) is valid for wind
speeds with different PDFs, i.e., for bwi

(wi) ̸= bwj
(wj). The

interested reader can find the values of µw and bw(w) for
several distributions relevant to model wind speeds in [31].

A. Correlated Wind Speeds with given PDF

The correlation matrix R is the core mathematical ob-
ject that allows defining the correlation between stochastic
processes in (7). The elements of the correlation matrix are
defined based on measurement data. With this aim, we utilise
the analytical solution of (9) to extract the noise elements of
processes with arbitrary PDF.

The solution of (9) can be established by multiplying (9)
by eαwt, and re-arranging as:

αww(t)e
αwtdt+ eαwtdw(t)

= eαwt
[
µwαw + bw (w(t)) dWw(t)

]
.

(11)

Note that

d
(
eαt w(t)

)
= αw(t)eαtdt+ eαtdw(t) . (12)

Hence, substituting (12) into (11) and integrating, one obtains:

w(t) = w(0)e−αwt +

∫ t

0

µwαwe
αw(s−t)ds

+

∫ t

0

bw (w(s)) eαw(s−t)dW (s) ,

(13)

where w(0) is the initial value of the process at t = 0. The first
integral is the conventional Riemann-Stieltjes’ integral, and
integrates to µw (1−e−αwt). The second integral is expressed
as an Itô’s integral. Using Itô’s isometry [27], [28] the second
integral integrates to a normal random variable with mean zero
and variance given as:

E

[∫ t

0

bw (w(s)) eαw(s−t)dWw(s)

]2
=
b2w (w(t))

2αw

(
1− e−2αwt

)
.

(14)

Thus, the analytical solution of (9) is written as:

w(t) = w(0) e−αwt + µw (1− e−αwt)

+ bw
(
ww(t)

)
ψw(t)

√
1− e−2αwt

2αw
,

(15)

where ψw(t) is the random variable, which is distributed
normally with zero mean and unit variance. ψw(t) can be
extracted from (15) and written as:

ψw(t) =
w(t)− w(0) e−αwt − µw (1− e−αwt)

bw
(
w(t)

)√
1−e−2αwt

2αw

. (16)

Equation (16) is employed to estimate the noise element ψw(t)
from the empirical data, provided the underlying process can
be defined using (9).

The solution provided in (15) is valid for an arbitrary time
interval [0, t] and any initial condition. It can also be applied
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to an arbitrarily chosen time step ∆t beginning at ti−1 and
ending at ti. We assume equidistantly spaced time steps such
that ∀i ∈ Z+, ti − ti−1 = ∆t > 0. To calculate the increment
in the stochastic process at an arbitrarily chosen time step
∆t, we assume that the value of the process at the previous
time step ti−1 serves as the initial condition for time step ti.
Therefore, the increment in the stochastic process for the time
step ∆t is calculated using (15) as:

dw(ti) =w(ti−1) e
−αw∆t + µw (1− e−αw∆t)

+ bw
(
w(ti−1)

)
ψw(ti)

√
1− e−2αw∆t

2αw
.

(17)

Similarly, the increment of ψ(ti) for the time step ∆t is written
as:

dψw(ti) =
w(ti)− w(ti−1) e

−αw∆t − µw (1− e−αw∆t)

bw
(
w(ti−1)

)√
1−e−2αw∆t

2αw

.

(18)
The applicability of (18) to calculate noise elements from wind
speed measurement data for arbitrary PDFs is discussed in
Appendix A.

B. Aggregated Wind Speed Model

The aggregated wind speed process is obtained as the
average of the underlying wind speed processes. This method
of averaging the underlying wind speeds has also been utilised
in [13] and [14]. However, these references consider neither
wind speed dynamics nor correlated wind speeds. In this paper,
on the other hand, we are interested in correlated wind speed
processes modelled through correlated stochastic processes in
the time scale of transients. The aggregated wind speed process
is thus modelled as a stochastic process that is an average
of the underlying individual wind speed processes modelled
through the set of correlated SDEs as proposed in (10). The
proposed aggregated wind speed model is built using (10) and
(15), as follows:

wagg(t) =
1

n

n∑
i=1

[
µwi + e−αwi

t
(
wi(0)− µwi

)
+ ψwi

n∑
j=1

(
σwj

cj,i
) ]

.

