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Abstract

This paper proposes two general procedures to develop wind speed models based
on stochastic differential equations. Models are intended to generate wind speed
trajectories with statistical properties similar to those observed in the wind speed
historical data available for a particular location. The developed models are parsi-
monious in the sense that they only use the information about the marginal distri-
bution and the autocorrelation observed in the wind speed data. Since these models
are continuous, they can be used to simulate wind speed trajectories at different
time scales. However, their ability to reproduce the statistical properties of the wind
speed is limited to a time frame of hours since diurnal and seasonal effects are not
considered. The developed models can be embedded into dynamic wind turbine
models to perform dynamic studies. Statistical properties of wind speed data from
two real-world locations with significantly different characteristics are used to test
the developed models.

Key words: Stochastic differential equations, Dynamic analysis, Wind speed,
Weibull distribution, Ornstein-Uhlenbeck process, Memoryless transformation,
Translation process, Autocorrelation.

1 Introduction

The power production of a wind power plant is affected by the statistical
characteristics of the wind speed at its location. Due to the volatile and un-
controllable nature of this energy source, the power output of wind generators
is a fluctuating signal. As a consequence, from the network perspective, wind
power can be viewed as a source of stochastic perturbations coming from the
generation side. These perturbations can affect the power quality and they
must be taken into account in power system dynamic studies. The uncertainty
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in the power production of wind power plants has also economic implications
since this kind of generation cannot be dispatched in a conventional way. To
deal with these issues, careful studies have to be performed in which the appro-
priate representation of the wind variability represents a key modeling aspect.
This paper is devoted to the development of mathematical models able to
reproduce the wind speed behavior.

The wind speed at a specific location is characterized by its statistical prop-
erties. Through the analysis of recorded historical data, the marginal distri-
bution of the wind speed can be estimated. Several probability distributions
have been proposed to describe the wind speed behavior (e.g., [1–6]). From the
studies reported in the literature, it can be concluded that the type of prob-
ability distribution depends on the particular location. For long time scales,
the two-parameter Weibull distribution has shown a good fit to the observed
wind speed empirical distribution in many locations around the world [2].
However, for wind speed fluctuations in time scales shorter than 10 minutes,
turbulent effects take place, and the Weibull distribution is not considered a
good fit [4, 7].

Another characteristic observed from the wind speed data is that wind speed
is an autocorrelated (two-point time-correlated) variable. The autocorrelation
function of the wind speed is usually characterized by an exponential decay
in the range of hours. Outside this time frame, non-stationary phenomena
related to diurnal and seasonal effects can be observed [8–11].

Therefore, wind speed models have to reproduce the statistical properties dis-
cussed above in order to provide reliable results in wind power studies.

Wind speed models are of interests in dynamic studies and control of wind tur-
bines (e.g., [12–16]), in generating capacity reliability evaluation (e.g., [17–19]),
and in power system economics and operation (e.g., [20–22]). Techniques used
in these areas include wind speed trajectories generation, wind speed fore-
casting, Monte Carlo simulation and wind speed scenarios. These techniques
can accommodate different wind speed models. In this regard, reference [23]
reports the state of the art of wind speed models used in power system dy-
namic analysis, whereas [24] provides a bibliographical survey on wind speed
forecasting methods and models. Reference [25] uses Monte Carlo simulations
to compare the performance of different wind speed models in the context
of reliability evaluation of power systems. Finally, a general methodology to
generate wind speed scenarios is proposed in [26].

Among the wind speed models used in different research fields, discrete mod-
els used in time-series analysis are the most common. These models are based
on Box-Jenkins methods and include Auto-Regressive (AR), Moving Average
(MA), Auto-Regressive Moving Average (ARMA), and Auto-Regressive In-
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tegrated Moving Average (ARIMA) models. The ability of these models to
reproduce the statistical properties of the wind speed for a particular site de-
pends on the wind speed data available and on the time frame of interest [24].
Other models include four-component composite model [27], models based on
filters and wind power spectral density [12], and Markov chain models [28].
Recently, wind speed fluctuation models constructed from the solution of the
stationary Fokker-Plank equation have been proposed in [29].

