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Abstract—This paper discusses three approaches to construct
wind speed models based on Stochastic Differential Equations
(SDEs). The methods are applied to construct models able to
simulate wind speed trajectories that are statistically described
by means of the Weibull distribution and the exponential autocor-
relation. The ability of the three models to reproduce stochastic
processes with the above indicated statistical properties is duly
studied and compared. With this aim, wind speed measurements
recorded in a weather station located in Ireland are analyzed.
The parameters obtained in this analysis are used to set up
the developed models. Finally, the statistical properties of the
trajectories generated by the three models are compared with
the statistical properties of the considered wind speed data set.

I. INTRODUCTION

The modeling of the wind speed behaviour is an essential
aspect in many studies related to power systems. As wind
speed is a stochastic phenomenon, the use of stochastic models
appears to be a natural choice. Time series, four-component
composite model, and models based on Kalman filters, have
been traditionally applied in different research fields for the
wind speed modeling task [1].

From a statistical point of view, the wind speed behaviour is
described by its probability distribution and its autocorrelation.
These properties are obtained by means of statistical analyses
of historical data recorded for a particular location. Although
a variety of probability distributions have been proposed to
fit the empirical probability density of the wind speed, the
Weibull distribution is generally considered a good fit in
many locations around the world [2]. With respect to the
autocorrelation, this property has been usually approximated
by an exponential decaying function in the time frame of
hours, [3], although approximations of the power-law type
have been also suggested in [4].

In recent years, Stochastic Differential Equations (SDEs) are
gaining popularity as a tool to model stochastic phenomena in
power systems (e.g, [5]-[7]). These types of equations have
been applied to wind speed modeling in [8]-[10]. The three
references above propose three different construction methods
to obtain the final wind speed model. The approaches in [§]
and [10] are based on the solution of the stationary Fokker-
Planck equation while the approach in [9] is based on the
theory of translation processes.
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Among the three aforementioned approaches, only [10]
theoretically guarantee that the constructed model is able to
generate wind speed trajectories with the given probability
distribution and exponential autocorrelation. The method in
[9] leads to models that generate stochastic processes with
the given distribution, but an exact exponential autocorrelation
with a given decay rate is not guaranteed. Finally, the method
proposed in [8] is applied to construct models for wind speed
fluctuations with exponential autocorrelation, but based on
Gaussian-related probability distributions.

In this paper, the three approaches above are utilized to
formulate three different wind speed models on the basis of a
given Weibull distribution and autocorrelation functions. The
parameters of the Weibull distribution and the decay rate of
the exponential autocorrelation are defined according to the
results of the statistical analysis of a real-world wind speed
data set. The ability of the resulting models to reproduce
the statistical properties for what they are designed is duly
compared throughout simulations.

II. CONSTRUCTION METHODS OF SDE-BASED MODELS

One-dimensional stochastic differential equations of the Itd
type have the following general form:

da(t) = a(z(t),t) - dt + b(z(t),t) - AW (L) (1)

where functions a(z(t),t) and b(x(t),t) are so-called drift
and diffusion terms, respectively, and W (¢) is a standard
Wiener process [11], [12]. The drift and diffusion terms
of (1) determines the statistical properties of the variable
z(t). In our case, x(t) represents the wind speed and our
objective is to define a(x(t),t) and b(x(t),t) such that the
stationary probability distribution of xz(t) is Weibull and its
autocorrelation show an exponential decaying behavior. The
following Subsections provide three different approaches that
pursue the aforementioned goals. Method I is based on the
application of a memoryless transformation, while Methods
IT and IIT are based on the solution of the stationary Fokker-
Planck equation.



