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Abstract—The focus of this paper is on the dynamic analysis
of power systems including wind generation. A continuous-
time implementation of the well-known Autoregressive Moving
Average processes is proposed. This model is based on measured
data and built through a four-step procedure that retains both
the probability distribution and the autocorrelation of the actual
wind speed. The effect of the data sampling rate on the stochastic
properties of the wind speed is evaluated through the comparison
of real-world hourly and minutely data. Finally, the proposed
model is included in a benchmark system and its transient
behavior is discussed.

Index Terms—Continuous-Time Autoregressive Moving Av-
erage (CARMA), Stochastic Differential Equation (SDE),Wind
speed modeling.

I. INTRODUCTION
A. Motivation

Wind power generation has increased significantly in recent
years and has become a prominent part of the energy produc-
tion portfolio [1]. The stochastic nature of wind introduces
uncertainty and volatility into power grids. The impact of
this volatility on the dynamic behavior of power systems
has not been thoroughly investigated and remains a relevant
research question. TO this aim, accurate stochastic models are
required so that the wind speed fluctuations can be captured in
simulation. This paper studies the effect of the data sampling
rate on wind speed models intended for generating synthetic
data for dynamic analysis of power systems.

B. Literature Review

From a statistical point of view, wind speed can be charac-
terized by its probability distribution and autocorrelation. The
best fit for the autocorrelation and probability distribution of
wind speed is dependent on both the location and the sampling
time [2], [3]. An accurate definition for the autocorrelation is
important as it specifies by how much the wind speed varies
within a certain time frame. An inaccurate definition of either
the probability distribution or the autocorrelation of the wind
speed model results in implausible wind generation meaning
the resulting power system simulations are unrealistic.
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Traditional wind speed models used for time-domain simu-
lation of power systems fail to capture the probability distribu-
tion, the autocorrelation or both [3]-[5]. For example, the four-
component composite model proposed in [4] is designed to
model the spatial effect of wind behavior on the wind-turbine
and includes gusts, rapid changes and background noise. This
model fails to capture any statistical property of the wind.
Other wind speed models available in the literature capture
the probability distribution but neglect the autocorrelation [5].
These models cannot guarantee that the variations of the
generated wind speed are realistic. Thus, simulations using
these models do not properly represent the real-world system.

In [2], a systematic procedure to build a Stochastic Differ-
ential Equation (SDE) with an exponentially decaying auto-
correlation is presented. Such a procedure provides a good
fit to hourly wind speed data where the daily fluctuations
are not visible [6]. However, hourly data fail to capture
fast wind variations that, as this paper demonstrates, have
to be taken into account for accurate dynamic analysis of
power systems. Such short-term wind speed variations, e.g.
turbulence and gusts, typically occur within a 10 minute time
frame and result in the autocorrelation initially decreasing
rapidly before settling to the same slope as the hourly data.
The resulting autocorrelation is not exponentially decaying.
Thus, the models presented in [2] cannot be used.

Another category of wind speed models are based on Au-
toregressive Moving Average (ARMA) models. These models
have been widely utilized for wind speed modeling [7], fore-
casting [1], [8] and to analyze the impact of wind integration
on power system reliability and long-term planning [9]. They
are well-established and offer comprehensive tools to fit the
model to data and reproduce both the distribution and the
autocorrelation. However, ARMA models are discrete and
have a fixed time step that must match the sampling interval of
the available data. Therefore, ARMA models are not suitable
for dynamic analysis of power systems as they typically have
a smaller time step than the available data and/or require a
varying time step.

C. Contributions

The focus of this research is to propose an approach that
enables the utilization of ARMA models in the continuous-
time domain. This facilitates their use in time-domain simula-
tions of power systems for dynamic analysis. The proposed
approach is based on the observation that if an ARMA



model is stationary then it has an equivalent Stochastic Dif-
ferential Equation (SDE), termed a Continuous-Time ARMA
(CARMA) [10].

The specific contributions of this paper are twofold:

o To present a method to construct continuous-time wind
speed models, for the time-domain simulation of power
systems, which produce the probability distribution and
the autocorrelation of wind speed data that are equivalent
to ARMA models.