In this paper, two continuous wind speed models based on stochastic differen-
tial equations (SDEs) are developed. The starting point of the development of
both models is a SDE defining an Ornstein-Uhlenbeck process. This process
can be considered as the continuous-time equivalent of the discrete-time AR
process of order one, AR(1), [30]. The developed models are intended to gener-
ate wind speed trajectories with similar statistical properties to those observed
in the wind speed data available at a particular location. The developed models
take into account the marginal distribution and the autocorrelation function
of the wind speed. To illustrate the proposed procedures, the two-parameter
Weibull distribution is used in the development of the models. However, it is
important to note that the proposed methodology is not limited to the Weibull
distribution and other probability distributions can be used.

Therefore, the developed models provide autocorrelated Weibull distributed
wind speed trajectories. As they are continuous models, they can in princi-
ple be used to generate wind speed trajectories at any time scale. However,
since the models strive to reproduce the observed exponential autocorrelation
feature, their ability to reproduce the wind speed behavior is expected to be
acceptable only in the time frame where the wind speed remains exponen-
tially autocorrelated, typically for a few hours. Furthermore, the developed
models can be used to perform short term dynamic studies. In these studies,
the inclusion of autocorrelations into wind speed trajectories is critical.

For simulation purposes, each developed model can be used as an indepen-
dent “block” that generates wind speed trajectories. Another possibility in the
context of dynamic simulations is to merge the equations of the wind speed
model within the differential equations of the wind generator.

The remainder of the paper is organized as follows. Section 2 briefly introduces
SDEs and provides the main theoretical methods used for developing the wind
speed models. Section 3 describes the developed models and their properties.
Section 4 discusses the generation of wind speed trajectories and illustrates
their statistical properties through numerical simulations. Finally, Section 5
provides relevant conclusions.
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2 Brief Outline on Stochastic Differential Equations and Stochastic

Calculus

Stochastic Differential Equations (SDEs) are widely used to model stochastic
phenomena in several fields of science, engineering and finance (see, for exam-
ple, [31, 32]). This Section defines SDEs and provides the relevant stochastic
calculus background that will be used to build our wind models. The inter-
ested reader can find theoretical background on SDEs and stochastic calculus
in [33–37].

2.1 Definition of stochastic differential equations

A one-dimensional stochastic differential equation has the general form

dy(t) = a[y(t), t]dt+ b[y(t), t]dW (t), t ∈ [0, T ], (1)

y(0) = y0,

where a[y(t), t] and b[y(t), t] are the drift and the diffusion terms of the SDE,
respectively, and W (t) represents a standard Wiener process. This kind of
equation can be viewed as an ordinary differential equation where an addi-
tional term is included to model the stochastic dynamical behavior related
to variable y(t). The standard Wiener process (W (t), t ∈ [0,+∞)) is a non-
stationary diffusion process with the following characteristics [34]:

• W (0) = 0, with probability 1.
• The function t 7→ W (t) is almost surely continuous.
• For 0 ≤ ti < ti+1 ≤ T , the random variable defined by the increments
∆Wi = W (ti+1)−W (ti) is Gaussian distributed with mean zero and variance
h = ti+1 − ti, i.e. ∆Wi ∼ N (0, h).

• For 0 ≤ ti < ti+1 < ti+2 ≤ T , the non-overlapping increments ∆Wi =
W (ti+1)−W (ti) and ∆Wi+1 = W (ti+2)−W (ti+1) are independent.

