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Abstract

The paper presents a systematic method to build dynamic stochastic models from
wind speed measurement data. The resulting models fit any probability distribu-
tion and any autocorrelation that can be approximated through a weighted sum of
decaying exponential and/or damped sinusoidal functions. The proposed method is
tested by means of real-world wind speed measurement data with sampling rates
ranging from seconds to hours. The statistical properties of the wind speed time
series and the synthetic stochastic processes generated with the Stochastic Differen-
tial Equation (SDE)-based models are compared. Results indicate that the proposed
method is simple to implement, robust and can accurately capture simultaneously
the autocorrelation and probability distribution of wind speed measurement data.

Key words: Stochastic differential equations, wind speed modeling, memoryless
transformation, probability distribution, autocorrelation.

1 Introduction

1.1 Motivation

Wind power is the fastest growing among renewable energy sources world-
wide [1]. For example, in Ireland the instantaneous wind generation can be up
to 65% of the total demand and the system operator is planning to increase
this limit to 75% by 2020. However, this growth comes with drawbacks. The
power generated by a wind turbine depends on the weather conditions which
makes it a highly volatile power source. In order to ensure a reliable and secure
operation of the grid, it is essential to model the source of such a volatility,
i.e., the wind speed. Existing literature does not provide a general method
to synthesize continuous dynamic wind speed models that are adequate for
the transient stability analysis of power systems. This research aims to ad-
dress this issue and proposes a systematic method to develop continuous-time
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wind speed models that precisely reproduce both the autocorrelation and the
probability distribution of actual measurement data.

1.2 Literature Review

Traditionally, wind speed is modeled as a stationary stochastic process.
This process is characterized by its Probability Density Function (PDF) and
Autocorrelation Function (ACF). The PDF describes all the possible values
and likelihoods that the wind speed can take within a given range. The ACF
is a measure of how the wind speed changes over time. That is, the ACF gives
a measure of the relationship between the current wind speed value and past
wind speed values. In some cases, e.g., steady-state analysis [2], it is enough
to only consider the PDF. However, when a realistic synthetic wind speed
time-series is required, the model must also capture the ACF.

A wide range of wind speed models are available in the literature. Most of
the literature has focused on the forecasting of wind speed and the modeling of
the forecast error. Discrete Autoregressive Moving Average (ARMA) models
are the most common type found in the literature. These models have been
widely used for wind speed forecast error modeling and short-term forecasting
[3–8]. They are well-established and offer comprehensive tools to fit the model
to data and reproduce both the PDF and ACF of wind speed data. Markov
chains of first order and higher have also been widely used to model wind
speed [9,10]. Additionally, physical models that use meteorological information
have been widely used to predict the long-term wind speed [3].

Both ARMA models and Markov chains are discrete and have a fixed
time step that must match the sampling interval of the available data. This
constraint prevents using such models for transient stability analysis, for which
continuous wind speed models are required. While methods to define a conti-
nuous-time equivalent of ARMA models have been proposed in the literature
[11,12], the equivalencing procedure introduces numerical approximations and
requires an involved modeling procedure.

In recent years, the use of SDEs for wind speed modeling has gained
popularity. SDEs appear more suitable than classical discrete time series ap-
proaches as they are intrinsically continuous with respect to time and thus,
they can better reproduce the transient fluctuations of the wind speed. More
importantly, SDEs are not constrained to use the sampling time step of the
original measurement data. Finally, power systems are typically formalized
as a set of differential algebraic equations which allow readily incorporating
SDEs.

In the literature, SDEs have been used for wind speed forecasting [13,14];
modeling the volatility of wind power generation [15–17]; and power system
stability analysis [12, 18]. However, the SDE-based wind speed models that
have been presented so far in the literature fail to capture either the PDF, the
ACF, or both [16–19]. In [20–22], SDEs with an arbitrary PDF are presented
but are limited to strictly exponentially decaying ACF.
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1.3 Contributions

This paper proposes using SDE-based models with ACFs that are a weigh-
ted sum of decaying exponential and/or damped sinusoidal functions. This
allows the fitting of a wider range of ACFs than what can be achieved by the
techniques that are currently available in the literature. The proposed method
is based on the superposition of stochastic processes that capture the desired
ACF as presented in [23]. Then, to impose the desired PDF, a memoryless
transformation is used as discussed in [24]. Either analytical PDFs that are
fitted to the data or numerically estimated PDFs can be accommodated. The
proposed method is both simple and flexible as it allows defining a SDE-based
model from virtually any set of wind speed measurements.

