
1

Optimum Data Sampling Frequency for Short-Term
Analysis of Power Systems with Wind

Guðrún Margrét Jónsdóttir, Student Member, IEEE, Brendan Hayes, and Federico Milano, Fellow, IEEE
School of Electrical & Electronic Engineering, University College Dublin, Ireland

gudrun.jonsdottir@ucdconnect.ie, {brendan.hayes, federico.milano}@ucd.ie

Abstract—The aim of this paper is to determine the optimum
data sampling frequency for building wind speed models for
dynamic analysis of power systems. Higher sampling frequencies
increase the computational burden of the model, while smaller
frequencies cannot capture faster wind variations. Another aspect
to take into account when selecting the sampling frequency is that
the wind turbine blades damp faster wind speed variations. This
paper addresses these issues by using wind speed measurements
as well as the continuous-time autoregressive moving average
modeling approach to study the effect of the sampling frequency
and blade damping on the stochastic properties of the proposed
wind speed model.

Index Terms—Wind speed modeling, sampling frequency,
short-term analysis of power systems, continuous-time ARMA
models.

I. INTRODUCTION

Wind energy is one of the fastest growing renewable energy
sources for electricity worldwide [1]. This has led to an
increase in the volatility and uncertainty present in power
systems. Therefore, accurate stochastic models are required
to simulate the wind speed fluctuations in power systems. In
order to construct these models wind speed data is required.
Typically, only minutely or hourly data samples are available
as well as average values over the same time frames [2], [3].
In some instances however, such as the dynamic analysis of
power systems, time steps of less then one minute are required.
Little work has been done to study the effect of wind speed
sampling times on short-term power system analysis. This
research identifies the effect the data sampling frequency has
when building wind speed models based on data for short-term
analysis of power systems.

Wind speed is typically modeled as a stochastic process.
Since wind speed is site dependent, there is no universal time
step, dataset or model for all locations. Each site requires its
own data-based model [4], [5]. Traditionally, models used for
dynamic analysis of power systems are based on data with a
minutely sampling time or are not based on data [6]–[10]. For
example, the four-component composite model used in [6] and
[7] and the Weibull distribution wind speed model used in [8]
are not based on data. In [9] and [10], the modeling approaches
intended for short-term analysis, which ranges from seconds
to a few minutes, of power systems are presented utilizing
minutely wind speed data.

The wind speed models generate processes that are fed to
the aerodynamic part of the wind turbine rotor model. In [11]
and [7], a simplified aerodynamic model for wind turbines is

presented. It models the damping effect of the rotor blades
as a low-pass filter. The time constant of the low-pass filter
is dependent on the rotor radius and the average wind speed.
The effective wind speed on the rotor of the wind turbine is
therefore a filtered version of the actual wind speed. This filters
out some of the faster wind speed variations and thereby sets
a limit on the required sampling frequency.

The focus of this research is to determine the optimum
sampling frequency that captures the stochastic properties of
wind speed on a minutely to secondly bases. The damping of
the rotor complicates the selection of the sampling frequency.
A higher sampling frequency increases the computational
burden and if the sampling frequency is too low, the models
do not capture the faster wind speed variations. With this
aim, the continuous-time equivalent of the well-established
Autoregressive Moving Average (ARMA) is used to model the
wind speed. This enables building models based on data with
any sampling rate and simulating them with a time step of
seconds. This approach is based on the observation that if
an ARMA model is stationary then it has a continuous-time
counterpart termed Continuous-Time ARMA (CARMA) [10],
[12].

The contributions of this paper are twofold:
• To analyze what resolution is required when sampling

the wind speed data to build models intended for use in a
secondly to minutely time frame, specifically for dynamic
analysis of power systems.

• To study how the effective wind speed on the rotor of the
wind turbine depends on the data sampling rate used.

The reminder of this paper is organized as follows. In
Section II, the steps to construct the CARMA wind speed
models are presented. Section III presents the filter model
used to represent the damping effect of the turbine blades. The
wind speed data with different sampling times is presented in
Section IV. In Section V, CARMA wind speed models are built
based on data with different sampling rates and compared.
Finally, Section VI draws conclusions and outlines possible
areas of future research.

II. CONSTRUCTION OF CARMA MODELS

This section presents a procedure to obtain a continuous-
time ARMA model from wind speed measurements. The pro-
posed procedure consists of four steps, as shown in Fig. 1.
Each step is discussed below. Further information on the con-
struction procedure as well as the accuracy of this construction
method can be found in [10].
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Fig. 1. The four steps to construct the proposed CARMA wind speed models.