Therefore, a standard Wiener process describes a continuous Gaussian process
whose sample paths (increments) are of unbounded variation [36]. Another
characteristic of the Wiener process is that W (t) is nowhere differentiable.
Therefore, despite the fact that the differential formulation is widely used
in the literature (and it will be used throughout this paper), in a strictly
mathematical sense equation (1) is not fully correct. Actually, the only correct
formulation for (1) is its equivalent integral form

y(t) = y(0) +
∫ t

0
a[y(s), s]ds+

∫ t

0
b[y(s), s]dW (s), t ∈ [0, T ], (2)
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where the first integral is an ordinary Riemann-Stieltjes integral and the sec-
ond one is a stochastic integral. Due to the unbounded variation of the sam-
ple paths of the Wiener process, stochastic integrals cannot be interpreted as
Riemann-Stieltjes integrals. In this regard, there are mainly two different inter-
pretations of stochastic integrals: the Itô’s and the Stratonovich’s approaches.
In order to exploit the advantages of the Itô’s calculus, in this paper stochastic
integrals will be interpreted in the Itô’s sense.

In the general case, SDEs have to be solved numerically. Numerical methods
for SDE can show two types of convergence: strong and weak. Strong conver-
gence refers to the goodness of the approximation when the focus is on the
process trajectories themselves. On the other hand, weak convergence refers
to the goodness of the approximation of the moments of the solutions to the
moments of the process. Reference [38] provides a detailed description of the
available methods for the numerical solution of SDEs.

2.2 Ornstein-Uhlenbeck process

The simplest SDE arises from (1) if a[y(t), t] = 0 and b[y(t), t] = b = constant,
that is,

dy(t) = bdW (t), t ∈ [0, T ], (3)

y(0) = 0.

With the assumptions above, the trajectories of y(t) are similar to those of a
standard Wiener process. Therefore, the main statistical properties (first and
second order moments) of y(t) are [37]:

E[y(t)] = 0, ∀t ∈ [0, T ],

Var[y(t)] = b2t, ∀t ∈ [0, T ],

Aut[y(ti), y(tj)] = min(ti, tj), ∀ti, tj ∈ [0, T ],

where E[·] is the mean, Var[·] is the variance, and Aut[·] is the autocorrelation
function. As a result, y(t) is a non-stationary diffusion process distributed as
N (0, b2t).

A stationary and two-point correlated diffusion process, the so-called Ornstein-
Uhlenbeck process, can be defined by adding a drift term of the form −αy(t) to
equation (3) or, equivalently, by setting a[y(t), t] = −αy(t) and b[y(t), t] = b =
constant in (1), leading to the following SDE:

dy(t) = −αy(t)dt+ bdW (t), t ∈ [0, T ]. (4)
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If the initial condition of (4) is

y(0) ∼ N (0, b2/2α), (5)

the resulting process has the following statistical properties [37]:

E[y(t)] = 0, ∀t ∈ [0, T ],

Var[y(t)] = b2/2α, ∀t ∈ [0, T ],

Aut[y(ti), y(tj)] = e−α|tj−ti|, ∀ti, tj ∈ [0, T ].

Therefore, y(t) is a stationary autocorrelated Gaussian diffusion process dis-
tributed as N (0, b2/2α).

In this paper, the SDE (4) is used as a starting point to developing two models
defining an autocorrelated Weibull distributed process aimed to reproduce the
wind speed behavior.

2.3 Change of variables in stochastic calculus: The Itô’s formula

The Itô’s formula is an adaptation of the deterministic chain rule to the
stochastic calculus. This formula allows computing derivatives of functions
involving variables defined by SDEs of the type (1). For a variable x(t) ex-
pressed as an arbitrary function g[·] of the stochastic variable y(t) defined by
(1)

x(t) = g[y(t), t], (6)

the stochastic dynamic behavior of x(t) obeys the following SDE:

dx(t) = c[x(t), t]dt+ d[x(t), t]dW (t), t ∈ [0, T ], (7)

x(0) = g[y(0)],

with

c[x(t), t] =
∂g

∂t
[y(t), t] + a[y(t), t]

∂g

∂y
[y(t), t] +

1

2
b2[y(t), t]

∂2g

∂y2
[y(t), t], (8)

d[y(t), t] = b[y(t), t]
∂g

∂y
[y(t), t], (9)

y(t) = g−1[x(t), t], (10)

where a[y(t), t] and b[y(t), t] are the drift and the diffusion terms of (1), re-
spectively [38].