(19)

where ci,j is the i, j element of matrix C, and σwi is the
standard deviation of the i-th wind speed process from (14).
The procedure discussed above is applied in Appendix C
to generate an aggregated wind speed that generates similar
statistical properties of aggregated power production as in the
case of detailed network.

IV. CASE STUDY

This case study aims at evaluating the impact of correlated
wind speeds, modelled through correlated SDAEs, on the
dynamic of power system. The effect of correlation on the
dynamic of the wind speeds themselves and the power produc-
tion of WPPs is discussed in Section IV-A. Then, the impact

of a distribution network and correlated wind generation on
the dynamic response of the a modified version of the two-area
system is discussed in Section IV-B.

A. Effect of Correlation on Wind Speeds and WPP Power
Production

The effect of correlation on the dynamic of wind speeds,
modelled through correlated SDEs, is illustrated in Fig. 2. The
wind speeds illustrated in Fig. 2 are modelled through beta
distribution. The parameters of beta distribution for modelling
noise on wind speeds in the time scale of power system
transient are reported in [16]. Figure 2 shows that the profiles
of wind speeds become closer to each other as the level of
correlation is increased, and thus changing the dynamics of
the wind speeds.

As discussed in Section II, the level of correlation modelled
on stochastic processes does not modify the statistical prop-
erties of the stochastic processes. As proof of concept, Fig. 3
illustrates the PDF of the two wind speed processes realised, as
shown in Fig. 2, through correlated SDEs. Figure 3 shows that
the statistical properties of the wind speed processes remain
independent of the level of correlation being modelled among
them.

The effect of correlation among wind speeds is transferred
to the wind active power injections pg of the WPPs. However,
this does not modify the statistical properties of pg , as the
statistical properties of the wind speeds remain unaltered.
Figure 4 illustrates the time profile of pg for different levels of
correlation modelled on the underlying wind speeds. In Fig. 4,
it can be observed that, as the level of correlation among wind
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Fig. 2. Wind speeds of two wind sites modelled through correlated SDEs for
different levels of correlation r.
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Fig. 4. Active power injection of WPPs for different levels of correlation r
among wind speeds.

speeds is increased, the time profiles of pg come closer to each
other, which modifies the dynamic behavior of pg .

B. Impact of Correlated Wind Speeds on the Power System
Dynamic Response

The power system considered in this section is the well-
known two-area system, originally introduced in [33]. This
system is composed of 11 buses and 4 synchronous generators.
The generators are split into two areas connected through a
weak tie-line. All the synchronous machines are modelled via
VI-order model, and are equipped with turbine governors, and
automatic voltage regulator of type IEEE DC-I. Loads are
modelled as constant impedances.

In this study, the original system is modified to include
wind generation. With this aim, the wind generation network is
modelled as in Fig. 1. Then Substation A is connected to bus
9 of the two-area system. The WPPs are modelled through
variable-speed doubly-fed induction generators. Finally, the
correlation matrix R of wind speeds is needed to complete
the setup of the model. The detailed procedure to construct R
based on real-world data is provided in Appendix B.

To study the impact of correlated wind speeds on the power
system dynamic, the following two cases are proposed:

• Case 1 considers no correlation among wind speeds.
• Case 2 considers correlation among all wind speeds.

The power system dynamic simulations for the two cases are
performed using the Monte Carlo method. 1000 stochastic time
domain simulations per case are solved. For the integration of
the deterministic part of the SDAE, in (1), implicit trapezoidal
integration scheme with a time step of ∆t = 0.01 s is
utilised. The Maruyama-Euler integration scheme is employed
to integrate the stochastic part of SDAEs, where a step size of
h = 0.01 s is used for the realization of the Wiener processes.
Each simulations is solved for 100 s of simulated times.

First we consider a scenario where the system is perturbed
only with noise due to wind variations. The standard deviation
of the frequency of the center of inertia ωCoi for both cases
is illustrated in Fig. 5. The standard deviation of ωCoi shows
an increase with the increase in the level of correlation among
the wind speeds. This indicates that correlated wind speeds
are capable of modifying the distribution of power system
quantities without modifying the distribution of pg of WPPs.

0 10 20 30 40 50 60
Time [s]

0

0.5

1

1.5

ω
C

oi
×1

0−
4

[p
u

(H
z)

]

case 2

case 1

Fig. 5. The standard deviation of the frequency of the center of inertia ωCoi

for the two cases.