The contributions of this paper are:
• A novel method to build SDE-based wind speed models in continuous-time

that captures both the ACF and the PDF of measurement data. The pro-
posed method can capture a wider range of measured wind speed ACFs
than the SDE-based models proposed in the literature.
• The method can capture ACFs that can be modeled as a weighted sum

of decaying exponentials and/or damped sinusoidal functions which in the
authors experience can be used to model all wind speed data sets.
• The method can model any PDF as a numerical PDF is fitted to the proba-

bility distribution of the data set used. This makes it unnecessary to define
an analytical PDF. However, the method can also be used to model any
analytical PDF.
• The method is tested by building wind speed models based on seven mea-

surement data sets with different sampling frequencies. It is shown that the
method can capture the ACF and PDF of these data sets.

1.4 Organization

The remainder of this paper is organized as follows. Section 2 briefly out-
lines relevant definitions and concepts of SDEs and Section 3 presents the
theoretical foundation of the proposed method to synthesize wind speed mod-
els. Section 4 shows how the parameters of the SDE models are identified
from wind speed data sets. Section 5 discusses the generation of wind speed
trajectories and illustrates their statistical properties through numerical sim-
ulations. Finally, Section 6 draws conclusions and outlines future work.

2 Outlines of Stochastic Differential Equations

Stochastic Differential Equations (SDEs) are a prominent mathematical
modeling technique employed in areas such as finance for modeling stock prices
or interest rates and physics to model particles in fluids.
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A generic one-dimensional SDE has the form:

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), X(t0) = X0, (1)

where a(t,X(t)) and b(t,X(t)) are continuous functions and are referred to
as the drift and diffusion term of the SDE, respectively. W (t) represents the
stochastic component driving the SDE. Commonly, this component is a Wiener
process, {W (t), t > 0}, which is a random function characterized by the fol-
lowing properties:
(1) W (0) = 0, with probability 1.
(2) The function t 7→ W (t) is continuous in t.
(3) If t1 6= t2, then W (t1) and W (t2) are independent.
(4) For ∀ti ≥ 0, all increments, ∆Wi = W (ti+1) −W (ti), are normally dis-

tributed, with mean 0 and variance h = ti+1 − ti, i.e., ∆Wi ∼ N (0, h).
Wiener processes cannot be integrated in the conventional Riemann-Stieltjes
sense as they are not bounded, i.e., the limit limx→0(W (t + ∆t) −W (t))/∆t
does not exist. A specific stochastic integral has to be defined to solve the
SDE in (1). There are several different ways to interpret stochastic integrals.
In this paper, the most widely used approach is used, namely, the Itô integral.

An in-depth discussion on SDEs is outside the scope of this paper. The in-
terested reader is referred to [25–27] for details on SDEs theory and numerical
methods.

2.1 2-dimensional Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck (OU) process is a particular stochastic process
with a Gaussian PDF which exhibits mean reversion, i.e., it drifts towards its
mean value at an exponential rate. Moreover, the OU process has a bounded
variance which makes it suitable to model physical processes such as wind
fluctuations [28].

The following 2-dimensional OU is utilized as the building block of the
proposed method to synthesize wind speed models:

 dX(t)

dY (t)

 =

−α −ω
ω −α

X(t)

Y (t)

 dt+

σ
0

 dW (t). (2)

where α > 0, σ > 0, ω ≥ 0 and W (t) is a standard Wiener process. The
correlation matrix of the SDE in (2) is:

R(τ) = E

X(t+ τ)

Y (t+ τ)

(X(t), Y (t)
)

= exp(−ατ)

 cos(ωτ) − sin(ωτ)

sin(ωτ) cos(ωτ)

. (3)

The process X(t) is used throughout this paper for building the wind
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speed models. Its ACF is

RX(τ) = exp(−ατ) cos(ωτ), (4)

In stationary conditions, X(t) is Gaussian distributed with zero mean and
variance σ2/(2α).