A. Method I

The starting point of this method is the stochastic process
represented by the following well-known SDE:

de(t) = —a- (x(t) —p) - dt+V2-a-o-dW(t) (2)

The solution of (2) is a stationary stochastic process so-
called Ornstein-Uhlenbeck process. This process is character-
ized by a Normal distribution of mean p and standard deviation
o, and by an exponential autocorrelation whose decay rate is
governed by the coefficient «, i.e.,

r(r) =e 7 3)

where 7 is the time lag. Therefore, (2) fulfills the objective
related to the autocorrelation of the process. In order to obtain
a given probability distribution, the following memoryless
transformation is applied to (2) [9]:

y(t) = Fp' (®(x(1))) 0))

where ®(-) is the Cumulative Distribution Function (CDF)
of the Normal distribution N (,0), and Fp(-) is the CDF
of the desired probability distribution D. As a result of
the memoryless transformation (4), a translation process y(t)
is obtained with the desired probability distribution. Note,
however, that as a consequence of the memoryless transfor-
mation, the autocorrelation of y(t) is not guaranteed to be the
exponential autocorrelation of the original process z(t) defined
by (2), [9]. Theoretical foundations of this fact can be found
in [13].

B. Methods II and 111

Both methods are based on the Fokker-Planck equation.
This equation is a partial differential equation whose solution
provides the time evolution of the Probability Density Function
(PDF) of a stochastic process represented by the SDE (1).
In the stationary case, the Fokker-Planck equation has the
following form:

1 0
[V (2(t)) - p(z(t)] &
5 3o ) )] ©
where functions a(xz(t)) and b(x(t)) are the drift and diffusion
terms of the SDE, respectively, and p(z(t)) is the stationary
PDF of the process z(t).
Equation (5) can be solved for the drift term, as follows:
Ob(x(t)) Olnp(x(t))
a(x(t)) = b(z(t)) - WV
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0= —a(z(t)) - p(z(t)) +

(6)

or it can be also solved for the (squared) diffusion term, as
follows:

2 /I(t)

= : a(z(t) - p(z(t)) -dz(t) (D)
p(x(t) /oo

for p(z(t)) # 0, and b(z(t)) = 0 if p(x(t)) = 0. Therefore,

for a given PDF p(z(t)), if the diffusion term is known,

the drift term is obtained from (6). In a similar way, if the

drift term is known, the diffusion term is obtained from (7).

The idea is then to proceed in two steps: (i) first, find the
expression of one term (the drift or the diffusion) in order to
obtain an exponentially autocorrelated process, and (ii) solve
the corresponding equation to obtain the form of the other
term.

1) Method II: In this method, the drift term is first defined
and (7) is solved to obtain the diffusion term. The expression
of the drift term is as follows:

a(z(t)) = —a - (z(t) = pp) ®)

where pp is the mean of the desired probability distribution,
and « is the autocorrelation coefficient. Defining a drift term
as in (8) is a sufficient condition to obtain a stochastic process
with exponential autocorrelation, as demonstrated in [10].
Observe that the expression of the drift term (8) is similar
to the expression of the drift term of the Ornstein-Uhlenbeck
process (2).

2) Method III: In this method, the diffusion term is first de-
fined and (6) is solved to obtain the drift term. The expression
of the drift term is as follows:

b(z(t)) =v2-a-op )

where op is the standard deviation of the desired probability
distribution, and « is the autocorrelation coefficient. Observe
that the expression of the diffusion term (9) is similar to the
expression of the diffusion term of the Ornstein-Uhlenbeck
process (2). From the best of the authors’ knowledge, there
is no any theoretical reason that justifies the fact that defining
a diffusion term as in (9) lead to a stochastic process with
exponential autocorrelation. In [8], this method is applied for
Gaussian-related probability distributions (namely, the Gram-
Charlier expansion of a Gaussian distribution and a bimodal
distribution composed of Gaussians) with good results.

III. WIND SPEED MODELS

In this section, the methods described above are applied to
obtain SDE-based models able to generate stochastic processes
with Weibull distribution and exponential autocorrelation. The
following functions and moments are relevant to develop such

models: i
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where k is the shape parameter, A is the scale parameter, Fyy (-)
is the CDF, pw (+) is the PDF, uyy is the mean, and o is the
standard deviation of the Weibull distribution, respectively. In
(12) and (13), T'(+) represents the Gamma function.