By an appropriate choice of the function g[·] and the process y(t), the Itô’s
formula is applied in this paper to construct a SDE able to generate a stochas-
tic process with statistical properties similar to those observed in wind speed
measurements.
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2.4 Memoryless Transformations: Translation Processes

Memoryless transformations are used to obtain non Gaussian stochastic pro-
cesses from Gaussian stochastic processes. For a Gaussian process y(t), the
transformation

x(t) = g[y(t)], (11)

is said to be a memoryless transformation since the value of the new process
x(t) at an arbitrary instant t depends only on the value of y(t) at t. As a
result, process x(t) is not Gaussian unless function g[·] is linear. Because y(t)
is a Gaussian process, the statistical properties of the process x(t) only depend
on the first and second order moments of y(t) in a way which is controlled by
the function g[·]. Furthermore, if process y(t) is stationary, then x(t) is also
stationary [39].

For the purpose of this paper, the memoryless transformations of interest are
those related to translation processes. A translation process is the result of a
memoryless transformation (11) where g(·) is given by

x(t) = g[y(t)] = F−1
[

Φ[y(t)]
]

, (12)

where Φ[·] is the standard Gaussian cumulative distribution function and F [·]
represents a continuous cumulative distribution function other than Gaussian.
By using the transformation (12), we generate a stochastic process x(t) whose
distribution matches the distribution F [39, 40].

The relationship between the autocorrelation functions of processes x(t) and
y(t) as a result of transformation (12) is more complicated. In the general case,
it is not always possible to find an autocorrelation function for the Gaussian
process y(t) that leads to a pre-specified autocorrelation function for x(t). On
the other hand, autocorrelation functions of x(t) and y(t) satisfy the following
inequality [39, 40]:

|Aut[x(t)]| ≤ |Aut[y(t)]|. (13)

In this paper, the relationship between Aut[x(t)] and Aut[y(t)] is analyzed
numerically.

The translation process (12), where F [·] is the Weibull cumulative distribution
function, has been used to model the wind speed in the context of time series,
e.g. in [11, 26]. This translation process is also applied to the development of
the wind speed models discussed in the paper.
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3 Autocorrelated Weibull Distributed Stochastic Processes

In this section, two models that define autocorrelated Weibull distributed
stochastic processes are described. Both models are based on the Ornstein-
Uhlenbeck process (4) and on the application of a memoryless transforma-
tion. In the first model, the memoryless transformation is applied after the
integration of (4). In the second model, the memoryless transformation is ap-
plied directly to (4), and a new SDE defining the desired stochastic process
is obtained through the application of the Itô’s formula (Section 2.3). Both
methods provide a stochastic process with identical statistical properties.

3.1 Model I

As stated previously, the starting point for Model I is the SDE (4), that is,

dy(t) = −αy(t)dt+ bdW (t), t ∈ [0, T ], (14)

y(0) ∼ N (0, b2/2α).

By means of the numerical integration of (14) in a time interval [0, T ], tra-
jectories y(t) of an Ornstein-Uhlenbeck process are obtained at discrete times
ti ∈ [0, T ]. As pointed out in Section 2.2, the Ornstein-Uhlenbeck process is
an exponentially autocorrelated Gaussian process distributed as N (0, b2/2α).
Therefore, to obtain an autocorrelated Weibull distributed process, a memo-
ryless transformation is applied to the trajectories y(t) as follows

x(ti) = g[y(ti)] = F−1
W

[

Φ
[

y(ti)

b/
√
2α

]]

, (15)

where FW[·] represents the Weibull cumulative distribution function, i.e.,

FW[u] = 1− exp
[(

u

λ

)k]

, ∀u > 0, (16)

with λ > 0 and k > 0, the scale and shape parameters of the Weibull distribu-
tion, respectively, and Φ[·] is the Gaussian cumulative distribution function,
i.e.,

Φ
[

u− E[u]
√

Var[u]