¢ To determine if wind speed models based on hourly data
are adequate for dynamic analysis of power systems. This
is achieved by comparing wind speed models based on
hourly and minutely data and implementing the models
in a benchmark power system.

D. Organization

The reminder of this paper is organized as follows. The
steps to construct SDE-based CARMA wind speed models
are presented in Section II. In Section III, wind speed models
based on data with hourly mean values are constructed using
the proposed CARMA procedure and compared to wind
speed models constructed using the Fokker-Planck approach
described in [2]. Section IV outlines the difference between
hourly and minutely wind speed data and presents CARMA
models that accurately model minutely-sampled wind speeds.
In Section V, the impact of including the proposed CARMA
wind speed models in a benchmark power system model is
studied. Finally, Section VI draws conclusions and outlines
possible areas of future research.

II. CONSTRUCTION OF CARMA MODELS

This section presents a procedure to obtain a continuous-
time ARMA model from wind speed measurements. The
proposed procedure consists of four steps, as shown in Fig. 1.
Each step is detailed below.

Step 1: Memoryless transformation

Typically, wind speed data do not have a Gaussian distri-
bution. It is commonly shifted to the left and tails heavily to
the right. The Weibull distribution is an example of this and is
the most widely-used probability distribution for wind speed.
However, ARMA and CARMA models require the data to
be normally distributed. Therefore, the wind speed data must
be fitted to the Gaussian distribution. This is achieved using a
memoryless transformation.

The memoryless transformation fits non-normally dis-
tributed data to the Gaussian distribution while retaining its
original stochastic properties. This is achieved by applying the
inverse Gaussian Cumulative Distribution Function (CDF) to
the CDF of the wind speed data, as follows:

y(t) = 2~ H(F(X(1)) , (1)

where &1 is the inverse CDF of the Gaussian distribution and
F is the CDF of the probability distribution of the wind speed
[11]. The result is a time series that is normally distributed and
can be used to build an ARMA model.

Step 2: ARMA modeling

ARMA models can model and forecast future wind speed
variations based on historical data. It is possible, for a large
class of autocorrelation functions, 7(-), to find an ARMA
model with the autocorrelation function, vx (), such that ~(-)
is well approximated by vx(-). These models have well-
established estimation techniques that simplify the building of
custom wind speed models for each location based on available
measurements [12].

ARMA models can be divided into two components,
namely, Autoregressive (AR) and Moving Average (MA):

o Autoregressive: relates the current value of the wind speed

to past values.

o Moving Average: relates the current value of the wind

speed to past error values.

The ARMA(p, q) model is given by

P q
Xp = X i+ Y bicriter, 2)
im1 i=1
AR MA

where ¢; is white noise with a standard deviation o, ¢;
are the autoregressive parameters, #; are the moving average
parameters and both ¢, and 6, are non-zero.

ARMA models of second order or higher have been widely
used to model wind speed [7]-[9]. The ARMA(2,1) model is
a special case as it is the lowest order ARMA model that
captures the statistical properties of wind speed. It can be
written as

¢(B)X; = 0(B)et , 3)

where B is the backward operator such that BX; = X,_; and
H(2) =1 — p12 — po2? 4)

0(z) =140,z . 5)

Several well-known methods are available to estimate
ARMA parameters directly from data such as the Least
Squares method, the Method of Moments and the Maximum
Likelihood method [13]. In this research, the Maximum Likeli-
hood method is used. The method finds the parameter values of
the ARMA model which maximizes the Likelihood Function
of the sampled data. The Likelihood Function is based on the
Gaussian CDF of the sampled data. The estimated ARMA
parameters are used to find the equivalent CARMA parame-
ters.

Step 3: CARMA modeling

Wind speed is a continuous-time process. However, wind
speed measurements are sampled and the resulting data is
discrete. For this reason, ARMA models are commonly used
in practice.

