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Abstract—The paper originates from the observation that,
when fitting stochastic processes based on data measurements, it
is often possible to fit various probability distribution functions
(PDFs) to the same data. This paper evaluates the impact of
modeling stochastic processes with different PDFs on the dynamic
behavior of the power system. The case study uses the well-known
two-area system, which is modified to include stochastic processes
through wind generation. Simulation results show that modeling
stochastic processes such as wind speeds through different PDFs
impacts the behavior of the power system differently, despite
exhibiting similar statistical properties. The case study also shows
that some PDFs worsen the effects of contingencies.

Index Terms—Stochastic processes, probability distribution
function, standard deviation, volatility, transient stability, wind
generation.

I. INTRODUCTION
A. Motivation

The increased penetration of renewable energy sources
such as wind generation has posed an increased security risk
on the power system operation. It has become essential to
study the impact of wind generation on the power system
security through dynamic studies. Traditionally, wind speed is
characterized as a stationary stochastic process, and modeled
as a stochastic differential equation (SDE) [1], [2]. An SDE
has two features, namely the drift and diffusion term. The drift
term defines the autocorrelation function and the evolution of
the process in time. Whereas, the diffusion term defines the
probability distribution function (PDF) of the process. This
paper focuses on the evaluation of the impact of stationary
stochastic processes defined through different PDF types on
the dynamic behavior of the power systems.

B. Literature Review

Stochastic processes such as load power consumption, and
wind and solar generation introduce volatility and uncertainty
in power systems. The intensity of volatility and uncertainty
is dependent on the PDF type with which an underlying
stochastic process is modeled. Several PDF types can be fitted
to a given measurement data using different available methods.
The maximum likelihood method (MLE) is one of the most
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used methods to estimate the parameters of the fitting PDF
type to the measurement data.

The limitation of MLE is that it does not provide any
information on the quality of fit of the PDF to the data. The
goodness of fit can be determined using different statistical
tests. The outcome of a statistical test is dependent on the
criteria chosen by test. Hence, these tests can yield multiple
PDF types that best fit the data. In this situation, it is crucial
to determine whether using different fitting PDF types for the
data can yield modification of the dynamic behavior of the
power system.

For simplicity but without lack of generality, in this paper,
we focus on wind generation and assume it is the only source
of volatility and uncertainty. Wind production is introduced
into the power system through a distribution network of wind
power plants (WPPs), shown in Fig. 1. This network was
introduced in [3]. The distribution network in Fig. 1 depicts
the WPPs organized in a tree-like structure, which is the real
world scenario. Such WPPs present in geographical proximity
are naturally connected in a tree-like structure, and due to the
proximity exhibit correlated production characteristics.

A considerable amount of research work has been carried
out in recent years on the modeling of correlated processes
such as correlated load consumption and correlated wind
speeds [4]-[7]. These works study the impact of correlated
random processes on the dynamic of power system through
differential-algebraic equations (DAEs). These studies include
uncertainty into the set of DAEs at the point of initialization,
i.e., the set of DAEs is randomly initialized by choosing the
values from a given PDF. The DAEs once initialized randomly,
stay deterministic for the rest of the simulation. This type of
analysis is well suited for studying the effect of randomness
in power systems.



In this paper, we are interested in studying uncertainty
included in the power system in the course of time domain
simulations. The impact of volatility and uncertainty in the
presence of correlated stochastic processes on the power
system dynamic behavior in the time-scale of voltage and rotor
angle stability is studied by modeling the power system as
a set of correlated stochastic differential-algebraic equations
(SDAEs) [8], [9].

C. Contributions

This paper focuses on the impact of different PDF types
of stochastic processes on the transient stability of power
systems. In particular, the paper shows that the diffusion
term of the stochastic processes when modeled with different
PDF types, having similar statistical properties, may impact
differently on the dynamic behavior of the power system.

D. Organization

The remainder of the paper is organized as follows. Sec-
tion II provides a brief introduction of correlated stochastic
differential-algebraic equations that are utilized to represent
volatility in dynamic power system models. Section III in-
troduces the correlated stochastic wind speeds. Section IV
presents the simulation results obtained by simulating the
detailed dynamic model of the two-area system, with the
inclusion of correlated wind production, and analyzes the
effect of correlated wind speeds with different PDF types on
the dynamic behavior of the power system. Finally, Section V
draws conclusions.