]

=
1

2

(

1 + erf
[

u− E[u]
√

2Var[u]

])

, ∀u ∈ R. (17)

Observe that, in (15), it has been taken into account that y(t) is distributed
as N (0, b2/2α). The resulting process x(t) is an autocorrelated Weibull dis-
tributed stochastic process.
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3.2 Model II

In this section a new SDE defining the desired process is constructed. As in
Model I, the starting point is the SDE (14) defining the Ornstein-Uhlenbeck
process. This SDE is transformed into a new SDE defining a Weibull dis-
tributed process by applying Itô’s formula (Section 2.3) to the memoryless
transformation

x(t) = g[y(t)] = F−1
W

[

Φ
[

y(t)

b/
√
2α

]]

, (18)

where FW[·] represents the Weibull cumulative distribution function (16), and
Φ[·] is the Gaussian cumulative distribution function (17).

From SDE (14), the application of Itô’s formula to (18) leads to the following
SDE:

dx(t) = c[x(t)]dt+ d[x(t)]dW (t), t ∈ [0, T ], (19)

where

c[x(t)] = −αy(t)
∂g

∂y
[y(t)] +

1

2
b2
∂2g

∂y2
[y(t)], (20)

d[y(t)] = b
∂g

∂y
[y(t)], (21)

y(t) = (b/
√
2α)Φ−1

[

FW[x(t)]
]

, (22)

and initial condition

x(0) = F−1
W

[

Φ
[

y(0)

b/
√
2α

]]

. (23)
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The expression for the derivatives in (20) and (21) are as follows:

∂g

∂y
[y(t)] =

1√
π

λ

k

√
α

b

(

− ln
[

1− Φ
[

y(t)

b/
√
2α

]])
1−k
k

1− Φ
[

y(t)

b/
√
2α

] exp
[

− α

b2
y2(t)

]

, (24)

∂2g

∂y2
[y(t)] =

1

π

λ

k

α

b2

(

1− k

k

)

(

− ln
[

1− Φ
[

y(t)

b/
√
2α

]])
1−2k

k

(

1− Φ
[

y(t)

b/
√
2α

])2 exp
[

− 2α

b2
y2(t)

]

+

1

π

λ

k

α

b2

(

− ln
[

1− Φ
[

y(t)

b/
√
2α

]])
1−k
k

(

1− Φ
[

y(t)

b/
√
2α

])2 exp
[

− 2α

b2
y2(t)

]

−

1√
2π

λ

k

(

√
2α

b

)3

y(t)

(

− ln
[

1− Φ
[

y(t)

b/
√
2α

]])
1−k
k

1− Φ
[

y(t)

b/
√
2α

] exp
[

− α

b2
y2(t)

]

. (25)

The numerical integration of the SDE (19) provides an autocorrelated Weibull
distributed stochastic process x(t).

3.3 Statistical properties of the resulting process

As pointed out above, both Model I and Model II lead to stochastic processes
x(t) with the same statistical properties, as follows:

E[x(t)] = µW, ∀t ∈ [0, T ], (26)

Var[x(t)] = σ2
W, ∀t ∈ [0, T ], (27)

Aut[x(ti), x(tj)] ≈ e−α|tj−ti|, ∀ti, tj ∈ [0, T ], (28)

where µW and σ2
W are the mean and the variance, respectively, of the Weibull

distribution (16), that is,

µW = λΓ
[

1 +
1

k

]

, (29)

σ2
W = λ2Γ

[

1 +
2

k

]

− µ2
W, (30)
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with Γ[·] the Gamma function. Equation (28) states that the autocorrelation
of the process x(t) is well approximated by the autocorrelation of the Ornstein-
Uhlenbeck process. This result has been determined empirically by analyzing
a number of simulations. The goodness of this approximation depends on the
parameters of the Weibull distribution, as it is discussed in Subsection 4.1.2.
Therefore, the process x(t) takes the moments of the Weibull distribution used
in the memoryless transformation and shows a similar exponential autocorrela-
tion to that of the Ornstein-Uhlenbeck process. These results are corroborated
by the simulations discussed in Subsection 4.1.