A. Model 1

To obtain Model I, Method I is applied. For simplicity,
the Ornstein-Uhlenbeck process (2) is adapted to a standard
Normal distribution, i.e., 4 = 0 and o = 1. Therefore, the first
equation of Model I is

dz(t) = —a-z(t) - dt + V2 - a - dW(t) (14)

A memoryless transformation of the type of (4) particular-
ized for the Weibull distribution is applied to the solution of
(14), i.e,

y(t) = Fy' (2(x(1))

where ®(-) is the CDF of the standard Normal distribution
N(0,1), and Fyw(-) is the CDF of the Weibull distribution
(10). Therefore, Model I is a two-equation model composed
of one SDE and one algebraic equation, where variable y(t)
represents the wind speed.

5)

B. Model I1

This is a single-SDE model that results from applying
Method II for the particular case of a Weibull distribution.
The drift term is set to

a(z(t)) = —a- (z(t) — pw)

where pw is the mean of the Weibull distribution (12). By
substituting p(z(t)) in (7) by the PDF of the Weibull distri-
bution (11), and solving the equation, the following diffusion
term is obtained:

(16)

b(x(t)) = V/bi(x(t)) - ba(x(t)) (17)
with
bi(o(t) = ——2_ (18)
pw(z(t))
and

1 (z(t)\" —(@(t)/N)F
by(x(t)) = A-T 1+E7 BN —pw-e (19)
where T'(+,-) is the Incomplete Gamma function.

C. Model 111

This model is obtained applying Method III and, similarly
to Model II, it is a single-SDE model. The diffusion term is
defined as

b(z(t) =VvV2-a-ow (20)

where o is the standard deviation of the Weibull distribution
(13). After setting p(x(t)) to the PDF (11) and substituting the
diffusion term (20) in (6), the resulting equation is solved and
the following drift term is obtained:
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Fig. 1. Probability density of the hourly mean wind speed data.

IV. CASE STUDY

In this section, the three SDE-based models developed
above are utilized to model the wind speed of a real-world
location. Such a location is Malin Head, head land situated at
the most northerly point of Ireland. The data set was provided
by Met Eireann, the Irish national meteorological service and
consists of wind speed measurements recorded by a synoptic
weather center located 22 meters above the mean sea level
that includes a 3-cup anemometer. Raw wind speed data are
adquired every 0.25 seconds and running averages of 240
values are calculated every minute [14].

A. Data analysis

The original data set is composed of one-minute mean wind
speed values expressed in knots for the whole year 2012. For
practical reasons, the units of the wind speed measurements
are transformed to meters per second, and average is taken
such that a data set with hourly mean wind speed values is
obtained. As 2012 was a leap year, the new data set contains
8784 values.

Figure 1 depicts the normalized histogram of the considered
data set and the PDF fit considering a Weibull distribution.
It can be observed that the Weibull PDF fits quite well the
empirical probability density of the data. The parameters of
the Weibull distribution obtained in the fitting process are k =
2.2596 and A = 8.6055.

Figure 2 shows the autocorrelation of the considered data
set for time lags up to 120 hours (5 days). The grey line
is the autocorrelation computed from data, while the black
line corresponds to the exponential fit according to expression
(3). As it can be observed the exponential function is a good
approximation to the autocorrelation for time lags up to ap-
proximately 40 hours. The obtained autocorrelation coefficient
of the exponential fit is o = 0.0504.

As the Weibull distribution and the exponential function are
good approximations for the normalized histogram and the
autocorrelation of the wind speed data set, respectively, the
three models previously developed are suitable to represent
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Fig. 2. Autocorrelation of the hourly mean wind speed data.

the wind speed for the considered location. However, since
the wind speed is exponentially autocorrelated only for time
lags up to 40 hours, the ability of the developed models to
represent the wind speed behavior of the considered location
is expected to be acceptable only for that time frame.