CARMA models are the continuous-time counterparts of
the discrete-time ARMA models. While ARMA models are
constrained by the fixed time step of the sampled data,
CARMA models enable the utilization of any time step,
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Figure 1. The four steps to construct the proposed SDE-based CARMA wind speed models.

including variable ones. Hence, CARMA models can be used
to interpolate between sampling points.

A CARMAC(p, q) model denoted by x(t) is a SDE of the
form

Pz P a® ) - w
dte P gt T TPy U0 H
dz diz
= bodW (¢ bj— +...+b,— 6
0 ()+1dt+ +thq7 (6)

where W (¢) is the standard Weiner process, ¢; are the autore-
gressive coefficients, b; are the moving average coefficients
and both ¢; and b; are real and b, # 0 [14]-[16].

Generally, a stationary CARMA(p, ¢) model sampled reg-
ularly can be written as a ARMA(p, p— 1) model with ¢ < p
[10]. The simplest example is the Ornstein-Uhlenbeck process,
i.e., CARMA(1,0):

dXy + co Xy = dW(t) 7)

which is equivalent to an ARMA(1,0) model viewed with a
fixed time step h:

X; = exp(—coh) X¢—1 + &t (8)

Note, the autoregressive parameter of the discrete-time
ARMA, ¢; = exp(—cph), cannot be negative.

The CARMA(2,1) model used in the remainder of this
paper and can be written as

e(D)X(t) = b(D)dW (1) ©)
where D is the differential operator and

(10)
(1)

An equivalent discrete-time ARMA(2,1) model can be found
if the CARMA(2,1) model is stationary. The CARMA(2,1)
model is stationary if the real parts of the roots of (10), oy
and g, are negative. The autoregressive parameters of the
continuous-time model, ¢; and ¢y, can be directly connected
to the autoregressive parameters of the discrete-time model,
¢1 and ¢o, using the z-transformation.

c(z)=2>+c1z+co
b(z) =by+ b1z .

¢1 — ealh +6a2h

Bo = _e(a1+a2)h ]

12)
13)

The theoretical auto-covariance function of a discrete-time
ARMA(2,1) model is defined as

$17(1) + p27(2) + 01(¢1 + 61)02 + 02 ifk=0

varMA (k) = 4 ¢17(0) + ¢27(1) + 6102 ifk=1
$1v(k — 1) + g2y(k — 2) ifk>1,
(14)

where k is the time lag and v = yagrma. The theoretical
auto-covariance function of a CARMA(2,1) model is

_ ok blap)b(—a1) . b(ao)b(—az)
nearma(h) = S o) o ag)clas)
15)

The moving average parameter of the continuous-time
model, by, is set so that the auto-covariance of the discrete-
time model, yarma, 1S equal to the auto-covariance of the
continuous-time model, ycarma- It is important to note that
the work in this paper can be extended to map the parameters
from any CARMA(p, ¢) model, where p > ¢, to find the
equivalent ARMA(p, p — 1) parameters [14].

The resulting wind speed CARMA model is normally
distributed. Hence, its true probability distribution has to
be imposed. This is achieved using the inverse memoryless
transformation.

Step 4: Inverse memoryless transformation

The inverse of the memoryless transformation in Step I is
used to impose the true probability distribution of the data.
The inverse CDF of the wind speed data is applied to the
Gaussian CDF of the CARMA model

y(t) = F~H(®(X (1)) .

This obtains the desired probability distribution of the wind
speed data [11]. The memoryless transformation and its inverse
enable the use of ARMA and CARMA models to model data
with any probability distribution that has a defined CDF and
inverse CDF.

(16)

III. SDE-BASED HOURLY WIND SPEED MODELS

In this section, hourly-mean wind-speed measurements col-
lected in two locations in Ireland are considered. The con-
struction method presented in Section II and the Fokker-Planck
method presented in [2] are used to build models based on the



hourly wind speed data. The results from these two methods
are compared.

A. Wind speed data

The wind speed datasets used throughout this research were
provided by Met Eireann for two locations in Ireland [17].
Each dataset consists of three years of hourly wind speed
measurements.

o Dataset 1: Moore Park in county Cork that is located

inland in the south of Ireland.