It should be noted that the only parameters needed in Models I and II are λ,
k, and α, which are the parameters that determine the statistical properties
(26)-(28). Parameters λ and k are directly taken from the Weibull fit of the
wind speed data, while α can be easily computed from equation (28) once the
autocorrelation of the wind speed is known. Parameter b in Models I and II
does not affect the statistical properties (26)-(28) of the process x(t). There-
fore, its value can be arbitrary chosen. For simplicity, in this paper parameter
b is set to b =

√
2α.

As we mentioned before, the procedure applied to develop the equations in-
volved in the wind speed models is not constrained to the Weibull distribution.
This feature is useful if the wind speed of a particular site is better described
by distribution functions other than the Weibull one.

4 Generation of Wind Speed Trajectories

The process of generating wind speed trajectories consists in either integrating
the SDE (14) and subsequently applying transformation (15) (Model I), or in
integrating directly the SDE (19) (Model II). In this section, both models are
used for generating wind speed trajectories.

To solve (14) and (19) a numerical integration method is applied. In this
paper, an implicit integration scheme belonging to family of implicit Milstein
schemes is used, as follows:

x(t+ h) = x(t) +
h

2

[

a[x(t+ h)] + a[x(t)]
]

+ b[x(t)]∆W +
1

2
b[x(t)]

∂b

∂x
[x(t)]

(

(∆W )2 − h
)

, (31)

where a[·] and b[·] are the drift and diffusion terms, respectively, of the corre-
sponding SDE, h is the integration time step and ∆W ∼ N (0, h) are random
increments of the Wiener process. Other available numerical integration meth-
ods for SDEs can be found, for example, in [38].
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Location λ k Autocorrelation

Cape St. James 10.67 1.77 0.909

Victoria Airport 3.36 1.51 0.773

Table 1
Weibull parameters and one-hour autocorrelation of wind speed data [1, 10]

As in the deterministic case, the convergence error (as well as the consistency
and the numerical stability) of a numerical integration method for SDEs de-
pends on the integration step length h. In the case of the implicit Milstein
scheme (31) the convergence error is of order 1 (O(h)) in both the weak and
the strong senses. Therefore, an appropriate integration step length h must
be chosen to obtain a good approximation to the real trajectories and the
statistical properties of x(t) while maintaining a reasonable computational
burden.

The marginal distribution and the autocorrelation of the wind speed are typi-
cally determined on the basis of hourly or averaged hourly measurement data.
As a result, autocorrelation values are usually computed for time lags ex-
pressed in hours. Therefore, if the interest is in generating wind speed tra-
jectories for dynamic studies, autocorrelation factors must be adapted to the
time frame of seconds. In the proposed methods, this adaptation is directly
done by properly scaling the corresponding hourly-based value of parameter
α.

4.1 Simulations

To illustrate the performance of the developed models, the parameters of a
Weibull fit and the one-hour autocorrelations of the wind speed data of two lo-
cations in Canada reported in [1,10] are used. The two sites are Cape St. James
and Victoria Airport, and have been chosen because they show significantly
different wind speed characteristics, as it can be observed in Table 1.

To test the statistical properties of the processes obtained with the developed
models, 5000 wind speed trajectories are generated for a time frame of 24 hours
for each model. This time frame is chosen to illustrate the exponential decay
of the autocorrelation of the processes obtained. For these simulations, a time
scale of hours is considered and the integration step is set to h = 5/60 = 0.0833
hours, i.e., 5 minutes. Parameters λ, k, and α in equations (14) and (15) for
Model I, and in the equation (19) for Model II, respectively, are set according
to the data in Table 1. The α values are obtained from the autocorrelation
function (28). They are α = 0.0954 [1/hour], for Cape St. James, and α =
0.2575 [1/hour], for Victoria Airport, respectively.
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4.1.1 Marginal Distribution

Fig. 1. Weibull cumulative distribution function versus cumulative probabilities of
the generated processes.