In this second scenario, we consider both noise and a
contingency. The contingency consists in the trip of the line
connecting buses 8 and 9 at time t = 30 s. The voltage profile
at Bus 8 for the two cases of correlation is illustrated in Figs. 6
and 7. Figures 6 and 7 show the trajectories of the bus voltage
magnitude v at bus 8 along with the mean of the trajectories
for the system modelled through correlated SDAEs, for the
two cases. The trajectory of the bus voltage magnitude at bus
8 for the system modelled through set of deterministic DAEs
using constant wind speeds is also shown in Figs. 6 and 7.

The mean trajectory of v coincides with the deterministic
trajectory in both the cases. This was to be expected as the
level of correlation among wind speeds does not impact on the
wind speed average values. On the other hand, the standard
deviation of v increases as the wind correlation increases.

Fig. 6. Voltage profile at bus 8 for case 1.

Fig. 7. Voltage profile at bus 8 for case 2.
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This increase of the standard deviation causes 59 (5.9 %)
trajectories of v to violate the minimum voltage limit for at
least 5 s for case2 (see Fig. 7). Note that the results presented
in this section are obtained by simulating the wind generation
network in detail as in Fig. 1. Moreover, the results obtained
through the aggregated wind generation are validated against
those obtained through detiled network in Appendix C.

V. CONCLUSIONS

This paper introduces a general technique to evaluate the
correlation among wind speeds by extracting the noise el-
ements from wind speed measurement data. The proposed
technique is general in the sense that it can be used for
arbitrary sampling rate, and arbitrary PDF. Then, the paper
describes how to utilise correlated SDEs to set up accurate
aggregated wind speed processes and WPP models.

The case study is based on real-world data and demonstrates
the usefulness of the proposed method to study the impact of
correlated wind speeds on power system dynamics. Through
time domain simulations, the case study shows that the cor-
related wind speeds are capable of modifying the distribution
of relevant system quantities, e.g., the frequency of center of
inertia. Finally, simulations carried out on a modified version
of the two-area system indicate that the correlation on wind
speeds can also make the effect of contingencies more severe.

APPENDIX

A. Data Analysis

This appendix illustrates the procedure presented in Section
III-A to extract the noise elements ψw(t) from the wind speed
data. For this purpose, a variety of wind speed measurement
data exhibiting different fitting PDF types and different time
scales ranging from 1 second to 1 hour are utilised, and shown
in Table I. The wind speed data presented in Table I is obtained
through different open source platforms [16].

The fitting PDF types for the data in Table I were obtained
by applying the Kolmogorov-Smirnov test. The parameters
of the fitting PDF type were obtained through the maximum
likelihood estimation method [16]. A curve fitting technique
was utilised to calculate the autocorrelation coefficient of the
wind speed by calculating the autocorrelation function of the
wind speed measurement data [16], [31].

The noise elements ψw(t) were extracted from the wind
speed data, shown in Table I, by utilising the procedure
presented in Section III-A. The PDF of ψw(t) obtained from
the wind measurement data, presented in Table I, is shown in
Fig. 8. Figure 8 illustrates that the PDF of ψw(t) follows the
normal random variable with zero mean and unit variance, and
is in accordance with the discussion in Section III-A.

B. Construction of the Correlation Matrix

As explained in Section II, the elements of the correlation
matrix R represent the correlation between the increments
of the noise elements, i.e., dψwi

(t) and dψwj
(t). The noise

elements are calculated from measurement data using (18).
Once the time series of dψwi(t) is obtained, each element of
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Fig. 8. PDF of ψwi (t) obtained from measurement data, in Table I, using
(18).

R, i.e., ri,j = corr[dψwi
(t), dψwj

(t)] is calculated by em-
ploying Pearson correlation coefficient. To construct R, wind
speed measurement data from ten wind sites in Ireland are
obtained. These data are available on the website of SEAI [25].
The relationship between distance, and correlation of the wind
speed data is illustrated in Fig. 9. The correlation between the
noise elements of the wind speeds shows an exponential decay
w.r.t. the distance between them. This exponential decrease in
the correlation w.r.t. the distance is consistent with the results
reported in other studies [1], [3], [34].