« Dataset 2: Valentia Observatory in county Kerry that is

located on the south-west coast of Ireland.

The Probability Density Functions (PDFs) presented in [2]
are fitted to the datasets and the Kolmogrov-Smirnov test
is used to determine which of the PDFs best fits the data.
The resulting PDFs that best fit the datasets are presented in
Table 1. Figure 2 shows the fitted PDF of the two datasets. The
PDF of Dataset 1 has a high peak to the left which indicates
that there is high probability of low wind speeds. On the other
hand, the measured data gathered at the Valentia Observatory
have a flatter PDF, meaning that high wind speeds are more
common.

1 — Moore Park, Cork

2 — Valentia Observatory, Kerry
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Figure 2. The fitted PDFs for the wind speed datasets in Section III-A.

The autocorrelation of the measured data is shown in Fig. 3.
The oscillations have peaks separated by 24 hours owing to
similarities in daily wind speeds. These oscillations have a
high amplitude in the inland wind speed data but are almost
undetectable in the autocorrelation of the coastal wind speed
data. If the autocorrelation is not properly defined the wind
variations may be incorrectly modeled. The models presented
in this paper aim to match the autocorrelation over the first 12
hours and hence neglect daily variations. In cases where daily
fluctuations cannot be neglected, the well-established seasonal
modeling ARMA addition to can be used [18].

B. Simulation results

The wind speed is modeled to fit the data in Section III-A
using the following two methods:
e Method I: The CARMA-based SDE construction
method presented in Section II.
o Method II: The construction method presented in [2].
This method utilizes the stationary Fokker-Planck equa-
tion to impose the desired probability distribution and the

1 — Moore Park, Cork
0.8} 2 — Valentia Observatory, Kerry
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Figure 3. The autocorrelation of the wind speed datasets in Section III-A.

Regression Theorem to impose an exponentially decaying
autocorrelation.

The models are simulated 1,000 times, producing three
years of synthetic hourly data. The estimated PDF parameters,
the mean and the standard deviation are computed for each
process using both methods. The average values of the 1,000
generated processes are shown in Table I. The differences
between the estimated parameters and the parameters of the
data are included as a percentage in Table I. The estimates
that are closer to the parameters of the data are highlighted.

The autocorrelation is computed for each of the 1,000
processes produced using both methods. The average auto-
correlation for each method is computed and the difference
between the computed autocorrelation and the autocorrelation
of the datasets is found. The difference in the autocorrelation
for both datasets are shown in Figs. 4 and 5. Method I provides
a better fit to the autocorrelation of Dataset 1 as it has a smaller
error than Method II. On the other hand, Method II provides
a better fit for Dataset 2 as it has low daily variations in the
wind speed.

0.07

—  Method I
0061 —  Method I

0.05

tocorrelation

_ T

0 2 4 6 8 10 12
Lags [h]

Figure 4. A comparison of the autocorrelation of Dataset 1 and the average
autocorrelation of the 1,000 processes generated using Methods I and II.

Both methods are able to reproduce the distribution and
the autocorrelation of the datasets with a maximum error of
7%. The results indicate that both methods can be used for
modeling hourly wind speed data.

Note, if the hourly wind speed data for a certain location
cannot be modeled using a CARMA(2,1) model, a higher



TABLE I
PROBABILITY DENSITY FUNCTION PARAMETERS (A1, A2, A3), MEAN (1) AND STANDARD DEVIATION (0’) OF THE DATASETS IN SECTION III-A
COMPARED TO THE RESULTS FROM 1,000 SIMULATIONS OF THE WIND SPEED MODELS GENERATED USING METHODS I AND II.