Step 1: Memoryless transformation

The memoryless transformation fits non-normally dis-
tributed data to the Gaussian distribution while retaining its
original stochastic properties. This is achieved by applying
the inverse Gaussian Cumulative Distribution Function (CDF)
to the CDF of the wind speed data.

y(t) = Φ−1(F (X(t))) , (1)

where Φ−1 is the inverse CDF of the Gaussian distribution and
F is the CDF of the probability distribution of the wind speed
[13]. The result is wind speed that is normally distributed
which can be used to build an ARMA model.

Step 2: ARMA modeling

ARMA models can be divided into two components, namely,
Autoregressive (AR) and Moving Average (MA):
• Autoregressive: relates the current value of the wind speed

to past values.
• Moving Average: relates the current value of the wind

speed to past error values.
The ARMA(p,q) model is given by

Xt =

p∑
i=1

φiXt−i︸ ︷︷ ︸
AR

+

q∑
i=1

θiεt−i︸ ︷︷ ︸
MA

+εt , (2)

where εt is white noise with a standard deviation σa, φi are
the autoregressive parameters and θi are the moving average
parameters. φp and θq are non-zero.

ARMA models of second order or higher have been widely
used to model wind speed [14]–[16]. The ARMA(2,1) model
is a special case as it is the lowest order ARMA model that
captures the statistical properties of wind speed. It can be
written as

φ(B)Xt = θ(B)εt , (3)

where B is the backward operator such that BXt = Xt−1 and

φ(z) = 1− φ1z − φ2z2 (4)
θ(z) = 1 + θ1z . (5)

In this research, the Maximum Likelihood method is used
to estimate the ARMA parameters. The method finds the
parameter values of the ARMA model which maximizes the
Likelihood Function of the sampled data. The Likelihood
Function is based on the Gaussian CDF of the sampled data.
The estimated ARMA parameters are used to find the equivalent
CARMA parameters.

Step 3: CARMA modeling

CARMA models are the continuous-time counterparts of the
discrete-time ARMA models. A CARMA(p,q) model denoted by
x(t) is a Stochastic Differential Equation (SDE) of the form

dpx

dtp
+ cp−1

dp−1x

dtp−1
+ . . .+ c1

dx

dt
+ c0(x(t)− µ)

= b0dW (t) + b1
dz

dt
+ . . .+ bq

dqz

dtq
,

(6)

where W (t) is the standard Wiener process. ci are the
autoregressive coefficients and bi are the moving average
coefficients. ci and bi are real and bq 6= 0 [17]–[19].

Generally, a stationary CARMA(p,q) model sampled regu-
larly can be written as a ARMA(p,p-1) model with q < p [12].
The simplest example is the Ornstein-Uhlenbeck process, i.e.,
CARMA(1,0)

dXt + c0Xt = dW (t) , (7)

which is equivalent to an ARMA(1,0) model viewed with a
fixed time step h

Xt = exp(−c0h)Xt−1 + εt . (8)

The CARMA(2,1) model is used in the remainder of this
paper and can be written as

c(D)X(t) = b(D)dW (t) , (9)

where D is the differential operator and

c(z) = z2 + c1z + c0 (10)
b(z) = b0 + b1z . (11)

An equivalent discrete-time ARMA(2,1) model can be found if
the CARMA(2,1) model is stationary. The CARMA(2,1) model
is stationary if the real parts of the roots of (10), α1 and α2,
are negative. The autoregressive parameters of the continuous-
time model, c1 and c0, can be directly connected to the
autoregressive parameters of the discrete-time model, φ1 and
φ2, using the z-transformation.

φ1 = eα1h + eα2h (12)

φ2 = −e(α1+α2)h . (13)

The theoretical auto-covariance function of a discrete-time
ARMA(2,1) model is defined as

γ
ARMA

(k) =


φ1γ(1) + φ2γ(2) + θ1(φ1 + θ1)σ2

a + σ2
a if k = 0

φ1γ(0) + φ2γ(1) + θ1σ2
a if k = 1

φ1γ(k − 1) + φ2γ(k − 2) if k > 1 ,

(14)
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where k is the time lag and γ = γ
ARMA

. The theoretical auto-
covariance function of a CARMA(2,1) model is

γCARMA(h) = eα1h
b(α1)b(−α1)

c′(α1)c(α1)
+ eα2h

b(α2)b(−α2)

c′(α2)c(α2)
. (15)

The moving average parameter of the continuous-time
model, b1, is set so that the auto-covariance of the discrete-time
model, γARMA , is equal to the auto-covariance of the continues
time model, γCARMA .