C. Wind Power Aggregation and Validation

This appendix illustrates the effectiveness of the wind speed
aggregation model presented in Section C. The goal of the
wind speed aggregation is to accurately model wind speed
process aggregated at different levels of the grid such as bus,

TABLE I
SAMPLING RATES AND PDF TYPES OF MEASUREMENT DATA

Data Set Sampling Rate PDF Type
1 1 hour 1-parameter Rayleig
2 10 minutes 3-parameter Gamma
3 1 minute 3-parameter Gamma
4 1 second 3-parameter Beta
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Fig. 9. Distance vs correlation between wind sites. Note: The dashed line is
an exponential fit.
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distribution, and transmission, with correlated wind speeds.
With this aim, we compare the standard deviation of the
trajectories of active power σp generated at different levels
of the grid by simulating the entire network to σp generated
by the aggregated WPP driven by the aggregated wind speed
process.

The network of WPPs utilised in this paper is shown in
Fig. 1. The network is formed in a hierarchical manner. The
wind production is aggregated at different levels of the net-
work, i.e., bus, distribution, and transmission. The aggregated
WPP is then driven by the wind aggregated process. The wind
aggregation model is considered to work with high accuracy
if σp of wind generation obtained through aggregating WPPs
in different regions of the grid is close to σp obtained by
individually modelling WPPs in the network. The values of σp
calculated for detailed and aggregated WPPs along with the
errors are presented in Table II. The results shown in Table
II are obtained considering the data of the first row of Table
Table I. The low values of the errors shown in Table II is
an evidence of the accuracy of the proposed aggregated wind
speed model.

TABLE II
STANDARD DEVIATION OF AGGREGATED WPP POWER GENERATION.

Aggregation
Location

SPM
Error

Level Detailed Aggregated

Bus
Tralee 57.73 60.71 2.78

Garrow 61.8 63.72 3.1
Trien 62.31 64.4 3.35

Distribution
Substation B 44.21 45.53 2.88
Substation C 51.66 52.59 1.8

Transmission Substation A 46.64 47.36 1.53

SPM: Standard deviation of pg expressed in percent of the mean value.
Error: Absolute Normalised Error in % between detailed and aggregated.
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[2] R. Sobolewski and A. Feijóo, “Estimation of wind farms aggregated
power output distributions,” International Journal of Electrical Power
& Energy Systems, vol. 46, pp. 241–249, 2013.

[3] X. Shen, C. Zhou, and X. Fu, “Study of time and meteorological
characteristics of wind speed correlation in flat terrains based on
operation data,” Energies, vol. 11, no. 1, 2018. [Online]. Available:
https://www.mdpi.com/1996-1073/11/1/219

[4] A. J. Conejo, M. Carrión, and J. M. Morales, Decision Making Under
Uncertainty in Electricity Markets. London: Springer, 2010.

[5] Q. Tu, S. Miao, F. Yao, Y. Li, H. Yin, J. Han, D. Zhang, and W. Yang,
“Forecasting scenario generation for multiple wind farms considering
time-series characteristics and spatial-temporal correlation,” Journal of
Modern Power Systems and Clean Energy, vol. 9, no. 4, pp. 837–848,
2021.

[6] M. Cordeiro-Costas, D. Villanueva, A. E. Feijóo-Lorenzo, and
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[16] G. M. Jónsdóttir and F. Milano, “Data-based continuous wind speed
models with arbitrary probability distribution and autocorrelation,” Re-
newable Energy, vol. 143, pp. 368 – 376, 2019.

[17] A. Loukatou, S. Howell, P. Johnson, and P. Duck, “Stochastic wind
speed modelling for estimation of expected wind power output,” Applied
Energy, vol. 228, pp. 1328 – 1340, 2018.

[18] F. E. Benth, L. Di Persio, and S. Lavagnini, “Stochastic modeling of
wind derivatives in energy markets,” Risks, vol. 6, no. 2, 2018.

[19] K. Xie, S. Miao, Y. Xia, Y. Ma, and Y. Li, “A two-stage wind speed
model for multiple wind farms considering autocorrelations and cross-
correlations,” in International Conference on Probabilistic Methods
Applied to Power Systems (PMAPS), 2016, pp. 1–6.

[20] K. Wang and M. L. Crow, “Numerical simulation of stochastic differen-
tial algebraic equations for power system transient stability with random
loads,” in IEEE PES General Meeting, San Diego, CA, USA, Jul. 2011.

[21] Z. Y. Dong, J. H. Zhao, and D. J. Hill, “Numerical simulation for
stochastic transient stability assessment,” IEEE Trans. on Power Systems,
vol. 27, no. 4, pp. 1741–1749, Nov. 2012.
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