Method 1 Method I1

Dataset Probability Distribution | Parameters | Data Estimate | Difference [%] | Estimate | Difference [%]
1. Moore Park, Cork 3-parameter Beta A 2.1686 2.2735 4.8361 2.1617 0.3147
A2 14.0290 14.6901 4.7123 13.3632 4.7463
A3 22.09827 | 22.3398 1.0931 21.3330 3.4631
" 2.9449 2.9379 0.2361 2.9755 1.0392
o 1.8283 1.7569 3.9026 1.8155 0.6997
2. Valentia Observatory, | 3-parameter Gamma A1 0.5533 0.5154 6.8630 0.5615 1.4768
Kerry Ao 8.5203 8.8969 4.4201 8.5299 0.1124
A3 2.5320 2.5816 1.9605 2.5462 0.5618
o 5.3769 5.5016 2.3199 5.5276 2.8041
o 3.2677 3.3167 1.5019 3.2147 1.6215

0.025 T
Method I
Method II

£
a

0.005 - 1

0.000 . L L . L
0 2 4 6 8 10 12
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Figure 5. A comparison of the autocorrelation of Dataset 2 and the average
autocorrelation of the 1,000 processes generated using Methods I and II.

order CARMA model is required.

Figure 6 shows a comparison between hourly and minutely
wind speed data. The hourly sampled data fail to capture
the faster variations of the wind speed occurring within a 10
minute time frame. These fast wind speed variations cannot
be neglected as they are required for the transient stability
analysis of power systems. Note, these faster fluctuations are
filtered due to the damping effect of the wind turbine blades.
Further analysis on the relationship between the damping
effect and the wind speed data sampling rate is presented in
[19].

20 T T T T
Minutely Data
Hourly Data

Wind Speed [m/s]

400 600 800

Time [minutes]

0 200

1000

Figure 6. A comparison of wind speed data gathered hourly and minutely in
the Valentia Observatory, Kerry, Ireland [17].

IV. SDE-BASED MINUTELY WIND SPEED MODELS

This section compares hourly and minutely wind speed
data and demonstrates that a construction method that can
produce wind speed models with non-exponentially decaying
autocorrelation is necessary. It is established that the CARMA
construction approach presented in Section II can accurately
capture the properties of minutely wind speed data.

A. The wind speed data

The wind speed measurements used in this section were
gathered at Valentia Observatory in Kerry. The data consist of
minutely and hourly data over a one month period.

The same procedure as in Section III-A is used to find
the best fitting PDF. The resulting PDFs for the hourly and
minutely data are shown in Fig. 7. The lower wind speeds are
slightly more prevalent in the hourly data while the minutely
data have a flatter PDF. An hourly sampling is sufficient to
capture the PDF of the wind speed as the difference between
the two PDFs is minimal.

0.12 T T T

Minutely Data
Hourly Data
CARMA Model

0 5 10 15 20 2
Wind Speed [m/s]

Figure 7. A comparison of the PDFs of the wind speed data gathered hourly
and minutely in the Valentia Observatory, Kerry, Ireland [17]. The CARMA
model PDF is the average of 1,000 simulations of the wind speed model
based on the minutely data.

Figure 6 demonstrates that hourly data do not capture fast
variations in the wind speed that are visible in the minutely
data. These short term variations in the wind speed result in
a fast drop in the autocorrelation within the first few minutes.
After the first 20 minutes, the autocorrelation settles to the
same slope as the autocorrelation of the hourly data (see



Fig. 8). Models based on hourly data generate processes with
lower fluctuations than those that are observable in the actual
wind speed.

1.00
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Figure 8. A comparison of the autocorrelation of the wind speed data gathered
hourly and minutely in the Valentia Observatory in Kerry, Ireland [17].

B. Simulation results

The wind speed is modeled to fit the data in Section IV-A
using the CARMA construction method presented in Sec-
tion II. The model is simulated 1,000 times producing one
month of synthetic minutely data.

The resulting PDF for the 1,000 simulations is shown in
Fig. 7. The CARMA-based model has a PDF where low wind
speeds are marginally more likely.