II. MODELING CORRELATED SDAES

The impact of correlated stochastic processes on the dy-
namic behavior of power systems is defined through the set
of n-dimensional correlated SDAEs, which are written as:
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where f : RA™HM5R™ and g : R 5R!E are the
differential and algebraic equations; & € R! is the vector of
state variables; y € R™ is the vector of algebraic variables;
and 7 € R™ represents correlated stochastic processes. These
are modeled as a set of stochastic differential equations, as
follows:

n=a(n)+bn) o, 2

where a : R” — R", and b : R"® — R"™ are the vectors of
so-called drift, and diffusion terms, respectively; ©® represents
the Hadamard product, i.e., the element-by-element product
of two vectors; and { € R"™ is the vector of n-dimensional
correlated Gaussian white noise, and is written as:

¢=C¢, (3)

where £ € R™ is a vector of uncorrelated Gaussian white
noise. According to its formal definition, a Gaussian white

noise process £(t) is the time derivative of the Wiener process
W (t), as follows:

§(t)dt = dW (1), €y

where W € R” is a vector of uncorrelated standard Wiener
processes i.e, the elements of W (t), say W;(¢), i =1,...,n,
are uncorrelated.

In 3), C € R™ ™ is a lower triangular matrix, and is
calculated as Cholesky decomposition of the correlation matrix
R € R™*"™ such that:

R=cCcCT. (5)

The correlation matrix R represents the correlation among the
stochastic processes defined in (2). Each element r; ; of R is
written such that 7; ; = corr[dW;(t), dW;(t)], where dW;(t)
is the increment of the ¢-th Wiener process. Note that r; ; = 1
for ¢ = j, since the correlation of a process with itself results
in 1. Also note that for R = I, where I is the identity matrix,
(2) results in uncorrelated stochastic processes.

The set of SDAE in (1)-(2) is highly non-linear, and is
usually solved with numerical integration schemes. Equations
(1)-(2) consist of two parts. The part involving the time
derivative is deterministic and can be integrated using any
usual integration scheme [10]. On the other hand, the part
involving the integral w.r.t the Wiener process is a non-
deterministic integral and is solved using Itd’s calculus [11],
[12].

III. CORRELATED WIND SPEEDS WITH GIVEN PDF

Correlated volatility on wind speeds is modeled through
correlated SDEs, introduced in (2) and written as follows:

w=—-a®(w—pu)+bw)o, (6)

where w € R" represents the wind speeds; o € R”, and
p € R™ are the vectors of the autocorrelation coefficient, and
the mean of the wind speeds, respectively; ¢ is the vector
of correlated Gaussian white noise defined in (3); and b(w)
are the diffusion terms. The expression of the diffusion term
depends on the type of PDF utilized to model the wind
speed. Different modeling techniques that define diffusion
term are available in the literature. Two relevant examples
are technique based on memoryless transformation [2] and
stationary Fokker-Plank equation [13].

Equation (6) requires the correlation matrix R, which con-
tains information about the correlation between wind speeds
w. The elements of correlation matrix R are calculated from
wind measurement data such that r; ; = corr[dW;(t), dW;(t)],
where dW;(t) is the increment of the i-th Wiener process. The
i-th increment of the Wiener process for arbitrary time step

At is written as [3]:
w(ty) —w(t;_1) e — (1 —
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IV. CASE STUDY

This section illustrates the impact on the dynamic behavior
of the power system of correlated wind speeds obtained
through measurement data, and modeled with SDEs that
reproduce different PDFs. For this reason, firstly, the wind
measurement data in the time-scale of power system time
domain simulations is presented in Section IV-A. Finally,
Section I'V-B studies the impact of different fitting PDF types
of wind speeds on the transient behavior of the power system
by simulating the well-known two-area system, modified to in-
clude wind power production. All simulation results presented
in this section were obtain with the software tool Dome [14].

A. Data Analysis and PDF Fitting

The wind measurement data utilized in this case study were
obtained from the Earth Observing Laboratory [15]. The real-
world cumulative density function (RCDF) of the wind speed
measurement data is shown in Fig. 2. The next step is to setup
the parameters of the SDEs in (2) with a technique such as
the one described in [2]. This also includes fitting a PDF to
the measurement data.

We are interested in evaluating the impact of different
PDFs on the overall dynamic response of the system. With
this aim, we consider four PDFs fitting the data of Fig. 2,
namely Gaussian, Beta, Gamma, and Weibull. The parameters
of the four PDFs are determined through MLE. The cumulative
density functions (CDFs) of the fitting PDF types under
consideration are also illustrated in Fig. 2, along with the
relative error between the CDFs of the PDF types and the
RCDF of the wind speed measurement data. Figure 2 shows
that there are minimal differences between the CDFs of the
PDF types and the RCDF of the wind speed measurement
data. At a first glance, thus, the four PDFs all fit reasonably
well the data.

B. Dynamic Simulations

This section studies the impact of different PDF types
of correlated stochastic wind speeds on the power system
dynamic behavior. The power system utilized in this section
is the well-known two-area system [16]. The two-area system
contains in 11 Buses, 12 lines/transformers, and 4 synchronous
generators. The synchronous generators are modeled via VI-
order model, and are equipped with turbine governors, and
automatic voltage regulator of IEEE Type-I. The two-area
system is modified to include wind production through the
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Fig. 2: Cumulative density function of measurement data and four PDF fits.

wind distribution network shown in Fig. 1. This is done by
connecting Substation A to Bus 9 of the two-area system.

