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Abstract

Non-deterministic loads and non-dispatchable renewable energy sources such as wind
and photovoltaic are the major sources of random fluctuations and volatility in power
systems. The techniques to account for the effects of random fluctuations on the transient
behaviour of the power system have been developed and well-assessed in the literature.
On the other hand, the analysis of impact of volatility on the power system short-term
dynamic and transient behaviour has not been fully explored so far.

For power system dynamic studies, volatility can be modelled as a fast-varying time-
continuous stochastic process. Stochastic processes are formulated as Stochastic Differential
Equations (SDEs). SDEs are then conveniently introduced into existing power system
dynamic models, i.e., deterministic nonlinear differential algebraic equations. Doing so
produces nonlinear Stochastic Differential Algebraic Equations (SDAEs). SDAEs are
the fundamental tool, utilised in this thesis, to study the dynamic behaviour of the power
system subjected to volatility.

Stochastic processes can be identified through their distinct features, namely, drift,
correlation, and diffusion. While the impact of the latter on the system dynamics has
been studied widely, that is not the case for the other two. The drift term defines the
variability of the process in time. Whereas the correlation is the measure of degree of
similarity between two processes. Thus, the question on what is the impact of drift and
correlation of the stochastic processes on the dynamic behaviour of the power system and
how to quantify it remains unanswered.

This thesis aims at providing systematic and generalized methods based on data
measurements to model correlation on stochastic processes and introduce them into power
system dynamic studies. The thesis also provides a general technique to extract correlation
from stochastic processes from the measurement data. The methods provided in this
thesis are independent of dimensions, time-scales, drifts, and probability distributions of
the processes. This allows for the inclusion of a wide range of sources of volatility into
existing power system dynamic models, and the study of their impact on power system
dynamics without the need for any simplifications or modifications to the original system.

Another topic considered in this thesis is the impact of the drift of the stochastic
processes on the power system dynamic behaviour by means of nonlinear SDAEs through

time- and frequency-domain analyses. The former involves the study of the impact of the
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drift of the stochastic processes on the power system algebraic variables in normal grid
operation. Whereas the latter consists in the study of the dynamic interactions between
the drift of the stochastic processes and the electro-mechanical oscillatory modes of the
power system.

The thesis also presents a direct method to assess the probability that a power system’s
physical limit is violated when modelling stochastic processes in normal grid operation.
The accuracy and computational efficiency of the direct method is demonstrated using the
dynamic model of the bench-mark real-world Irish system. Note that all the available direct
methods rely on simplification, and linearization of the power system around an equilibrium
point. Direct methods can only study the power system dynamic in stationary conditions
and, hence, cannot provide any insights on the course of the individual trajectories
simulated through time domain simulations. The detailed dynamic behaviour of the power
system simulating stochastic processes, controller hard limits, saturations, and system
nonlinearities can only be studied using the nonlinear models, which do not have a closed
form solution. For this reason, the analyses conducted in the entire thesis, except for the
direct method, rely on time domain simulations.

Several case studies utilising the real-world Irish system, are illustrated throughout the
thesis to demonstrate the practical applications of the introduced methods and techniques
to model and study the impact of correlated stochastic processes on the power system
dynamic and transient security. As the modelling techniques presented in the thesis are
general, based on measurement data, and easy to implement in software tools. They
are expected to be readily adopted by the system operators to ensure the security and

stability of the power system in the presence of stochastic processes.
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Chapter 1

Introduction

1.1 Motivation

Modern power systems are subjected to stochastic fluctuations due to the increasing
penetration of converter-based Renewable Energy Sources (RES) such as wind and
photovoltaic. Another significant source of noise are electrical loads, whose uncertainty
and volatility has increased in recent years due to the electrification of transportation and
heating systems. As a consequence, it has become quite challenging to model and study
the dynamic behavior of the power system: in normal operation, to avoid violations of
physical limits and technical constraints; and after a disturbance to avoid instability.
The increase of the penetration of RES is accompanied by a reduction of the
conventional fossil-fuel driven synchronous generator-based power plants. This leads
to the reduction of the total inertia available in the system, as well as the increase of
uncertainty (slow variations) and wvolatility (fast variations). Moreover, converter-based
RES, unlike conventional generation, is “non-synchronous”, i.e., does not respond to grid
power unbalances by varying its frequency. For this reason, the high penetration of RES
makes frequency control a complex task as fewer synchronous generators are available to
provide the system with inertia and power reserve. Consequently, such systems experience
high frequency deviations [2], which, in turn, can lead to a higher risk of instability.
The analysis of the effect of uncertainty on the dynamic of the power system is
conventionally performed via probabilistic analysis. This has been well established in
literature. On the other hand, the effect of volatility on the dynamic behaviour of the

power system is studied through time-continuous stochastic processes. Stochastic processes



are modelled using time-continuous Stochastic Differential Equations (SDEs) and are
included into the set of nonlinear deterministic Differential-Algebraic Equations (DAES)
to formulate a set of nonlinear Stochastic Differential Algebraic Equations (SDAEs)
[17,51,73]. The analysis of power system dynamic modelled as a set of SDAEs has gained
interest in the literature in recent years.

Stochastic processes are identified by the following features: Probability Density
Function (PDF'), Autocorrelation Function (ACF), and correlation [25,28,31, 63, 82].
Most of the research available on the analyses of the dynamic behaviour of the power system
modelled via nonlinear SDAESs focuses on stationary independent Gaussian distributed
processes [51,59,71,75,80]. While in some cases stochastic processes are in effect local and
independent, there exist processes that are intrinsically correlated. For example, in most
locations, cloudy days tend to be more windy than clear-sky ones. Then the variations of
the active and reactive power consumption of loads are coupled if the loads have a constant
power factor. While the correlation of stochastic processes has been thoroughly discussed
for unit-commitment and long-term power system operation problems, the impact of
correlation among different stochastic processes on the short-term dynamics of power
systems has not been discussed in the literature yet. Moreover, the literature is either
incomplete or silent on the topic of the ACF of stochastic processes as well.

Thus, the existing literature does not provide methods to mathematically formulate
correlated stochastic processes to be included into power system dynamic studies. Neither
does it provide stability assessment tools to study the impact of short-term dynamics, i.e.,
the ACF, of the stochastic processes on the power system dynamic behaviour. This makes
the subject of this thesis particularly relevant as this research is focused on formulating
mathematical models for Gaussian and/or non-Gaussian correlated stochastic processes
based on measurement data to be readily incorporated into existing power system dynamic
models. Furthermore, it provides detailed discussion on the evaluation of the impact of
the ACF of the stochastic processes on the power system dynamic, in normal operation,

and stability, following a contingency.



1.2 Literature Review

In power system dynamic studies, uncertainty can be thought of as randomness and
consists in continuous variations around a mean value. The short-term dynamics of load
consumption [57,63], and the faster time-continuous variations in the wind generation
28,43] are all examples of volatility. On the other hand, uncertainty is the deviance with
respect to a forecasted value.