Figure 1 shows the Weibull cumulative distribution functions and the cumu-
lative probabilities of the processes generated by the developed models for the
two locations. The upper part of this Figure shows the fit with the distribution
function of wind speeds at Victoria Airport, whereas the lower part shows the
fit with the distribution function of wind speeds at Cape St. James. These
results correspond to the fit at hour 24, but similar results can be found at
each point of the simulated time period ([0, 24] h).

As it is observed in Figure 1, the wind speed data generated by the developed
models follow the corresponding Weibull distributions. This is also corrob-
orated by Figures 2 and 3, where the mean and the standard deviation of
the wind speed trajectories generated by the developed models are compared
with the expected theoretical mean (26) and standard deviation (square root
of (27)) of the Weibull distribution, respectively. In both Figures 2 and 3, the
upper part corresponds to Cape St. James, while the lower part to Victoria
Airport.
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Fig. 2. Mean value of the Weibull distribution vs. mean value of the generated
processes.

4.1.2 Autocorrelation Function

Figure 4 depicts the autocorrelation of the wind speeds generated by the
developed models together with the autocorrelation of the Ornstein-Uhlenbeck
process. As in the previous figures, the upper and lower curves correspond
to the autocorrelation of the wind speeds generated with model parameters
extracted from Cape St. James and Victoria Airport wind data, respectively.
As it can be observed, the wind speed autocorrelation at Victoria Airport
decays faster than the wind speed autocorrelation at Cape St. James, which is
in concordance with the data in Table 1. Observe also that the autocorrelation
of the wind speed data generated by the developed models approximates the
exponential decay of the Ornstein-Uhlenbeck process.

As we pointed out before, the autocorrelation of the generated Weibull-distri-
buted process is well approximated by the autocorrelation of the Ornstein-
Uhlenbeck process. Here, we analyze numerically the parameter range in which
this approximation holds. While empirical, this analysis is nevertheless impor-
tant, since the parameter α in (14) for Model I, and in (19) for Model II, is
computed assuming that the autocorrelation of the resulting processes is the
exponential autocorrelation of the Ornstein-Uhlenbeck process. The deviation
in the value of the autocorrelation of both processes is computed for different
values of the shape parameter k of the Weibull distribution. In this study, the
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Fig. 3. Standard deviation of the Weibull distribution vs. standard deviation of the
generated processes.

scale parameter of the Weibull fit of Cape St. James and of Victoria Airport is
fixed, whereas the shape parameter k is progressively increased from 0.5 to 4.0
in steps of 0.1. The deviation between both autocorrelation values is evaluated
in terms of the Root Mean Square Error (RMSE). The autocorrelation values
are computed by averaging over 5000 trajectories simulated using Model I.

Figure 5 depicts the results of this analysis. It can be observed that the de-
viation between autocorrelation values depends on the value of the shape
parameter k of the Weibull distribution. The autocorrelation of the generated
Weibull distributed process is better approximated by the autocorrelation of
the Ornstein-Uhlenbeck process as the value of k increases. The values of pa-
rameter k of the Weibull fit for wind speeds at different locations reported
in the literature (e.g., [1–3, 6]) are usually in the range [1.3, 2.5]. Therefore,
approximating the autocorrelation of the Weibull process with the exponen-
tial autocorrelation of the Ornstein-Uhlenbeck process is acceptable. Finally,
extensive simulations have also shown that the contribution of the scale pa-
rameter λ to the deviation of autocorrelation values is marginal in the usual
range of values for the shape parameter k.
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Fig. 4. Autocorrelation of the Ornstein-Uhlenbeck process vs. autocorrelation of the
generated Weibull-distributed processes.