The correlation matrix R to simulate correlated wind speeds
is taken from the wind measurement data provided in [3]. Two
scenarios are considered, as follows:

o S1: fully uncorrelated wind speeds.
o S2: correlated wind speeds.

Each scenario simulates stochastic wind speeds through all the
four PDF types discussed in section IV-A.

Both scenarios S1 and S2 are simulated using Monte Carlo
time domain simulations, i.e., 1000 time domain simulations
are performed per scenario. Correlated stochastic wind speeds
are simulated using (6). The deterministic part of the SDAE in
(1) is integrated using implicit trapezoidal integration scheme
with a time step of At = 0.01 s. On the other hand, the
integration of the diffusion term employs the Maruyama-Euler
integration scheme with a step size of A = 0.01 s. The total
simulation time for each trajectory is 100 s.

We first analyze the impact of simulating correlated stochas-
tic wind speeds, through different PDFs, on the statistical
properties of relevant quantities of the power system at the
stationary conditions. The only difference in the four sets of
simulation is the diffusion term in (6), which, as mentioned in
the introduction, defines the PDF of the stochastic processes,
in this case, wind speeds.

The drift term in (6), on the other hand, is assumed to
be constant and same in all cases. The drift term defines the
autocorrelation function of the wind speed. The autocorrelation
functions of the total wind active power pying injected at
Substation A into the power system is illustrated in Fig. 3.
This figure shows that the autocorrelation functions of pying
for all the scenarios are similar. This means that the drift terms
of the wind speeds remain unaltered while simulating all the
scenarios.

The impact of correlated stochastic wind speeds with dif-
ferent PDF types on the relevant power system quantities is
quantified in Table I. Table I shows the standard deviation of
the bus voltage magnitudes o,, and the active power injections
o, of the synchronous machines. Table I shows an increase in
0, and o, from Gaussian to Gamma PDF in both scenarios.
As expected, the values of o, and o, are higher in S2 as
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TABLE I: Standard deviations (Std.) of power system quantities reached at stationary conditions.

Scenario S1 Scenario S2
Std. [pu] Gaussian | Weibull  Error Beta Error | Gamma  Error | Gaussian | Weibull  Error Beta Error | Gamma  Error
o (VBus 08) 0.0042 0.0047 11.90 | 0.0048 14.29 0.0049 16.67 0.0087 0.0091 4.60 | 0.0092 575 0.0095 9.20
o (VBus 09) 0.0028 0.0031 10.71 | 0.0032  14.29 0.0033 17.86 0.0058 0.0061 5.17 | 0.0062  6.90 0.0064 10.34
o(pc1) 0.0059 0.0067 14.80 | 0.0069 16.86 | 0.0075  27.32 0.0136 0.0136 4.08 | 0.0138 597 0.0148 13.10
o(pa2) 0.0058 0.0067 1477 | 0.0068 16.84 | 0.0074  27.21 0.0135 0.0135 4.07 | 0.0138 5.96 0.0147 13.08
o(pas) 0.0058 0.0067 15.14 | 0.0068 17.08 0.0075  29.32 0.0134 0.0134 4.00 | 0.0137 5.89 0.0146 13.32
o(pca) 0.0058 0.0066 15.06 | 0.0068 17.02 | 0.0074  28.98 0.0133 0.0133 398 | 0.0136  5.87 0.0145 13.27
Error: Normalized Error calculated in % with Gaussian PDF as base.
compared to S1. This happens because S2 considers correlated — $9: Gamma Fit
wind speeds [3]. —— S2; Beta Fit
The results in Table I are noteworthy because the only — A2 Weikull Fit
parameter that varies during the time domain simulations is ‘g SRR
the PDF of the wind speed. The changes in the statistical X
properties of the power system quantities based solely on PDF 'g l.g S Gamma Fi
types of wind speeds are counter intuitive. One would expect = — 31 Beta Fit
to see no differences in the statistical properties of any of the Z 1 S1; Weibull Fit
power system quantity based on different PDF types of wind 05 S1; Gaussian Fit
speeds. Especially when the differences between CDFs of the
fitting PDF types and the RCDF of data are small. [(’) 1 05 Y 37 08
Further insights on the effect of the PDFs on the dynamic Frequency [Hz]
response of the system can be obtained with a frequency i
) R X R X Fig. 4: Frequency spectrum of Dy ind.
domain analysis. With this aim, we first evaluate the am-
plitude .of the QScillations induced in the inter-area electro- 3 e ot
mechanical oscillatory mode of the power system [17]. The — $2: Weibull Fit
inter-area mode of the modified two-area system is calculated 2 S2; Beta Fit
as, eigenvalue —0.075167 + 3.540781, and frequency 0.563 TE | 82 S T |
[Hz]. Then we evaluate the frequency spectrum of py,;,q for X
the two scenarios and four PDFs, which is illustrated in Fig. 4. £ 0
Results show that the amplitude of the frequencies in pying is £ 3 - :i ii'fl‘l.ll““;ll ET
dependent on the PDF types of the underlying wind speeds. E 9 a1, B(T‘Zl);it l
In the two scenarios, the amplitudes of frequencies in case S1; Gaussian Fit
of Gaussian PDF are the lowest whereas Gamma PDF shows
the highest amplitude. On the other hand, the amplitudes of