The average autocorrelation of the 1,000 generated pro-
cesses and the autocorrelation of the minutely data are shown
in Fig. 9. The CARMA(2,1) model captures the autocorre-
lation of the minutely data for lags of up to 20 minutes. Its
autocorrelation diverges from the autocorrelation of the data
over longer time periods. This is sufficient if the wind speed
model is intended for angle and voltage stability analysis of
power systems. A higher order CARMA model is required to
effectively capture the autocorrelation for higher lags.
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Figure 9. The average autocorrelation of the 1,000 CARMA processes
modeled based on minutely data gathered at Valentia Observatory, Kerry,
compared to the actual autocorrelation of the data.

V. SENSITIVITY ANALYSIS OF A POWER SYSTEM MODEL
INCLUDING SDE-BASED WIND SPEED MODELS

The power system used to test the CARMA wind speed
models is a modified version of the WSCC 9-bus system

shown in Fig. 10. This system consists of 3 synchronous ma-
chines, 3 two-winding transformers, 5 transmission lines and
3 loads. The system also includes primary voltage regulators
(AVRs), turbine governors and an AGC. Further details on the
system can be found in [20]. The following modifications have
been made to the system:

o The capacity of the synchronous generator at Bus 2 is
reduced by 20 MW.

« A wind power plant is connected to the system at Bus
7 through a two-winding transformer with the power
capacity 20 MW. The wind turbine model used is a
Double-Fed Induction Generator (DFIG) with MPPT,
pitch angle and voltage controls.

@ SYNCHRONOUS GENERATOR
: 10

2 7 8

@ WIND POWER PLANT

9 3

3O
T

Figure 10. Modified WSCC 9-bus test system.

The CARMA wind speed models for the Valentia Observa-
tory in Kerry for hourly data, presented in Section III, and for
minutely data, presented in Section IV, are used. The power
system model is simulated 1,000 times for 100 s. The initial
wind speed for all simulations is set so the wind power plant
generates 20 MW.

Figure 11 shows that the wind speed changes more over the
100 s for the model based on the minutely data. The effect of
this difference is visible in the active power generated by the
wind power plant and at all the buses of the system.

14.0

Model based on minutely data

12.0}| — Model based on hourly data

10.0F

! —

6.0+

Wind Speed [m/s]

4.0

2.0 n L n n
0.0 20.0 40.0 60.0 80.0

Time [s]

100.0

Figure 11. 1,000 generated wind speed processes based on hourly and
minutely data fed to the wind power plant in the test system.



Figure 12 shows the change in the voltage at Bus 7 resulting
from the fluctuations of the wind speed. The wind power plant
reaches its lower limit when minutely based processes are
employed. This can be observed in Fig. 12 and explains the
hard lower limit of the voltage fluctuations.

1.055 T T T T

Model based on minutely data
1.05

Model based on hourly data
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1.015 L
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L n
60.0 80.0

Time [s]

L
40.0 100.0

Figure 12. Voltage trajectories at Bus 7 of the test system for the 1,000
simulations using the hourly and minutely based wind speed models.

The difference between using minutely and hourly data to
model wind speed is clear in the time-domain simulation of
the power system. These results highlight the importance of
the data sampling rate when building wind speed models for
dynamic analysis of power systems.

VI. CONCLUSIONS

In this paper, a four step procedure to produce CARMA
wind speed models from data is presented. These models are
designed to capture both the PDF and the autocorrelation of
the wind speed data and are intended for dynamic analysis of
power systems.

The presented CARMA construction method is compared
to a Fokker-Planck based method that imposes an exponen-
tially decaying autocorrelation. Both methods are able to
reproduce the PDF and autocorrelation of the two hourly wind
speed datasets used.

The hourly wind speed data do not capture the variations
of the wind that occur within a 10 minute time frame. These
fast variations in the wind result in the autocorrelation of the
minutely wind speed being non-exponentially decaying. The
paper shows that the CARMA construction method can be
used to build wind speed models that capture the PDF and
autocorrelation of minutely data.

Finally, the proposed wind speed models based on hourly
and minutely data are included in a test power system. It is
shown that hourly data are not adequate for building wind
speed models for dynamic analysis of power systems.

Future work will focus on the effect of detailed wind speed
models on the transient behavior of real-world power systems.
High order CARMA models will be considered to create these
detailed wind speed models.
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