A well-assessed technique that allows considering the effect of uncertainty in transient
stability analysis is through a probabilistic analysis. Probabilistic analysis consists in
initializing the set of deterministic DAEs that model the system using a random initial
value, chosen with given PDFs [1,8,12]. In such an analysis the randomness is included at
the initialization step, and the rest of the system is simulated in steady state. This makes
the probabilistic analysis particularly suited to study the sensitivity of the model with
respect to parameter uncertainty. In this thesis, however, only the impact of volatility on
the power system transient is of concern.

In power system transient analysis, volatility is characterized as a time-continuous
stochastic process, which is conveniently modelled as a SDE. A SDE consists of two terms:
the drift and the diffusion. The diffusion term defines the amplitude of the stochastic
process, i.e., its standard deviation in stationary conditions. The dynamic interaction
between the drift and the diffusion terms defines the ACF of the process, i.e., how the
process evolves in the long term. The impact of a stochastic process on the power system
transient can be studied through SDEs, as well.

A fair number of works are available that study the impact of the diffusion term on
the stability of power systems, e.g., [32,48,78]. These works utilise SDEs to study
the impact of stochastic processes on the power system dynamics. The advantage
of SDE modelling is that analytical solutions are formulated based on the theory of
stability of SDEs. The drawback of these analytical solutions is that they require strong
linearization [48, 78] and/or high simplification [32, 72| of the power system dynamic
models. The stability assessment techniques presented in the works, in this paragraph,
focus on stationary conditions, i.e., consider the probability distribution and standard
deviation of the variables.

A technique that allows studying the dynamic behaviour of a power system subject

to stochastic processes without the need of linearization or simplification of the models



is through the set of nonlinear SDAEs. Nonlinear SDAESs are created when SDEs are
incorporated into the deterministic DAEs [17,51,73]. A considerable amount of literature
has been dedicated to the evaluation of the probability distribution of transient stability
of power system modelled as a set of SDAEs [59,71,75,80]. These references focus on the
diffusion term, i.e., PDF of stochastic processes. However, the ACF of the stochastic
disturbance and its impact on short-term dynamics of the power system is not considered.
An exception is [30], where the authors exploit the property of the ACF to initialize the
set of SDAEs that model the system.

The power system dynamic modelled as a set of SDAESs in the aforementioned studies
considers independent stochastic processes. Some of these processes may be local and
independent, while others are intrinsically correlated. For example, geographically close
wind sites show similar variations in the wind speeds [24]. Consequently, the power
production of the WPPs also shows a degree of correlation that depends on their location
and proximity to each other. Similarly, the correlation in the behavior of the consumers is
reflected on the energy consumption at consumer’s end.

The correlation on the wind speeds, and load power consumption should be carefully
considered when modelling such processes in power system dynamic studies [31,65,66].
It is well known, for example, that inaccurate estimations of the power production of
aggregated WPPs highly affect the results of the unit-commitment and, in turn, the
market clearing price [15]. On the other hand, the correlation on load active and reactive
power consumption modelled as SDEs worsens the impact of contingencies [31].

The use of correlation in probabilistic analysis has gained increasing interest in recent
years. For example, the effect of spatio-temporal correlation between wind speeds; and
between power generation and load power consumption, on the system limits; and the
security-constrained unit commitment problem is evaluated in [39,42,56]. In [68] the
authors exploit the property of correlated load consumption to improve load forecast
accuracy. Despite the availability of abundant literature on the topic of correlation in
power system uncertainty analysis, the question of what is the impact of correlation of
stochastic processes on the short-dynamic behaviour and stability analysis of the power
system still remains unanswered. Reference [31], which is an exception to this rule, outlines

the formulation of correlation on two-dimensional stochastic processes only. Hence, the



question of how to formulate correlation on multi-dimensional stochastic processes remains
unanswered.

The aforementioned studies rely on numerical integration schemes because SDAEs
are nonlinear and have high dimensions for large power systems. The use of numerical
schemes for their integration is thus unavoidable. The stochastic terms require a significant
extra computational burden to solve the integration [76]. Moreover, SDAEs must be
studied with a Monte Carlo Method (MC). The MC requires the system of SDAEs
to be simulated several hundreds or even thousands of times, to properly estimate the
statistical properties, such as probability distribution and variance, of the system variables.
Consequently, the MC poses a large computational burden for the simulation of SDAE,
which is directly proportional to the size of the system.

The MC is the best available technique when studying the short-term dynamics of
power systems modelled as SDAEs. However, it is often required to study the impact
of stochastic processes on the estimation of the probability that physical limits such as
voltage insulation ratings of a substation, the thermal limits of the lines/transformers,
are violated in normal operation. Several techniques are available in the literature that
provide the statistical properties, in stationary conditions, of the state variables, e.g., [72]
and [30]. These methods are based on the properties of the Fokker-Planck equation
and the solution of the Lyapunov equation. Other relevant works that provide direct
methods to estimate the stability probability of the power systems subject to stochastic
disturbances are [32,48,78|. However, direct methods that allow the evaluation of the
variances of power system algebraic variables are unavailable.

This thesis focuses on filling the gaps mentioned in this section. With this aim, the
thesis provides techniques to: (i) formulate correlated stochastic processes based on
measurement data; (ii) incorporate such processes into existing power system dynamic
models and study their impact; (iii) study the impact of ACF of the noise on the power

system dynamics; and (iv) evaluate the variances of the power system algebraic variables.



1.3 Thesis Overview

1.3.1 Contributions

The focus in this thesis is on the modelling and incorporation of correlated stochastic
processes into existing power system dynamic models for the study of the power system

dynamic performance. The main contributions of the thesis are expressed as follows:

e A general data-driven method to set up correlated processes with arbitrary: time-

scales; ACFs; PDFs; and dimensions using multi-dimensional correlated SDEs.

e A systematic and generalized approach to include various sources of correlated
processes in power system dynamic models for the dynamic security and transient

stability assessment of power systems.

e The analysis on the impact of ACF and correlation of the processes on the short-term

dynamic behavior and transient stability of the power systems.
e A direct method to evaluate the variances of the power system algebraic variables.

The models presented in this thesis enable Transmission System Operators (T'SOs) to
quantify the effect of correlation among stochastic disturbances on the dynamic security
and transient stability of the power system. It is important to note that the proposed
models allow T'SOs to setup correlated stochastic processes based on measurement data
with arbitrary ACFs, PDF's and time-scales. These models can be applied to systems of
any order and complexity without the need for any simplifications or assumptions in the

original model.

The simulation results illustrated in this thesis are obtained using the Python-based
power system analysis software tool Dome [50]. These include TDSs, and results obtained
via the direct method. In addition, the methods and models presented in this thesis are

implemented in Dome, during the course of this thesis.

1.3.2 Organization

The remainder of the thesis is organized as follows.



Chapter 2 provides a detailed discussion on the modelling of correlated stochastic
processes for power system dynamic studies. With this regard, the statistical properties
of the stochastic processes required for their modelling are presented in Section 2.2. The
stationary stochastic processes are modelled as independent SDEs in Section 2.3. Section
2.4 provides a discussion on the modelling of the relevant features of SDEs, i.e., ACF
and PDF. A set of multi-dimensional correlated SDEs to model correlated processes
with arbitrary: time-scales; ACF's; and PDF's are introduced in Section 2.5.1. Section
2.5.2 describes a generalized procedure to calculate correlation from multi-dimensional
correlated stochastic processes. Section 2.6 provides details on setting up SDEs based on
measurement data. Section 2.7 presents methods to formulate and simulate Gaussian and
non-Gaussian correlated stochastic processes of arbitrary dimensions. Finally, Section 2.8
provides relevant remarks and conclusions.