frequencies for Weibull and Beta PDF are remarkably similar
in the whole frequency spectrum.

The amplitude of oscillations induced in the inter-area
oscillatory mode is shown in Fig. 5, which illustrates the
frequency spectrum of voltage magnitude at Bus 8 vpys os-
Figure 5 shows highest amplitude of oscillations in the inter-
area oscillatory mode for Gamma PDF with the lowest being
the Gaussian PDF for both scenarios. These variations in
the amplitudes of the oscillations for different PDFs lead to
variations in the statistical properties of the quantities of the
power system as seen in Table 1.

Next, we consider the impact of the PDFs on the behavior
of the system after the occurrence of a contingency. This
consists in the trip of the line connecting buses 8 and 9 at
time ¢ = 30 s. The trajectories of vp,s os Obtained as a result
of simulating correlated wind speeds, through different PDF
types, are illustrated in Figs. 6 and 7 for scenarios S1 and
S2, respectively. In both scenarios, the standard deviation of
UBus 08 18 the lowest for the Gaussian and the highest for the
Gamma PDF. Table I shows the values of o, ,, before the
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contingency. Figure 6 shows that when the wind speeds are
not correlated (S1), the trajectories of vpys s remain above
the minimum voltage limit for the entire simulation. On the
other hand, for S2, namely for the scenario of correlated wind
speeds, a considerable number of trajectories of vpys g Violate
the minimum voltage limit, as seen in Fig. 7. The number of
trajectories of vpys og that go below the minimum voltage limit
at least once in the period of 30 s < ¢t < 35 s is shown in
Table II.

The results shown in Figs. 6 and 7, and Table II agree with
the discussion presented above in this Section. In both sce-
narios, the Gamma PDF leads to the worst dynamic behavior
whereas the Gaussian PDF to the best. The Weibull and Beta
PDF remain close to each other, which has to be expected
as the differences in the CDFs of Weibull and Beta PDF vs
RCDF as well as in their frequency spectrum are negligible.
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Fig. 6: Voltage profile at bus 8 for scenario S1.
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Fig. 7: Voltage profile at bus 8 for scenario S2, where MVL is Minimum
Voltage Limit.

TABLE II: Percentage of trajectories below voltage limit for scenario S2.

PDF Trajectories with under-voltages
Gaussian 27 (2.7 %)
Weibull 38 (3.8 %)

Beta 44 (4.4 %)
Gamma 70 (7.0 %)

These results, while being non-intuitive, can be understood by
analyzing the oscillations induced in the power system by the
wind speeds following different PDFs.

V. CONCLUSIONS

This paper studies the impact of modeling correlated sta-
tionary stochastic processes with different PDF types on the
dynamic behavior of power systems. The case study shows
that stochastic processes modeled with different PDFs might
have different effects on the statistical properties of the power
system quantities as compared to other PDF types. This hap-
pens even though the PDFs exhibit similar statistical properties
and all other parameters of the stochastic processes and the
rest of the system are the same.

The conclusions that can be drawn in this case study do
not allow to conclude that the Gamma PDF always leads to
the worst dynamic response, nor that processes with different
PDFs always cause different dynamic impacts. The effect

of the PDF depends on the autocorrelation of the stochastic
processes, their locations in the network and on the oscillatory
modes of the system.

Assessing the effect of a specific PDF on the dynamic
behavior of the system is a not a straightforward task to
solve as both system equations and the diffusion terms of the
processes are nonlinear. In this paper, we have relied on time
domain simulations. However, these are cumbersome as they
require a Monte Carlo analysis for each considered PDF. We
believe that the analysis of the spectra of random processes
characterized by different although very similar PDFs is a
promising alternative approach. Even if the PDFs are similar,
in fact, the spectra are slightly different and so might be
their impact on the dynamic of the system. How to exactly
quantify this impact is currently an open question for us and
we are working on finding an answer. In particular, future work
will focus on developing techniques, e.g. based on frequency
analysis, that allow identifying the worst performing PDF
without resorting to time domain simulations.
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