For ω = 0, X(t) and Y (t) are decoupled and X(t) becomes a conventional
1-dimensional Ornstein-Uhlenbeck (OU) process:

dX(t) = −αX(t)dt+ σdW (t), (5)

with exponentially decaying autocorrelation:

RX(τ) = exp(−ατ). (6)

3 Proposed Method to Synthesize SDEs

The main idea behind the proposed approach is to use a summation of a
set of SDEs of the form of (2). The resulting compound stochastic process is
build in such a way that it has the same Probability Density Function (PDF)
and Autocorrelation Function (ACF) as the given wind speed data. It is shown
below that the proposed method can capture both a wide range of ACFs and
PDFs, even those that do not fit any analytical PDF function.

The steps to build the desired compound stochastic process are twofold:
(i) a superposition of SDEs that captures the desired ACF is defined (see
Subsection 3.1); and (ii) an analytical or numerical memoryless transforma-
tion that imposes the desired PDF is applied to the SDEs determined in the
previous step (see Subsection 3.2). This is shown in Fig. 1.

Wind Speed
Measurements

Impose
ACF

Impose
PDF

SDE with desired ACF

SDE with desired
ACF & PDF

Fig. 1. The proposed method to capture the ACF and PDF of measurement data.
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3.1 Impose the Autocorrelation

In [23], a superposition of OU processes is used for imposing an ACF
represented with a weighted sum of Exponentially Decaying Functions (EDFs).
We generalize the technique in [23] with the 2-dimensional OU in (2) instead
of the conventional OU process. In this way, the proposed model is able to
reproduce not only exponentially decaying ACFs but also periodical behaviors,
such as those due to daily effects.

Let Z(t) be a stochastic process obtained as the weighted sum of n SDE
processes, as follows:

Z(t) =
n∑
i=1

√
wiXi(t), (7)

where Xi(t), i = 1, . . . n, are SDE processes with ACFs RXi
(τ), wi > 0 and

n∑
i=1

wi = 1. (8)

If all n processes have an identical Gaussian PDF N (µX , σX), the stochastic
process Z(t) has the same Gaussian PDF, N (µX , σX), and an ACF which is
a weighted sum of the ACFs of the n SDE processes, that is:

RZ(τ) =
n∑
i=1

wiRXi
(τ). (9)

If the n SDE processes in (7) are X(t) processes as in (2), the resulting
ACF of Z(t) is a weighted sum of damped sinusoidal and decaying exponential
functions and (9) can be rewritten as:

RZ(τ) =
n∑
i=1

wiexp(−αiτ) cos(ωiτ). (10)

Hence, the superposition of SDE processes allows capturing any ACF that can
be modeled as a weighted sum of exponential and/or sinusoidal ACFs. If the
ACF does not show a periodic behavior than ωi = 0, ∀i = 1, . . . , n. In the
authors experience, (10) is general enough to reproduce the autocorrelation
of all wind speed time series. This conclusion is drawn based on all the wind
speed measurements the authors have had access to and been able to analyse.

3.2 Impose the Probability Distribution

The sum of the SDE processes in (7) resulting in the compound process
Z(t) has a Gaussian probability distribution. However, the PDF of the wind
speed is typically not Gaussian. To impose the target PDF of the wind speed,
the memoryless transformation is used that consists of transforming a standard
Gaussian stochastic process into another one with the desired distribution
while retaining the ACF of the original process. This is achieved by applying
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Table 1
Description of the wind speed data sets.

# Sampling rate Averaged Duration Location

1 1 hour Yes 3 years Mace Head, Galway, Ireland

2 1 hour Yes 3 years Malin Head, Donegal, Ireland

3 10 minute Yes 1 year Ashburnham, Massachussetts

4 10 minute Yes 1 year Orleans, Massachussetts

5 1 minute Yes 1 month Johnstown, Wexford, Ireland

6 1 minute Yes 1 month Oak Park, Carlow, Ireland

7 1 second No 1 month Tracy, California

the Gaussian Cumulative Distribution Function (CDF) to the inverse of the
target CDF, as follows:

ZF (t) = F−1(Φ(Z(t)), (11)

where F−1(·) is the inverse CDF of the desired process and Φ(·) is the CDF of
the Gaussian distribution [24]. The resulting process is the target SDE with
the desired PDF and ACF.

A relevant advantage of this approach based on the memoryless transfor-
mation, is that it can be used with any analytical or a numerical PDF that has
been fitted to the probability distribution of the data. A thorough discussion
on this point is provided in the next section.