In Chapter 3, power system dynamic models are introduced. Chapter 3 utilises the
methods introduced in Chapter 2 to model the sources of stochastic disturbances in the
power system. With this aim, at first, the power system modelled as a set of deterministic
DAEs is introduced in Section 3.2. Then, a non-deterministic dynamic model of power
system modelled as independent SDAESs is presented in Section 3.3. A systematic and
general approach to model the dynamic behaviour of the power system in the presence of
correlated stochastic disturbances is then introduced in Section 3.4. Moreover, the sources
of stochastic disturbances such as non-deterministic load consumption, and stochastic
wind speeds are modelled via correlated SDAEs in Section 3.5. A technique to formulate
aggregated wind speed process using correlated winds is provided in Section 3.6. Finally,
Section 4.6 provides a summary of the models presented in Chapter 3.

Chapter 4 illustrates the calculations of the variations of the algebraic variables of
power systems modelled as a set of nonlinear SDAEs. With this regard, a linearized
method (Linear Estimation) based on the solution of Lyaponov equation is also presented.
At first, the impact of the conventional MC on the computational complexity and burden
is discussed in Section 4.2. Then, the impact of setting up correlated SDAEs with different
PDF's based on measurement data on the dynamic behaviour of the power system is
discussed in Section 4.3. Then, in Section 4.4, the Linear Estimation (LE) is introduced.
The case study, by utilising the dynamic model of the real-world 1479-bus All-Island
Irish Transmission System (AIITS), demonstrates that the LE has high accuracy, and



significantly reduced computational time as compared to the MC. Finally, conclusions
are drawn in Section 4.6.

Chapter 5 analyses the interactions between the most relevant feature of the stochastic
process, i.e., ACF, and the dynamic behaviour of the power system. This is done by
analysing the impact of ACF of the stochastic processes on power system dynamics in
both time- and frequency-domain, in Sections 5.2 and 5.3, respectively. The impact of
ACF on the short-term dynamics of the stochastic process itself in time- and frequency-
domain is studied in Sections 5.2.1 and 5.3.1, respectively. Section 5.2.2 studies the impact
of the ACF of the stochastic processes on the variances of the relevant power system
quantities in normal grid operation, and the transient stability of the power system after a
contingency. While, the dynamic interaction between the ACF of the stochastic processes
and the electro-mechanical oscillatory modes of the power systems is discussed in Section
5.3.2. The case studies presented in Chapter 5 utilise the well-known two-area system and
the dynamic model of the real-world 1479-bus AII'TS. Finally, Section 5.4 draws relevant
conclusions.

In Chapter 6, the impact of correlation of stochastic disturbances on the dynamic
behaviour and transient stability of the power system is analysed. The models of sources
of stochastic disturbances presented in Chapter 3 are utilised throughout the case studies
presented in Chapter 6. First, the chapter illustrates the construction of correlation matrix
based on measurement data in Section 6.2, using the procedures provided in Chapter 2.
Correlation scenarios for the dynamic simulations are defined in Section 6.3. The impact
of correlation modelled on stochastic active and reactive power consumption, and wind
speeds on the variances of power system algebraic variables is illustrated in Sections 6.4
and 6.5, respectively. In Section 6.6, a case study is presented, where several power system
dynamic models are utilised to study the impact of correlated stochastic disturbances on
the stability of the power system modelled as a set of SDAEs. In particular, the impact of
correlated stochastic loads on the voltage and rotor angle stability of the two-area system
is studied in Section 6.6.1. Whereas, the impact of correlated wind speeds on the voltage
stability of the two-area system is analysed in Section 6.6.2. In Section 6.6.3, the dynamic
model of the real-world 1479-bus AIITS modelled as correlated SDAEs including all
sources of disturbances, introduced in Chapter 3, is studied. Finaly, conclusions are drawn

in Section 6.7.



Finally, Chapter 7 summarizes the most relevant conclusions and suggests directions

for future work.
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Chapter 2

Stationary Stochastic Processes

2.1 Introduction

Stochastic processes occur in power systems due to several reasons. For example, physical
phenomena occurring in nature such as wind speeds, which affect the power production of
wind power plants, and solar irradiation, which affect the power output of photo-voltaic.
Moreover, load power consumption is also not fully deterministic and can be characterized
as a stochastic process [63]. The aforementioned sources cause stochastic disturbances in
the power system variables, which have a non-negligible effect on the dynamics of the power
system. These disturbances are modelled as Stochastic Differential Equations (SDEs).

A number of works are available in the literature on power systems that deal with
the modelling of stochastic processes in power system dynamic studies through SDEs
[17,32,48,51,73,78]. The models presented in these studies can formulate independent
stochastic processes only. However, as mentioned in Chapter 1 stochastic processes do
exhibit correlation. The correlation on the stochastic processes can modify power system’s
transient behaviour [3,29].

The correlation among the stochastic processes can be conveniently modelled using
correlated SDEs. Correlated SDEs, in power systems, were first introduced in [29]. The
model in [29] can only formulate two-dimensional stochastic processes. Whereas, in this
chapter the main goal is to present a method to formulate multi-dimensional correlated
SDEs. This is one of the main contributions of the thesis as well.

The remainder of the chapter is organized as follows. Section 2.2 provides a brief

overview of the stationary stochastic processes. Stochastic processes are modelled as
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a set of independent SDEs in Section 2.3. Section 2.4 outlines the features of SDEs.
Correlated stochastic processes are modelled as a set of correlated SDEs in Section 2.5. A
data driven technique to set up correlation matrix is presented in Section 2.5.2. A method
based on measurement data to set up SDEs is discussed in Section 2.6. A few examples
of Gaussian and non-Gaussian correlated stationary stochastic processes generated using

correlated SDEs are illustrated in Section 2.7. Finally, conclusions are drawn in Section

2.8.

2.2 Stationary Stochastic Process

A continuous-time real-valued random process {X(¢), t € R} is wide sense stationary
if its statistical properties are independent of time. In other words, the mean, and the
variance of X (t) do not vary over time. Let us assume that X (¢;) and X (¢,) are instances
of X(t) at t; and to, respectively, where t; # t9, Vt1,ts € R, the mean and variance of
X(t1) and X (t5) are:

EX(t1)] = E[X(22)],

E[(X(t) = EIX(1)])°] = E[(X(82) — E[X(22))) ],

where E is the expectation operator. The definitions above imply that the mean of X(t),

Vt € R is a constant:
E[X(#)] = px

and the variance of X (t), Vt € R is finite:
E[(X(t) — BIX(£)])"] = ex < o0,

Another relevant property of the stationary stochastic process is that its Autocorrelation

Function (ACF) is not a function of time rather a function of the time difference, i.e.,:
COV[X(tl), X(tg)] = Rx(tl, tg) = Rx(tg - tl, 0) = Rx(7'> s (21)

where 7 = t9 — t; is the time difference. This is discussed in detail later in Section 2.4.1

in this Chapter.
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Stationary stochastic processes can be identified by their Probability Density Functions
(PDF's). The distribution of all possibilities and likelihoods for all outcomes of a discrete
random variable, say Y (discrete means Y has finite number of outcomes), can be defined
using the PDF. The PDF of the outcome y (Vy € Q) of Y is an integrable function f(y)
with the following properties:

1. f(y) is positive in the entire space 2, i.e., f(y) > 0, Yy € Q.
2. f(y) <1,Vy €Q,ie., aprobability cannot be greater than 1.