4.1.3 Trajectories for Dynamic Studies

The previous results have shown that Model I and Model II provide wind speed
trajectories with identical statistical properties. An obvious question is: Which
one is the most appropriate from a practical point of view? For applications
where power system dynamics are not of interest, Model I is preferred due
to its simplicity. On the other hand, dynamic analyses include device models
based on a set of differential or differential-algebraic equations. In these cases,
the equations of both models can be coupled with the device models. In this
respect, Model I involves one SDE and one algebraic equation, whereas Model
II involves just one SDE. Therefore, Model II is to be preferred in situations
where it is of interest to maintain a pure differential structure in the model.

As stated in the introduction of this paper, the developed models are flexi-
ble enough to accommodate different time scales without major adjustments.
To show this property, the hourly-based data available from Cape St. James
and Victoria Airport were used to extract wind model parameters for gener-
ating wind trajectories in the time frame of seconds. These trajectories are
of interest in performing dynamic studies of power systems with inclusion of
wind generators. The adaptation of the developed models consists in scaling
the hourly-based autocorrelation data to the time frame of seconds. For that,
the previously computed parameter α is divided by 3600 s/h (note that pa-
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Fig. 5. RMSE between the autocorrelation of the Ornstein-Uhlenbeck process and
the autocorrelation of the generated Weibull distributed process as a function of
the shape parameter k of the Weibull distribution.

rameter b =
√
2α is also scaled accordingly). Therefore, the new values are

α = 2.65 · 10−5 [1/s] for Cape St. James, and α = 7.15 · 10−5 [1/s] for Victoria
Airport. The parameters of the Weibull distribution remain the same at both
sites. Therefore, the models assume that the marginal distribution of the wind
speed is independent of the time frame, as is the case for stationary processes.

Model II is coupled with a wind turbine model driving a Doubly-Fed Asyn-
chronous Generator (DFIG). The simulations are carried out using Dome [41],
a Python-based version of the Power System Analysis Toolbox (PSAT) [42].
The details of the dynamic model of the DFIG, as well as the technical data
used, can be found in [43].

Figure 6 depicts two wind speed trajectories generated for a time frame of
2 seconds with Model II. In the integration scheme, the step size is set to
h = 0.01, i.e., 10 ms. The continuous black line represents a wind speed
trajectory for Cape St. James, whereas the grey line represents a wind speed
trajectory for Victoria Airport. Figure 7 shows the power output of the wind
generator for both trajectories. In order to compare the results, the initial
value of the wind speed (7 m/s) is the same for both simulations. It can be
observed that the variability of the wind speed, and therefore the variability of
the power output, is relatively small over the time range of seconds. This fact
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Fig. 6. Wind speed trajectories for dynamic analysis.

Fig. 7. Power output of a wind generator.
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partially justifies the use of constant wind speeds in large-disturbance dynamic
studies. However, if the interest is in, for example, network voltage fluctuations
or in small-perturbation dynamics, this variability cannot be ignored. It can
also be observed that the variability of the wind speed at Victoria Airport
is slightly larger than the variability of the wind speed at Cape St. James.
This behavior is due to fact that the wind speed at Cape St. James is more
correlated than the wind speed at Victoria Airport. This variability is also
reflected in the wind generator power output, as it is observed in Figure 7.

5 Conclusions

In this paper, two procedures to develop continuous wind speed models based
on stochastic differential equations are proposed and tested. The models are
constructed using parameters extracted from the statistical properties of real-
world measurement data available for particular locations. According to the
results of the simulations discussed in this paper, the two developed models
are able to generate wind speed trajectories with similar marginal distribu-
tions and autocorrelation functions to those observed in wind speed data. The
simulations also show that the developed models are flexible in the sense that
they can be used for modeling wind speed trajectories for different time scales.
However, since these are stationary stochastic models, diurnal and seasonal
effects are not considered. Thus, the good performance of the models is lim-
ited to a time range of a few hours. In particular, the developed models are
suitable to be merged with wind generator models for power system dynamic
studies.

Future work will focus on the incorporation of non-stationary phenomena (e.g.,
diurnal cycle) to expand the time frame where these models are applicable.
Another interesting task is to adapt the formulation of the developed models
to take into account spatially cross-correlated phenomena.
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