4 Fitting Procedure

This section outlines the procedure used to identify the parameters of
wind speed models from data using the method presented in Section 3. The
parameters are identified from the statistical properties of the equivalent wind
speed data sets shown in Table 1. The wind speed data sets have sampling rates
ranging from 1 second to 1 hour and are collected in locations in Ireland and
USA. Further details on the measued wind speed data can be found in [29–31]
as all data sets used are available open source.

The PDF and ACF that best describe the wind speed variability depend
on the location and the time frame [32–38]. Commonly, wind speed has a PDF
that is shifted to the left and tails heavily to the right. This is because, in most
areas, strong extreme winds are rare, while moderate winds are quite common.
The most widely used PDF for wind speed is the two-parameter Weibull dis-
tribution. However, a wide range of distributions have been proposed in the
literature to fit the PDF of the wind speed at a specific location [32–34].

The ACF of wind speed is characterized as an Exponentially Decaying
Function (EDF) over the first 12 hours for hourly averaged data and then
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Table 2
The chi-squared test results for fitting a weighted sum of 1, 2 and 3 EDFs to the
ACF of Data Set 1.

EDF # p-value

1 563.05113902

2 0.1422387958

3 0.1422342338

settles to zero or a value bigger than zero or shows damped periodic fluc-
tuations due to daily variations [20, 37, 38]. However, if the data is sampled
more frequently and/or not averaged, fast wind speed variations change the
shape of the ACF. Such short-term wind speed variations, e.g., turbulence and
gusts, typically occur within a 10 minute time frame and result in the ACF
initially decreasing rapidly before settling to the same slope as the hourly
data [11,12]. This kind of autocorrelation can be well described as a weighted
sum of decaying exponential functions.

The fitting procedure involves fitting the function in (10) to the ACF
of the data as well as identifying a PDF that best captures the probability
distribution of the data. Two methods to define the PDF are presented: (1)
fit an analytical PDF to the data; and (2) find a numerical estimated PDF.
The procedure is demonstrated below with Data Set 1. The same procedure
is used to identify the parameters of the wind speed models for all the data
sets of Table 1.

4.1 Find the ACF parameters

Figure 2 shows the autocorrelation for Data Set 1. To capture this ACF
using the method presented in Section 3, (10) has to be fitted to the autocorre-
lation. This can be done with any typical curve fitting algorithm. In this work,
a non-linear least squares method, included in the Python package SciPy [39],
is utilized. The number of decaying exponential and/or damped sinusoidal
functions used to fit the ACF can most often be estimated visually or, if not,
by trial and error. In this case, three EDFs are considered. In order to deter-
mine the ideal number of EDFs the chi-squared test is used and the results
are presented in Table 2. The chi-square results indicate that it is sufficient
to use two components as adding the third component does not significantly
improve the fit.

In Figs. 2-3, the fit of the 3-component models are compared to the ACF
of Data Set 1. Component 1 EDF only manages to capture the decay over
the first 24 hours. To capture the correlation after that more components are
needed. In Fig. 2, the 2 and 3 component EDF processes are indistinguishable.
To further examine the fit, the difference in the fitted processes from the actual
ACF of Data Set 1 is shown in Fig. 3. Component 2 performs slightly worse
but the error for both components 2 and 3 is less than 3 %. The difference
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between the 2- and 3-component models is minimal in this case. Therefore,
the simpler model is chosen, i.e., the 2-component model.
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Fig. 2. The ACF of Data Set 1 and the fitted sum of 1− 3 component EDFs.
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Fig. 3. The difference in the ACF of Data Set 1 and the fitted sum of 1−3 component
EDFs.

The fitted ACF function of Data Set 1 is thus approximated as:

R1(τ) = w1exp(−α1τ) + w2exp(−α2τ), (12)

where w1 = 0.55, w2 = 0.45, α1 = 0.0811 and α2 = 0.00648. Since no periodical
behavior is present in this data set, ω1 = ω2 = 0. In Table 4 the parameters
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for the fitted ACFs of the remaining datasets are shown. In the table, it is
implied that ωi = 0 if not provided.

The σ1 and σ2 parameters are defined from the α1 and α2 parameters
respectively and the set standard deviation, σX of the two OU processes. The
standard deviation can be set to any value as long as this value is used to
define the Gaussian CDF Φ(·) in (11). In this case σX is set to be 1 and thus,

σ1 =
√

2σ2
Xα1 = 0.4027 and σ2 =

√
2σ2

Xα2 = 0.1138.