3. The integral of f(y) over entire space 2 is:
[ rwin=1. 22
Q
4. Probability that y € [a, b], is calculated by integrating f(y) over [a, b]:

Pwﬁyﬁﬂz/fwww (2.3)

Property (2.3) is useful for time-continuous random variables. Since uncountably
infinite values can be assigned to a time-continuous random variable X (¢), P[X(t) = x|
cannot be defined. Instead, the probability that x is contained in a very small interval of
length € around x, say A = [x — €/2,x 4+ €/2], i.e., P[X(t) = x,Vx € A] can be defined
using Cumulative Distribution Function (CDF), where CDF (Fx(x)) is written as:

F(z) =P[X(t) =a,Vz € A] = /Af(x)dx, (2.4)

The PDF (f(x)) for a time-continuous random variable can be calculated by differentiating

the CDF (F(X)), using fundamental theorem of calculus, as:

fx) = : (2.5)

A commonly used PDF type to define physical processes is the Normal or Gaussian

PDF. A random variable X is said to be normally distributed, if its PDF is written as:

fN(x) - o 127Texp( B %(m ; ,u)2> ’ <26)




where p and o are the mean and standard deviation, respectively. A random variable
X following Gaussian PDF is often referred to as X ~ N(u,0). Gaussian PDF has a
bell-shaped curve with all the outcomes normally distributed around its mean. Figure
2.1 shows an example of PDF and CDF of a Gaussian variable with zero mean and unit
standard deviation.

The Gaussian PDF provides a good fit for many physical phenomena occurring in
nature. Other non-Gaussian PDF's are also common in many applications. For example, in
power systems, wind speeds are usually modelled with Weibull PDF'. It is an asymmetric
distribution that is heavily skewed on one side and has a long tail. This PDF type fits
wind speed density because lower wind speeds are more common than the higher wind

speeds. The Weibull PDF is given as:

k fx\k-1 AN
Fwlz) = A (X) P {_ (X) ] e =0 (2.7)
0

Y

ifxz<0

where k is a shape parameter and A is a scale parameter. Figure 2.2 shows an example of
the Weibull PDF and CDF.

In power system dynamic analysis, where the effect of uncertainty on the dynamic
behaviour of power system in steady-state is of concern, a technique known as probabilistic
analysis is utilised. This technique requires initializing the power system dynamic equations
randomly using predefined PDFs. This type of analysis cannot capture the effect of

volatility during the Time Domain Simulation (TDS), which is of primary interest in this
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Figure 2.1: PDF and CDF of a Gaussian random variable X ~ N(0, 1).
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Figure 2.2: PDF and CDF of a random variable that follows Weibull distribution with scale =
5, and shape = 2.

thesis. For this reason, a power system dynamic analysis that includes volatility during
the TDS requires modelling power system dynamic equations using stochastic processes.

Stochastic processes can be modelled using SDEs, which are discussed here below.

2.3 Uncorrelated Stochastic Differential Equations
(SDEs)

SDEs are a mathematical tool to model time-continuous stochastic processes. SDEs find
their applications in economics, finance (stock markets), and physics (motion of particles).
They are widely used in power systems to model physical processes such as wind speeds,
solar irradiation, stochastic load consumption, and much more. A n-dimensional set of

uncorrelated SDEs is written as:
k(t) = a(t, k(t)) + b(t, k(t)) 0 £(1), (2.8)

where kK € R™* are uncorrelated stochastic processes; a € R™ and b € R" are continuous
functions representing the drift and diffusion terms, respectively; o is the Hadamard
product, i.e. the element-wise product of two vectors; &£(t) € R"¢ is a vector of uncorrelated
white noise. Modelling the drift and diffusion terms in (2.8) independent of time produces

stationary stochastic processes. Therefore, SDEs defining n uncorrelated stationary
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stochastic processes are written as:

R(t) = a(k(t)) + b(k(1)) 0 £(1) (2.9)

In (2.9) £(¢) is a random process whose increments follow Gaussian PDF with zero
mean. In mathematical terms, £(¢) is defined as the time derivative of the Wiener process,

as follows:

E(t)dt = dW (t), (2.10)

where W € R™ is a vector of standard uncorrelated Wiener processes, whose elements,

say W;(t), i = 1,...,n,, are fully independent and have the following properties:
1. W;(0) = 0, with probability 1.
2. W;(t) is a continuous function of ¢.
3. W;(t) has unbounded variation in every interval.

4. The increments of W;(t) follow Gaussian PDF, ie., Vt > 0, dW; = W;(t + h) —
Wi(t) ~ N (0, )

5. W;(t) has independent increments, i.e., V0 < s < t, cov[dW;(t), dW;(s)] = 0.

A few examples of realizations of sample paths of W;(t) are shown in Figure 2.3. The
sample paths of W;(t) cannot be differentiated in time, i.e., limy_o(W;(t + h) — W;(t))/h
does not exist. Note that this property does not contradict the expression of the white
noise given in (2.10), which is only a formal definition that allows to express SDE in
differential form but has no practical application. The integration of (2.9) only involves
dW and sufficiently small time steps h [34]. In other words, € per se is not needed in
the calculations and is not computed explicitly. In fact, substituting (2.10) into (2.9) and
integrating the result one obtains the common integral form of SDEs, which is the one

actually implemented in numerical tools:

Kk(t) = k(0) + /ta(n(T)) dr + /W b(k(1)) o dk(T), (2.11)

where k(0) is the initial value of the process at time ¢ = 0. Note that a SDE can

either be initialized deterministically say (0) = 0, or randomly where x(0) can be chosen
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Figure 2.3: Realizations of ten sample paths of Wiener process W (t).

from a given PDF. Note also that even though the Wiener process follows Gaussian PDF
by definition, non-Gaussian PDF's can also be generated through SDEs by using proper
definitions of the drift and diffusion terms.

Equation (2.9) is non-deterministic due to the presence of the integral with respect to
the Wiener process. This integral is termed as stochastic integral and cannot be interpreted
as the conventional Riemann-Stieltjes’ integral due to the unbounded variations of the
Wiener process. Several approaches have been proposed to interpret stochastic integrals,
e.g., Ito and Stratonovich approach. The choice of the stochastic integral approach
depends on the application of the SDE. Widely used interpretation of stochastic integral
in the power systems is the [t0 integration approach, which is adopted throughout this
thesis as well.