Step 4: Inverse memoryless transformation

The inverse of the memoryless transformation in Step 1 is
used to impose the true probability distribution of the data. The
inverse CDF of the wind speed data is applied to the Gaussian
CDF of the CARMA model

y(t) = F−1(Φ(X(t))) . (16)

This obtains the desired probability distribution of the wind
speed data [13]. The memoryless transformation and its inverse
enable the use of ARMA and CARMA models to model data
with any probability distribution that has a defined CDF and
inverse CDF.

III. EQUIVALENT WIND SPEED

The CARMA method, presented in Section II, is used to
model wind speed based on the data available in [20]. Wind
speed is not uniform across the rotor blade area. For example,
wind speed at the tip, center and hub can differ [11]. However,
these variations even out over the blade area. This damping
effect by the rotor blades is modeled as a low-pass filter, shown
in Fig. 2. The input is the CARMA data-based model generating
wind speed at hub height of the wind turbine. The output is
the equivalent wind speed that produces the same torque as
the actual wind field [7].

1
1+τs

CARMA
Wind Speed
Model [m/s]

Equivalent
Wind Speed

[m/s]

Fig. 2. The low-pass filter that represents the damping effect of the blades
of the wind turbine.

The time constant, τ [s], of the low-pass filter is proportional
to the rotor radius, R [m], and the average wind speed at the
hub height, U [m/s]. The time constant of the low-pass filter
is:

τ =
γR

U
, (17)

where γ is the decay factor over the disc [11]. The radius
of the rotor typically ranges from 20− 90 m. Thus, the time
constant of the low-pass filter is between 5− 20 s. Therefore,
the filter has a cut-off frequency of 0.03 − 0.008 Hz which
corresponds to 30− 120 s. Hence, the filter is damping wind
speed variations in the minutely time frame.

The fastest wind speed variations have frequencies above
10 Hz. The Nyquist-Shannon sampling theorem states that
for discrete samples, to capture all the information of a

continuous-time signal, a sampling frequency, fs, has to be
chosen which is twice the highest frequency component, fmax

of the continuous-time signal. That is fs ≥ 2fmax. The
sampling frequency required in this case is limited by the
low-pass filter. Due to the cut-off frequency of the filter the
fast wind speed variations in this paper are in the range
0.001 − 10 Hz. Furthermore, since the rotor damping is
modeled as a first-order filter, the wind speed variations close
to cut-off frequency are damped, not eliminated. It is difficult
to ascertain the extent to which these higher frequencies pass
through the filter. Hence, this research utilizes simulation to
identify the optimum sampling frequency of wind speed data
for models intended for short-term analysis of power systems.

IV. WIND SPEED DATA

The wind speed data used throughout this research were
gathered in the RE<C (Renewable Electricity Less Than Coal)
project and are available online [20]. The dataset consists of
one month of wind speed measurements sampled at 7.6 Hz.
The data is collected close to Tracy, California in the United
States. Two groups of datasets with different sampling times
are created in order to study the effect of the sampling time as
well as averaging on the stochastic properties of wind speed
data. Both groups of datasets are centered around minutely
sampled data as the wind turbine blades damp oscillations
with higher frequencies.

From a statistical point of view, the wind speed can be
characterized by its Probability Density Function (PDF) and
autocorrelation. The best fit for the autocorrelation and PDF
of wind speed is dependent on both the location and the
sampling time [4], [5]. The PDF gives the likelihood of the
occurrence of all possible wind speeds at a specific location.
The autocorrelation indicates how much the speed is likely
to change based on its current value. The autocorrelation
measures the relationship between the wind speeds current
value and its past and future values.

The CARMA models used in this paper aim to capture both
the autocorrelation and PDF of the wind speed data. The two
wind speed dataset groups studied in this paper are presented
in Sections IV-A and IV-B.

A. Group 1

The datasets in Group 1 contain one month of data and are
sampled as follows; fifteen minutely, five minutely, minutely
and minutely averages.

The two-parameter Weibull PDF that best fits each dataset
in Group 1 is shown in Fig. 3. The lower wind speeds are
slightly more prevalent in the fifteen minutely data as well
as in the average minutely data. The fifteen minutely data is
sampled less frequently and is therefore less likely to capture
the higher wind speeds. By taking the average over a minute
the extreme wind speeds are averaged out. The difference
between the PDF of the minutely and five minutely data is not
visible and the overall difference between the four datasets is
minimal. Therefore, the selection of the sampling time step is
not critical for capturing the PDF.
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Fig. 3. PDFs of the wind speed datasets in Group 1.

The autocorrelation of the wind speed datasets in Group 1
are shown in Fig. 4. The noticeable drop in the autocorrelation
of the four datasets in the first time instants is due to short-term
wind speed variations, such as turbulence and gusts. The initial
drop in the autocorrelation of the average minutely data is
much smaller than for the other three datasets. This is because
by taking the average, the effect of the short-term variations
is reduced. The minutely, five minutely and fifteen minutely
datasets have a steep drop after the first sampling instance and
then settle to have similar slope.