4.2 Find the PDF parameters

Figure 4 shows the probability distribution of Data Set 1. The PDF of
the wind speed is imposed using a memoryless transformation as discussed in
Section 3. The PDF can be defined in two ways, analytically or numerically.
The latter approach is to be preferred if the wind speed distribution is irregular
or has two peaks.

For the sake of illustration, both analytical and numerical fitting of the
PDF for Data Set 1 are discussed below.

4.2.1 Analytical PDF
Table 3 shows the results of the Kolmogorov-Smirnov tests for six PDFs

applied to Data Set 1. The Kolmogorov-Smirnov test is used to compare the
analytical Cumulative Distribution Function (CDF) to the Empirical Cumu-
lative Distribution Function (ECDF) of the data and allows deciding which
analytical PDF best captures the probability distribution of the data set. The
six PDFs considered in Table 3 have all been used in the literature to model
the probability distribution of wind speed data. These PDFs are given in Ap-
pendix A.
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Fig. 4. The histogram for Data Set 1 and the fitted numerical and analytical PDF.
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Table 3
The Kolmogorov-Smirnov test results for 6 analytical PDFs fitted to Data Set 1.

PDF p-value

3-parameter Beta 1.0688 · 10−13

3-parameter Gamma 1.3787 · 10−77

2-parameter Inverse Gaussian 3.5201 · 10−166

2-parameter Lognormal No fit

1-parameter Rayleigh 4.7572 · 10−14

2-parameter Weibull 1.0849 · 10−84

Based on Table 3, the 3-parameter Beta PDF has the highest p-value and
thus, provides the best fit. The 3-parameter Beta function is defined as:

pB(x) =


1

λ3B [λ1, λ2]

(
x

λ3

)λ1−1 (λ3 − x
λ3

)λ2−1
if x > 0

0 if x ≤ 0

(13)

where B[·, ·] is the Beta function, the shape parameters are λ1 = 2.6006 and
λ2 = 10.1357 and the noncentrality parameter is λ3 = 38.0838, for Data Set
1. The fitted analytical PDF is shown in Fig. 4.

With a similar procedure, the parameters of the best fitting PDF of all
data sets in Table 1 can be determined. The results of such a fitting are shown
in Table 4.

The PDFs in Table 3 are used to demonstrate that the method can be
used with analytically defined PDFs. The authors are aware that more com-
plex analytical PDFs have been proposed in the literature to model the prob-
ability distribution of wind speed, such as mixed distributions, Kappa etc.
This method can be used to capture all more complex analytical PDFs if the
equivalent inverse CDF can be defined. If the inverse CDF can not be de-
fined analytically, it can be defined numerically using the method presented
in Section 4.2.2.

4.2.2 Numerical PDF
Among the many possible numerical techniques to approximate the prob-

ability distribution of a set of measurements, the Empirical Cumulative Distri-
bution Function (ECDF) is considered here. It is a non-parametric estimator
of the underlying Cumulative Distribution Function (CDF) of a stochastic pro-
cess [40]. The ECDF is found by first sorting the N data points from smallest
to largest. Each data point is assigned a probability of 1/N . The result is
a step function that increases by 1/N for each data point. The ECDF is a
discrete numerical approximation of the CDF of the data set. An estimation
of the underlying continuous CDF function can be found from the ECDF by
using interpolation.
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Table 4
The ACF and PDF parameters of Data Sets 1− 7.