The solution of (2.9) involves the integration of two terms, namely drift and diffusion.
The integral involving the drift term is a deterministic integral and is solved as a
conventional Riemann-Stieltjes’ integral. Whereas, the integration of the diffusion term
involves stochastic approach, e.g., [to integral. Most SDEs cannot be solved analytically
due to the complexity of the non-deterministic integral. However, it is possible to obtain
information about the statistical properties, such as mean and variance, of the SDEs
by solving the Fokker-Planck, forward or backward Kolmogorov equations. These are
also generally solved numerically. The numerical methods available to solve SDEs are
as follows. The drift term is integrated using conventional methods such as implicit
trapezoidal method or the backward differentiation formulas [49]. The sample paths

of the Wiener process are created using Euler-Maruyama, Milstein or Runge-Kutta
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method. The Euler-Maruyama method is the most utilised to solve Ito SDEs by time
discretization [35,60].

2.4 Features of SDEs

2.4.1 Autocorrelation Function

Autocorrelation Function (ACF) of a stochastic process is the measure of correlation of
the current values to the past values of the process. In other words, the ACF measures
the linear dependence of the process to the delayed version of the same process over
progressive time delays. The ACF can be expressed as a function of time delay 7, and is

written as follows:
E[<R(t) B MH)(K/(t + T) B MH)]

2
Ok

R.(1) =

, (2.12)

where R, is the ACF of the stochastic process x; and pu,, and oz are the mean and variance
of k, respectively.

The extensive data analysis of a variety of stochastic processes observed in power
systems has revealed an ACF [9,11,28,41,44,46,63], where the nearby data points of the
process are closely related, whereas the distant data points show a weak correlation. This
gives rise to an ACF with higher correlation for smaller 7, and this correlation decreases
monotonically as 7 advances. The ACF of stationary stochastic process depends only on

7. Its dependence on 7 can be approximated with a exponential function, and written as:

Ry (7) =e ™7, (2.13)

where «, is the autocorrelation coefficient of process k. According to (2.13) the higher
the a, the faster the decay.

The desired ACF can be enforced in (2.9) through the drift term. The drift term
defines the long term trend of the stationary stochastic process, i.e., the evolution of
process in time. In (2.9), an exponentially decaying ACF can be obtained by defining

the drift term via a first order linear differential equation. The drift term is written as:

a(r(t)) = —ax(k(t) = ) , (2.14)
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where «,, and p, are the autocorrelation coefficient and mean of the process x, respectively.

2.4.2 Probability Density Function

Stationary stochastic processes are characterized by stationary PDFs. In other words, the
data points of a stationary stochastic process obtained over two equal-length time intervals
follow the PDFs with similar statistical properties. Stationary stochastic processes
with the required ACFs and given PDFs can be created through SDEs using proper
formulations of drift and diffusion terms in (2.9). The expressions for the drift and diffusion
term in (2.9) can be obtained using either of the two methods, namely, Fokker-Planck
equation [13,81,82] or memory less transformation [9,28,46,83].

Both methods require that either the drift or diffusion term is defined first and then
the expression for the other term to satisfy the required conditions is determined. The
diffusion term through its dynamic interaction with the drift term is responsible for defining
the PDF of the stationary stochastic process. Since, in this thesis we are interested in
autocorrelated stationary stochastic processes, the expression for the drift term in (2.14)
is used throughout the thesis. Based on the definition of the drift term in (2.14) the
expression for the diffusion term to impose required PDF can be calculated using one of
the two methods, mentioned above in this section.

Note that the procedure to evaluate the autocorrelation coefficient and the fitting
PDF from measurement data is provided in detail later in Section 2.6. A few examples of
stationary stochastic processes constructed using SDEs along with the expressions for

drift and diffusion terms are illustrated later in Section 2.7.

2.5 Correlated SDEs

2.5.1 SDEs with Correlated Wiener Processes

This section presents a procedure to construct correlated SDEs from uncorrelated SDEs.
This method was proposed in [3] and is one of the main contributions of the thesis. To
construct correlated SDEs from uncorrelated SDEs, let us again consider (2.9). Defining
W as a vector of independent Wiener processes makes (2.9) a set of uncorrelated SDEs.

W is a vector of independent Wiener processes only if the cross-correlation between
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the elements of W is zero. In this case the elements of the variance-covariance matrix
P € R™ "™ of the increments dW are defined as follows:
o2, ifi=7,

Pz',j = COV[dVVZ', dW]] = '
0, ifi#y,

(2.15)

where dW; (dW;) represents the infinitesimal increment of the i-th (j-th) element of W.

To correlate SDEs in (2.9), it is required to create a vector of correlated Wiener
processes, say V. This can be done by writing V' in terms of W using a linear relationship.
This relationship should correlate the Wiener processes without affecting their statistical
properties, i.e., mean and variance. This is to ensure that the information stored in the
form of PDFs of the individual processes remains unaltered.

The correlation between the elements of V' can be assigned using the correlation matrix

R € R™" defined as:

1 2 713 .. Tin
T271 1 7“273 e T2,n
R = 31 732 1 cee T3n | o
Tna1 Tn2 Tn3 - 1

where 7, ; represents the correlation between dV; and dVj;, whose value can be calculated
using Pearon’s correlation coefficient provided in Appendix B.2.1. The element 7; ;
considers both spatial and temporal correlations. The value of r; ; can either be a constant,
i.e., in case of spatial correlation (since the distance between any two points remains
fixed) or a function of time, i.e., temporal correlation. In case of temporal correlation r;
becomes a time-continuous process.

The elements 7; ; can be defined through a stochastic process, as follows:

rij = a(rij) +b(ri;)E, (2.16)

Note that in the case of temporal correlation, the value of r; ; is updated in R at every
time step of the TDS. This makes R a scalar matrix, i.e., R, whose elements are updated

at every time step.
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The procedure to calculate the correlation between dV; and dV; through measurement
data is thoroughly explained in the next subsection. The diagonal elements of R are
always 1 since the correlation of a process with itself is 1 by definition. The elements of

variance-covariance matrix P € R™"*" of dV are written as:

o7, ifi =7,
PiJ = COV[dV;, d‘/;] = (217)
’I“Z',jO'iO'j, lfl 7& j,
The procedure to write dV in terms of dW is involved and is thoroughly explained

in [16]. Here, we simply provide the final expression:
av = CdWw | (2.18)
where C € R™"*" is chosen such that:
R=CC”, (2.19)

A family of C matrices satisfies (2.19) but the best choice of C is a lower triangular
matrix as it reduces memory requirements and the computational burden of numerical
implementations. A lower triangular matrix is obtained by performing Cholesky-
decomposition of R. Cholesky-decomposition requires that the input matrix is positive
semi-definite. This condition is generally satisfied for stochastic processes of power
systems [3]. Note that correlating the elements of dW using (2.18) does not affect the
individual PDF's of the elements of dW. Note also that R = I makes dV = dW, where
I is the identity matrix. In other words, V' becomes a vector of fully independent Wiener
processes.
By substituting the definition of correlated Wiener processes in (2.9), correlated SDEs

can be modelled as:

n(t) = a(n(t)) + b(n(t)) o (1),

¢(t) = CE(),

where a, b and € have the same meaning as in (2.8) and (2.9); C satisfies (2.19); n € R™

(2.20)

is the vector of correlated stochastic processes; and ¢ € R™ is the vector of correlated

white noises.
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Remarks

Even though the set of n-dimensional correlated SDEs in (2.20) is constructed utilising
correlated Wiener processes, the PDFs of the processes resulting from the correlated
SDEs do not change. Since, the PDF depends only on the drift a, and the diffusion
b, see Sections 2.4 and 2.7. These terms a and b are not modified by the correlation of
Wiener process. Note that (2.20) is valid for stochastic processes with different ACFs
and PDFs, ie., for a;(n;) # aj(n;) and b;(n;) # b;j(n;). Also note that (2.20) can be
used for arbitrary time-scales and arbitrary dimensions. This makes (2.20) able to model
correlated stochastic processes with arbitrary ACFs, PDF's, time-scales, and dimensions.