B. Simulations

The results obtained with the data analysis above is used
to set up the three wind speed models. To obtain wind speed
trajectories from the developed models is necessary to use
numerical integration techniques for SDEs. For that, we used
the multiprocessor stochastic integration tools available in the
software Dome [15]. In particular, we applied the following
implicit Milstein integration scheme:

a(t+h) =a(t) + g (a(z(t+h)) +a(z(1))) + b(z(t)) AW
9b(x(1))
Dz (t)

where a(-) and b(-) are, respectively, the drift and diffusion
terms of the corresponding SDE, h is the integration time step,
and AW ~ N(0,v/h) are random increments of the Wiener
process. The integration scheme (22) reduces to the implicit
Euler scheme if the diffusion term b(-) is constant, as it is the
case of Model I and Model III. The interested reader can find
other integration schemes in [16].

The initial value of the integration scheme (22), i.e, the
initial value of all the simulations carried out, is obtained
by sampling a Weibull distribution with the parameters given
is Subsection IV-A. The sampling of the Weibull distribu-
tion, together with the sampling of the normal variates that
approximates the Wiener process AW, is performed with
the pseudo-random number generator provided by the GNU
Scientific Library (GSL) [17]. To perform fair comparisons,
the simulations of each model are carried out using same seed
in the pseudo-random number generator.

Figure 3 depicts three wind speed trajectories, where each
trajectory was generated with one model. The trajectories

+ %b(m(t)) (AW)*—h)  (22)
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Fig. 3. Wind speed trajectories generated by Models I to III.

are generated using Models I to III. The three trajectories
share the initial value and the sequence of increments of
the Wiener process. It can be observed that the trajectories
are very close to each other but are not identical. A similar
behaviour is observed when using other seed values. The
question is whether the small differences observed in the
single trajectories translate to noticeable differences in what
respect to the statistical properties of the generated wind speed
trajectories.

The statistical properties of the processes generated by each
SDE-based model were obtained on the basis of multiple
simulations considering a time frame of 120 hours. This time
frame is appropriate to illustrate the exponential decay of the
autocorrelation function, as it can be deduced from Figure
2. A set of 10000 wind speed trajectories was generated by
means of each model. It is worth pointing out that in the case
of Model III, 9.57% of the simulations were dismissed due to
the appearance of wind speed negative values and/or numerical
problems. None of these two circumstances were observed for
Models I and II. Therefore, the following statistical analysis
was performed based on 10000 simulations for Models I and
II, and 9430 simulations for Model III.

Figure 4 compares the probability density of the trajecto-
ries generated by the Models I to III with the PDF of the
Weibull distribution used to construct those same models.
These probability densities were computed taking into account
the wind speed values generated at the end of each simulation.
It is observed that the differences between the curves are not
significant from a statistical point of view, so it can be said
that the models are able to reproduce this probability density.

Figure 5 depicts the comparison between the exponential
function fitted to the autocorrelation of the wind speed data
set and the autocorrelation of the trajectories generated by
each model. As in the case of the probability density, all
models are able to reproduce the autocorrelation exponential
decay without significant deviations. This is an unexpected
result in what refers to Model III, since it is not theoretically
desmonstrated. Regarding Model I, althought obtaining an
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exponential autocorrelation with the given decay rate is not
guaranteed, it can be observed that the model is able to
aproximate this property with accuracy.

V. CONCLUSIONS

This paper describes three methods to construct wind speed
models based on SDEs. Such three methods are applied
leading to models able to generate stochastic processes with
Weibull distribution and exponential autocorrelation. The sta-
tistical analysis of a wind speed data set collected in a weather
station in Ireland has served to set up the three models
according to real-world parameters. Simulation results of the
three models reveal that they provide wind speed trajectories
with the statistical properties for which they were designed.
Although the results obtained with each model are not exactly
identical in what refers to trajectories, it can be said that the
three models are statistically equivalent. This is not an obvious
result, since the formulation of each model is substantially
different. Finally, caution should be taken when using Model
IIT since it can produce trajectories with numerical inconsisten-
cies as, for example, negative wind speed values. Future work

will focus on the application of the presented approached to
develop wind speed models for probability distributions other
than the Weibull distribution.
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