Data Set ACF Parameters PDF type & parameters

1 w1 = 0.62 3-parameter Beta PDF

w2 = 0.38 λ1 = 2.601

α1 = −0.0713 λ2 = 10.136

α2 = −0.0045 λ3 = 38.084

2 w1 = 0.72 α1 = −0.0961 1-parameter Rayleigh PDF

w2 = 0.24 α2 = −0.0109 λ1 = 6.065

w3 = 0.04 α3 = 6.33 · 10−4

ω3 = 0.26

3 w1 = 0.05 3-parameter Gamma PDF

w2 = 0.95 λ1 = 1.423

α1 = −0.5592 λ2 = 4.659

α2 = −0.0096 λ3 = 1.826

4 w1 = 0.04 3-parameter Gamma PDF

w2 = 0.96 λ1 = 1.1511

α1 = −0.9232 λ2 = 5.9695

α2 = −0.0119 λ3 = 2.2975

5 w1 = 0.06 3-parameter Beta PDF

w2 = 0.94 λ1 = 2.2422

α1 = −0.9800 λ2 = 4.6258

α2 = −0.0014 λ3 = 17.3688

6 w1 = 0.045 α1 = −0.9800 3-parameter Gamma PDF

w2 = 0.925 α2 = −0.0015 λ1 = 1.0155

w3 = 0.03 α3 = −0.1066 λ2 = 5.2482

λ3 = 1.6766

7 w1 = 0.035 α1 = −0.0242 3-parameter Beta PDF

w2 = 0.045 α2 = −0.1362 λ1 = 2.1381

w3 = 0.830 α3 = −4.3 · 10−5 λ2 = 8.5281

w4 = 0.084 α4 = −0.0841 λ3 = 31.569
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The equivalent inverse CDF for the fitted numerical and/or analytical
PDF is then used for imposing the probability distribution of the data set using
the memoryless transformation, as discussed in Section 3. Figure 4 shows the
PDF defined through the ECDF for Data Set 1. Similar results can be obtained
for the other data sets in Table 1.

5 Simulation Results

In this section, the modeling method outlined in Section 3 is coupled with
the data-fitted parameters from Section 4. Combined together, they make wind
speed models for the data sets described in Table 1. These models are used
for generating synthetic wind speed trajectories whose statistical properties
accurately reproduce those of the actual wind speed data sets.

With this aim, (7) needs to be integrated and subsequently the transfor-
mation in (11) applied. To solve the SDE the Euler-Maruyama integration
method is used. Other integration methods for SDEs can be found in [26] but,
given the accuracy of the results discussed below, the Euler-Maruyama scheme
works well and no higher order method is deemed to be required.

Synthetic models are simulated to produce N data points with the time
step h (values for N and h shown in Table B.1). To illustrate the ability of the
developed models to reproduce the statistical properties of the original data,
the PDF and ACF of the synthetic processes are compared with those of the
data sets. First the results of such comparisons for Data Set 1 are discussed
in detail and then an overview is provided of the results for Data Sets 2 to 7.

The PDF and ACF results for Data Set 1 are shown in Figs. 5 and 6,
respectively. In Fig. 5, the histogram of Data Set 1 (in gray) is compared to
the results for the generated process using the analytical PDF (solid line) and
numerical PDF (dashed line). Both the analytically and numerically defined
PDF are well captured by the SDE-based models. In this case the analytical
PDF is likely the best option.

Figure 7 compares analytical, numerical and data-based PDFs for the
Data Sets 2 to 7. For Data Set 6, the analytical PDF gives a good fit to the
probability distribution of the measurements. For the remaining PDFs, how-
ever, that is not the case. For Data Sets 2-5 and 7, in fact, the top of the PDF
is uneven, i.e., it is wider or narrower than what can be reproduced through
the analytical PDFs. In these cases, the numerically defined PDFs provide
better approximations. These PDFs can, in principle, also be approximated
through a combination of analytical PDFs, e.g., a superposition of Gaussian
distributions. However, the numerical approach is simple, general and yet very
accurate.

Figure 6 shows the ACF of Data Set 1, the fitted theoretical function and
the ACF of the wind speed trajectory generated by the proposed SDE-based
model. The latter consists of the weighted sum of two decaying EDFs and
captures well the ACF of the data. It is important to note that this ACF
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Fig. 5. Histogram of the data, fitted analytical and numerical PDFs and histogram
of the simulated SDE with the analytical and numerical PDF for Data Set 1.
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Fig. 6. ACF of the data, the fitted theoretical ACF and the ACF of the simulated
SDE model for Data Set 1.

cannot be captured with the continuous-time wind speed models currently
available in the literature. Such models can only model hourly averaged data
with a single exponentially decaying ACF [20–22].

Figure 8 compares analytical and data-based ACFs for Data Sets 2 to 7.
Results clearly show that the ACF is highly dependent on the sampling rate
as the ACFs have different shapes for different sampling rates. For example,
Data Sets 5 and 6 show two different sections, one in the time lags that ranges
from 0 to 5 minutes, and another one for time lags larger than 5 minutes.
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The autocorrelation of Data Set 2 shows a poorly damped sinusoidal mode
with a period of 24 hours. The proposed superposition approach is able to
reproduce all these different shapes of wind speed ACFs as a weighted sum of
exponential and sinusoidal function.
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(a) Data Set 2
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(b) Data Set 3
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(c) Data Set 4
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(d) Data Set 5
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(e) Data Set 6
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Fig. 7. The histograms of the data, fitted analytical and numerical PDFs and his-
tograms of the simulated SDE with the analytical and numerical PDF for Data Sets
2-7.
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(b) Data Set 3
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(c) Data Set 4
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(d) Data Set 5
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(e) Data Set 6
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Fig. 8. The ACFs of the data, the fitted theoretical ACFs and the ACFs of the
simulated SDE model for Data Sets 2-7.