The numerical algorithms available to generate random numbers only generate
independent Wiener processes. Thus ¢ can be obtained only indirectly, i.e., through the
calculation of C €. Note that C = I for R = I, where I is the Identity matrix, causes (2.20)
to generate uncorrelated stochastic processes. Since (2.20) can generate both uncorrelated
and correlated stochastic processes, (2.20) will be used throughout the thesis to represent

SDEs.

2.5.2 Setting Up Correlation Matrix

The correlation matrix R is the core mathematical object that allows defining the
correlation between stochastic processes in (2.20). The elements r; ; of R are defined
based on measurement data. The value of r; ; is obtained by calculating the correlation
between the infinitesimal increments of the two stochastic processes. These increments are
termed as noise elements. This section aims at the calculation of the correlation matrix
through the calculation of the noise elements of a stochastic process from measurement
data. This method was originally proposed in [6], and is one of the main contributions of
the thesis.

Let us consider, an individual exponentially decaying autocorrelated stochastic process.
This process is obtained by substituting the value of drift term a from (2.14) into (2.9),
and is written as:

where «; and pu; have the same meaning as in (2.14), and all remaining parameters and

variables have the same meaning as in(2.9).
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To extract the noise elements of the processes with arbitrary PDF's the analytical
solution of (2.21) is considered. The solution of (2.21) can be established by multiplying

it by e**, and re-arranging as:

ak(t)etdt + eldr(t) = e [pa+ b (k(t)) AW (1)] . (2.22)

Note that
d (e k(t)) = ar(t)e™dt + e dW (t), (2.23)

Substituting (2.23) into (2.22) and integrating, one obtains:

k(t) = Kk(0)e™ + /t pae®Vds + /t b(k(s)) e W (s), (2.24)

where £(0) is the initial value of the process at ¢ = 0. The first integral is the conventional
Riemann-Stieltjes’ integral, and integrates to u (1 —e~*'). The second integral is expressed
as an Ito integral. Using Ito isometry [26,54], the second integral integrates to a normal

random variable with mean zero and variance given as:

t -t (s)] = LD (1 o
E {/0 b(k(s)) e )dW(s)} =~ (1—e2), (2.25)

Note that according to the definition given in (2.9), b(x) does not explicitly depend on t.

Thus, the analytical solution of (2.21) is written as:

() = £(0) e + (1 — ™) +b(s(t)) ul(t) l;giﬁ, (2.26)

where 1, (t) is the random variable, which is distributed normally with zero mean and

unit variance. 1, (t) can be extracted from (2.26) and written as:

Uu(t) = — : (2.27)

Equation (2.27) is employed to estimate the noise element 1, (t) from the empirical data,
provided the underlying process can be defined using (2.21).
The solution provided in (2.26) is valid for an arbitrary time interval [0,¢] and any

initial condition. It can also be applied to an arbitrarily chosen time step At beginning
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at t;,_1 and ending at ¢;. Let us assume equidistantly spaced time steps such that
Vi€ Zy,t; —t;1 = At > 0. To calculate the increment in the stochastic process at an
arbitrarily chosen step size of At, we assume that the value of the process at the previous
time step t;_; serves as the initial condition for time step t;. Therefore, the increment in

the stochastic process for the step size At is calculated using (2.26) as:

1 — e—2aAt
dr(t;) =r(ti) e 4 (1 — e 2 4b(k(timr)) ulti) 5— (2.28)
«
Similarly, the increment of 1 (t;) for the time step At is written as:
N - —aAt __ 1 — —alt
dip(t;) = alty) = wltia) € pd—e?) (2.29)
b(n(ti1)

Note that since the term b is not modified in (2.29), and also that (2.29) was created
using an autocorrelated ACF. This makes (2.29) valid for stochastic processes with
arbitrary time-scales, dimensions, PDFs, and ACFs, i.e., autocorrelation coefficient. The
application of (2.29) to extract diy from stochastic processes with various time-scales,
dimensions, PDFs, and ACFs, and the construction of correlation matrix based on

measurement data is illustrated in Chapter 6.

2.5.3 Special Case of 2-dimensional Correlated SDEs

This section discusses a relevant special case of (2.20), namely a two-dimensional correlated
stochastic process, which is helpful, for example, to model correlated active and reactive
load power consumption. Assuming a correlation r between the infinitesimal increments

of the two processes the correlation matrix R is written as:
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A 2-dimensional correlated SDE is constructed by inputting C in (2.20), and is written

as:

m(t) =ar(m(t) +bi(m(t)) &), (2.30)
Ma(t) = az(ma(t)) + ba(n2(t)) (r&(t) + V1 =12 &,(1))

where r is the correlation between the two processes; and all the remaining parameters

and variables have same meaning as in (2.9).

2.6 Setting Up SDEs

This section provides details on the set up of the SDE defined through either (2.9) or
(2.20). As explained in Section 2.4 that a SDE in (2.9) or (2.20) contains two terms,
namely the drift ¢ and the diffusion b, that are responsible to model the behaviour of a
process. This section deals with the evaluation of these terms based on the measurement
data. Note that the procedure presented in this section is independent of the drift, i.e.,
ACF, and the diffusion, i.e., PDF, of the stochastic process. Hence, the procedure
described in this section is general and can be applied to stationary stochastic processes
with arbitrary ACFs, PDF's, and time-scales.

The first step is to set up the drift a of the SDE. This is done by calculating the ACF
of the stochastic process using (2.12). As explained in Section 2.4.1, the ACF's of the
stationary stochastic processes follow exponential functions with negative coefficient. This
coefficient is calculated by fitting a exponentially decaying function to the ACF obtained
from the measurement data. The coefficient obtained is the autocorrelation coefficient «,
which is the fundamental element to set up the drift a of the SDE [28,83].

The next step is to set up the diffusion b of the SDE. The diffusion term in interaction
with the drift term is responsible for defining the PDF of the SDE. For this reason, it
is necessary to identify the PDF that best fits the measurement data. The parameters
of the best fitting PDF must be calculated based on measurement data as well. There
are various statistical tests available that reveal the best fitting PDF. In this thesis, the
Kolmogorov-Smirnov (KS) test is utilized. The KS test is a non-parametric test that
measures the closeness of the probability distribution of the sampled measurement data

to a given PDF. Whereas the parameters of the fitting PDF are obtained through the
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Maximum Likelihood Estimation method. Once the fitting PDF and its parameters are
known, the diffusion term can be set up using any of the methods introduced in Section
2.4.2. The methods described in this section have been utilized in various power system

dynamic studies [6,28].