0 10 20 30 40 50 60

Lags [min]

0.7

0.75

0.8

0.85

0.9

0.95

1.0

1.05

A
u

to
co

rr
el

at
io

n

Minutely Data

Average Minutely Data

Five Minutely Data

Quarter Hourly Data

Fig. 4. Autocorrelations of the wind speed datasets in Group 1.

B. Group 2

The datasets in Group 2 contain one week of data and are
sampled as follows; minutely, half minutely, twenty secondly,
ten secondly and secondly.

The autocorrelation of the wind speed datasets in Group
2 are shown in Fig. 5. When the time between samples is
decreased the initial drop in the autocorrelation gets steeper.
The autocorrelation of the datasets indicates that the models
will have the same long-term behavior but the short-term
fluctuations depend on the time step of the data.

V. SIMULATION RESULTS

In this section, the CARMA construction method presented
in Section II is used to build wind speed models based on both
Group 1 and 2 datasets. The generated wind speed processes
are filtered using the low-pass filter, presented in Section III,
that represents the damping effect of the turbine blades and
the resulting effective wind speed on the turbine is examined.
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Fig. 5. Autocorrelations of the wind speed datasets in Group 2.

A. Group 1

The CARMA construction method is used to build wind
speed models based on the Group 1 datasets. Each wind speed
model is simulated 1, 000 times. The model based on average
minutely data generates wind processes that vary less then the
other three models. This is predicted by the autocorrelation
in Fig. 4. The initial variations of the wind speed increase
as the sampling frequency increases. However, this difference
decreases with time as illustrated by the autocorrelation in
Fig. 4. The slope of the autocorrelation defines how fast the
wind speed varies over a certain time frame. The variance of
the wind speeds is shown in Fig. 6 to better compare the wind
speed processes.

The generated wind speed processes are fed to the low-pass
filter, presented in Section III, to model the damping effect
of the blades of the wind turbine. The resulting filtered wind
speed is the effective wind speed on the wind turbine. The filter
in this case is set with the turbine radius of both 40 m and
90 m. The average wind speed in both cases is set to 6 m/s
and the decay factor of the disc is set to γ = 1.3. The resulting
time constants of the filter are found using (17); τ40 = 8.67 s
with R = 40 m and τ90 = 19.5 s with R = 90 m. The
cut-off frequency of the filter is 0.0184 Hz and 0.0019 Hz,
respectively.

In Fig. 6, the variance of the equivalent filtered wind speed
processes after 10 s and 100 s are shown. The filter slightly
damps the processes based on five and fifteen minutely data but
damps the oscillations of the minutely based processes more
because the variations have a higher frequency. This indicates
that the maximum sampling step can be one minute. Therefore,
models based on datasets with a higher sampling frequency are
studied.

B. Group 2

The wind speed models based on the Group 2 datasets are
simulated 1, 000 times. The variance of the generated wind
speed processes after 10 s and 100 s are shown in Fig. 7.
The effect of the sampling is visible in the variance after
10 s but not after 100 s. This is because the initial drop
in the autocorrelation, shown in Fig. 5, is dependent on the
sampling time. After one minute all the models have the same
autocorrelation thus, after 100 s all models have the same
variance.
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The variance of the filtered wind speed processes are shown
in Fig. 7. The low-pass filter damps the variance of all five
models. As the sampling frequency is increased the newly
introduced faster variations are damped more. The variance of
the model based on ten secondly and secondly data is almost
identical. This indicates that ten secondly sampling is sufficient
as faster variations are damped by the low-pass filter.

VI. CONCLUSIONS

This work studies the effect of the sampling frequency on
the stochastic properties of wind speed data. The paper takes
in to account the damping effect of the turbine blades. This
damping effect is modeled using a low-pass filter so that wind
speed variations close to the cut-off frequency of the filter
are damped, not eliminated. The CARMA construction method
is used to build wind speed models based on datasets with
sampling times from fifteen minutely to secondly.

Wind speed measurements indicate that the PDF of the
wind is not dependent on the sampling frequency. However,
the autocorrelation depends on the sampling frequency as it
defines the slope of the autocorrelation. Results also show that
ten secondly sampling is the optimum sampling rate. Higher
sampling frequencies will increase the computational burden
of the model, while, a lower sampling frequencies will not
capture fast wind speed variations.

The proposed CARMA model is tailored for short-term dy-
namic analysis. Long-term effects, such as daily and seasonal
ones, are not taken into account in this study. Future work will

attempt to define a stochastic wind speed model that is able
to reproduce both the short- and long-term behavior of wind
speed.
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