6 Conclusions

This paper presents a method to construct wind speed models based on
SDEs. The method consists of two steps. In the first step the superposition
of SDE processes is used to capture the desired ACF. In the second step the
memoryless transformation is used to capture an arbitrary PDF. The resulting
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process is a continuous-time wind speed time-series which captures the desired
ACF and PDF simultaneously.

To demonstrate the flexibility of the proposed method, seven wind speed
data sets with sampling rates from seconds to hours are modeled. The method
is shown to accurately reproduce PDFs of any shape and ACFs that can be
described as weighted sums of decaying exponential and/or damped sinusoidal
functions. The comparison of simulation results with the real-world wind speed
data sets shows that the proposed method is accurate and robust.

Future work will focus on extending the work presented in this paper to
model other types of stochastic processes e.g., solar irradiance, in continuous-
time based on measurement data. We are currently working on applications
of the proposed method to model the forecast error of stochastic processes.
Future work will also focus on extending the proposed method to build non-
stationary stochastic processes.

Acknowledgments

This work is supported by the Science Foundation Ireland, by funding
Federico Milano, under Investigator Programme, Grant No. SFI/15/IA/3074.
The opinions findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the Science Foundation Ireland.

A Probability Density Functions

This appendix presents PDFs that have been proposed in the literature
to model the PDF of wind speed data.

A.1 Three-parameter Beta distribution

The probability density function of the three-parameter Beta distribution,
pB(x), is

pB(x) =


1

λ3B [λ1, λ2]

(
x

λ3

)λ1−1 (λ3 − x
λ3

)λ2−1
if x > 0

0 if x ≤ 0

where B[·, ·] is the Beta function, λ1 and λ2 are shape parameters, and λ3 is
a noncentrality parameter.
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A.2 Three-parameter Generalized Gamma distribution

The probability density function of the three-parameter Generalized Gamma
distribution, pGG(x), is

pGG(x) =


1

λ2 Γ [λ1]
λ3

(
x

λ2

)λ1 λ3−1
exp

[
−
(
x

λ2

)λ3]
if x > 0

0 if x ≤ 0

where Γ[·] is the Gamma function, λ1 and λ3 are shape parameters, and λ2 is
a scale parameter.

A.3 Two-parameter Inverse Gaussian distribution

The probability density function of the two-parameter Inverse Gaussian
distribution, pIG(x), is

pIG(x) =


1√
2π

√
λ

x3
exp

[
−λ (x−m)2

2m2 x

]
if x > 0

0 if x ≤ 0

where m is the mean, and λ is a scale parameter.

A.4 Two-parameter Lognormal distribution

The probability density function of the two-parameter Lognormal distri-
bution, pLN(x), is

pLN(x) =


1√

2π s x
exp

[
−(log [x]−m)2

2 s2

]
if x > 0

0 if x ≤ 0

where m and s are the mean and the standard deviation of the natural loga-
rithm of variable x, respectively.

A.5 One-parameter Rayleigh distribution

The probability density function of the one-parameter Rayleigh distribu-
tion, pR(x), is

pR(x) =


x

λ2
exp

[
− x2

2λ2

]
if x > 0

0 if x ≤ 0

where λ is a scale parameter.
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A.6 Two-parameter Weibull distribution

The probability density function of the two-parameter Weibull distribu-
tion, pW(x), is

pW(x) =


λ1
λ2

(
x

λ2

)λ1−1
exp

[
−
(
x

λ2

)λ1]
if x ≥ 0

0 if x < 0

where λ1 is a shape parameter and λ2 is a scale parameter.

B Simulation parameters

The simulation parameters used for the data sets in Table 1 are shown in
Table B.1. N is the number of data points and h is the time step.

Table B.1
Simulation parameters for each data set.

Data Set N h

1 1 · 106 1

2 1 · 105 0.01

3 5 · 107 0.1

4 5 · 107 0.1

5 5 · 107 0.1

6 5 · 107 0.1

7 1 · 108 0.1
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