2.7 Example Stochastic Processes

The SDE in (2.20) can be utilised to generate correlated stationary stochastic processes,
which will follow any required ACF and PDF, through the proper implementation of the
drift a and diffusion b terms. In this section, a few examples of Gaussian and non-Gaussian
correlated stationary stochastic processes are discussed. These processes are utilised in
power system dynamic simulations throughout the thesis. Examples of various PDF types
are considered in this section. It is important to note that processes with any other PDF's
can be utilised. All PDF types, in fact, can be created through the proper definition of a

and b using the methods mentioned in Section 2.4.

2.7.1 Gaussian Processes

Modelling the diffusion term in (2.9) and/or (2.20) as a constant, creates a stochastic
process that follows Gaussian PDF, and is known as OU process. The OU process
is a continuous process with mean-reversion. That is, it drifts towards its mean with
an exponential rate. This causes it to have a bounded variance unlike the Wiener
process. These features make the OU process adequate to model the volatility of bounded
physical quantities such as stochastic load dynamics [57, 58, 70] and short-term wind

fluctuations [9,11,28,44,55]. The OU process is discussed in further details in Chapter 5.

Correlated Ornstein-Uhlenbeck Process

Correlated OU processs can be generated using (2.20) with the drift and diffusion terms

given as:

(2.31)
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where « is the autocorrelation coefficient of the process, and 1 and o are the mean and

standard deviation of the process at the stationary condition, respectively.

Figure 2.4 illustrates the realizations of two-dimensional correlated OU processes for

different values of r while keeping «, p and o constant. The PDF's of the OU processes

in Figure 2.4 are shown in Figure 2.5. From Figure 2.5 it is evident that the processes n;

and 7, follow Gaussian PDF's; despite being generated for different values of r between
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Figure 2.4: Realization of two-dimensional correlated OU process, 71 and 79, for different values
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Figure 2.5: PDF of correlated OU processes in Figure 2.4.
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2.7.2 Non-Gaussian Processes

Non-Gaussian processes occur in power systems in many forms. For example, in [63] the
authors, through measurement data, show that the load consumption follows a Normal-
Inverse Gaussian PDF with heavy tails. Non-Gaussian PDFs such as two-parameter
Weibull PDF are used in the literature to model wind speeds. The fitting PDF's and
their parameters depend upon the time-scale and location of the wind speeds [28]. In
this subsection, a variety of correlated stochastic processes following different PDF's are

presented.

2.7.2.1 Correlated Weibull Distributed Processes

N-dimensional correlated Weibull distributed processes that follow the PDF in (2.7) are
generated using (2.20) [82] with the drift term as:

a(n) =—-a(n—Ar (1+a")), (2.32)
and the diffusion term as:

b(n) = /b1(n)b2(n) , (2.33)

with

A —a

bi(n) = 20477015 (c2)™" (2.34)

and
ba(n) = aexp ((2)) T (1 + e, (e2)") = T (ea) | (2.35)

where ¢; = 1/a and ¢o = n/)\; « is the autocorrelation coefficient; a is a shape parameter;
A is a scale parameter; I'() is the Gamma function; and I'(+, -) is the Incomplete Gamma
function.

Figure 2.6 illustrates the realizations of two-dimensional correlated Weibull distributed
processes for different values of  while keeping shape and scale constant. The PDF's of
the Weibull distributed processes presented in Figure 2.6 are shown in Figure 2.7. This
figure shows that the processes 7, and 7y follow, in effect, a Weibull PDF and can be

correlated with each other while preserving their PDF's and other statistical properties.
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2.7.2.2 Correlated Three-parameter Beta Distributed Processes

The PDF of the three-parameter Beta distribution (fg(n)) is

1 nyel A=\l
NBla,b] (3) < ) ) ity >0

0 itn <0

29

20



where B[+, | is the Beta function, a and b are shape parameters, and A is a noncentrality
parameter.
A multidimensional correlated three-parameter Beta distributed process can be created

using (2.20) [82] with the drift and diffusion terms as follows:

a(n) = —a <77 - aaﬁb) :

~ 2a(A=n)7n
b(n)—\/—a+b ,

Two-dimensional correlated Beta distributed processes and their PDF's are shown in

(2.36)

Figures 2.8 and 2.9, respectively. These Figures show that the correlation modelled on

the stochastic processes does not modify their PDFs.

2.7.2.3 Correlated Two-parameter Gamma Distributed Processes

The PDF of the two-parameter Gamma distribution (fg(n)) is

L .
fa(n) = m o exp [—X} ifr>0

0 if x <0

where T'[-] is the Gamma function, a is a shape parameter, and A is a scale parameter.
The drift and diffusion terms to generate correlated stochastic processes using (2.20)

that follow two-parameter Gamma distribution are written as follows:

a(n) = —a(n—ad),

b(n) =+2aAn.

Figure 2.10 illustrates the realizations of two-parameter Gamma distributed processes

(2.37)

for different correlations while keeping shape and scale constant. The PDFs of the
correlated stochastic processes, illustrated in Figure 2.10, are shown in Figure 2.11. Again

the processes are correlated without their PDFs being modified.
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2.8 Conclusions

This chapter introduces the stochastic processes modelled through SDEs. The relevant
features, namely, drift and diffusion, of the stochastic processes are also discussed. A
data-driven method to formulate correlated stochastic processes is presented as well.
With this aim, two novel methods to: (i) model correlated stochastic processes using

multidimensional SDEs; and (ii) construct correlation matrix, which is the fundamental
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tool to set up correlated SDEs, based on measurement data are provided. The chapter
also provides a discussion on the methods to set up SDEs based on the measurement
data. Note that the methods provided in this chapter are independent of time-scales,
PDFs, ACFs, and dimensions of the stochastic processes being modelled. Finally, a few

examples to generate Gaussian and non-Gaussian correlated stochastic processes are also

lustrated.
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Chapter 3

Modelling Power Systems with

Stochastic Processes

3.1 Introduction

The impact of stochastic disturbances on the dynamic response of power systems can be
conveniently studied using Stochastic Differential Algebraic Equations (SDAESs). This
has been thoroughly discussed in [17,51, 73]. Reference [51] also presents a general
approach to incorporate stochastic disturbances in power systems using SDAEs. A
common assumption of the literature available on SDAE models for power systems is that
stochastic disturbances are fully uncorrelated. However, this is not always the case, as
introduced in Chapter 1, stochastic disturbances exhibit correlation, which has a worsening
impact on the power system’s dynamic. This is discussed later in detail in Chapter 6.
The correlation on the stochastic disturbances can be formulated as correlated
Stochastic Differential Equations (SDEs) introduced in Chapter 2. Correlated SDEs
can be incorporated into power system dynamic modelled as a set of DAEs. This gives
rise to correlated SDAEs, which can be utilised to study the impact of the correlated
stochastic disturbances on the dynamic behaviour of power systems. The main goal of
this chapter is to provide a systematic and generalised approach to include correlated
disturbances in existing power system dynamical models using correlated SDAEs. With
this regard, this chapter also provides procedures to set up correlated disturbances on
various sources of volatility, such as stochastic load power consumption, stochastic power

flows, and penetration of Renewable Energy Sources (RES), i.e., production of Wind
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Power Plants (WPPs), for the dynamic security and transient stability assessment of
power systems.

Due to the granularity of wind sites, WPPs are typically connected to the grid in a
tree-like topology as shown in Figure 3.1. This hierarchical structure leads to several levels
at which wind production can be aggregated. It is crucial, however, that independently
from the level at which WPPs are aggregated, the statistical properties of the power
injected into the grid by the aggregated WPPs are similar to the ones obtained by
simulating the detailed network. This chapter aims at providing a SDE-based model to
properly set up an aggregated wind speed considering correlated wind speed fluctuations.
The aggregated wind speed process is formulated such that when a aggregated WPP is
driven by this process, the aggregated WPP reproduces accurately the statistical and
dynamic behaviour of the original network, i.e., detailed representation of the network.

The models presented in this chapter enable the system operators to quantify the
effect of correlation among stochastic disturbances on the dynamic security and transient
stability of the power system. The proposed models can also be applied to systems of
any order and complexity without the need for any simplifications or assumptions in the
original model.

The remainder of the chapter is organised as follows. Section 3.2 provides a brief
introduction to existing power system dynamic models. An overview of uncorrelated
SDAE:s is provided in Section 3.3. Whereas, correlated SDAEs are presented in Section

3.4. The methods to include correlated disturbances in the sources of volatility are
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Figure 3.1: Typical tree of a power grid with inclusion of wind power generation.
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provided in Section 3.5. Section 3.6 provides the model for aggregating correlated wind

speeds. Finally, Section 3.7 draws conclusions.

3.2 Differential-Algebraic Equations

The transient behaviour of the power system is conventionally modelled using the following
set of DAEs:

(3.1)

0 =g(z(t), y(t), u)),

where vectors f : Rt tnu sy R and g : R™ ™t s R™ are the differential and
algebraic equations, respectively; € R"* represents the state variables, e.g., generator
rotor angles; y € R™ are the algebraic variables, e.g., line flows; and w € R™ are the
inputs, e.g., dispatch of generators.

Set of DAEs in (3.1) are deterministic equations but highly nonlinear. They can be
used to study sensitivity of the model with respect to parameter through probabilistic
analysis. However, they cannot consider the dynamic behaviour of a stochastic process
during the Time Domain Simulation (TDS), which is the core interest of this thesis.
Stochastic disturbances can be included in power system dynamic equations, i.e., DAEs,

through SDAESs. This is discussed in the next section.

3.3 Uncorrelated Stochastic Differential Algebraic
Equations

Stochastic disturbances are considered as perturbations on power system variables while
modelling the transient behaviour of the power system. These stochastic perturbations can
be modelled as SDEs, as in (2.9). SDEs are then incorporated into DAEs to formulate
SDAEs. The dynamic behaviour of power systems subjected to stochastic disturbances

is, thus, conveniently modelled as a set of nonlinear SDAESs, as follows [51]:

0= g(ilt(t), y(t)7 F"'<t>’ ’U,(t)) ) (32)



where Kk € R are the uncorrelated stochastic processes; a € R™ and b € R™ are the
drift and diffusion terms, respectively; and & € R™ is the vector of independent white
noises. All remaining variables have the same meaning as in (3.1). The functions f and g
are modified to include k().

SDAEs in (3.2) model uncorrelated stochastic disturbances. Thus, they cannot study
the impact of correlated stochastic disturbances on the power system’s dynamic behaviour.
This can be done by modelling stochastic disturbances in the set of SDAEs in (3.2) via a
set of correlated SDEs. This creates correlated SDAEs, which are proposed in the next

section.

3.4 Correlated Stochastic Differential Algebraic Equa-
tions

A set of multi-dimensional correlated SDAEs is formulated as follows:

0 =g(z(t),y(t), n(t), u(t)), (3.3)

where 7 € R™ are the correlated stochastic processes; a € R™ and b € R are the drift
and diffusion terms, respectively; and ¢ € R™ is the vector of correlated white noises.
The rest of the variables and functions have the same meaning as in (3.2). Note that the

model in (3.3) was originally proposed in [3].

Remarks

SDAEs in (3.2) and (3.3) are highly nonlinear and non-deterministic. Such equations
cannot be solved in closed form. Thus, numerical methods are employed for their
integration. The functions f, g and a in (3.2) and (3.3) are deterministic and are
integrated using usual integration schemes. In this thesis, implicit trapezoidal integration
scheme has been adopted for the integration of these functions. Whereas, integration of b

in (3.2) and (3.3) is associated to the non-deterministic integral with respect to Wiener
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process, as explained in Chapter 2. This integral is solved using Euler-Maruyama, in this
thesis, as introduced in Chapter 2.

Equation (3.3) is a general way of modelling correlated stochastic disturbances
into power system dynamics because in (3.3) the drift @ and the diffusion b of the
stochastic processes are not modified, and (3.3) also does not require any simplifications
or modifications to the original system while modelling the detailed dynamic behaviour.
The latter property allows for modelling of nonlinearities, controller hard limits and

saturations.

Dynamic Analysis

Due to the complexity involved, and non-availability of the analytical solutions of nonlinear
SDAESs, the impact of the stochastic processes on the dynamic behaviour of the power
systems can only be assessed through TDSs. The TDS employs numerical integration
schemes to simulate the trajectories of the power system variables. The trajectories of the
power system variables are then analysed to assess any instabilities in the system. This
allows for assessing the stability of the system for one particular scenario. However, in
the case of stochastic processes multiple scenarios can be simulated.

To get a realistic estimate on the probability of instability, the system of SDAESs should
be simulated multiple times to include all possible scenarios. This procedure is termed as
the Monte Carlo Method (MC). The total number of trajectories simulated using the MC
depends on the stationary conditions of the stochastic processes being simulated. This
is discussed in detail later in Chapter 4. Each trajectory of the power system variables
obtained through the MC is then analysed to account for any instabilities such as voltage
collapse, loss of synchronism, etc. The probability of instability is calculated based on
the number of unstable trajectories against the total simulated trajectories. In the entire
thesis, the MC are simulated exploiting parallelism on an 80 core Intel(R) Xeon(R) CPU
@ 2.20GHz.
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3.5 Sources of Volatility

This section introduces the methods to model correlated disturbances on the sources of
volatility for power system dynamic studies. These models were originally proposed in [3],

and are presented here in the following Subsections.

3.5.1 Load Power Consumption

Stochastic load models are well-established in the literature [53]. The stochastic load
model introduced in [51] considers the well-known voltage dependent load model and uses
uncorrelated Ornstein-Uhlenbeck (OU) processes to define stochastic perturbations on
active and reactive load power consumption. This is the starting point of the models

presented in this thesis.

3.5.1.1 Correlation on Active and Reactive Power Consumption

Two-dimensional correlated SDEs in (2.30) are utilized to model correlated stochastic
perturbations on active and reactive power consumption of stochastic loads. The proposed

model is as follows:

pL(t

= (pro +7mp(1)) (v(t)/v0)”
(qro +7(8)) (v (t) /v0)”
ap(1p(1)) + by (11 (1)) & (1) ,
+b

aq(1y(t)) a(Nq (1)) (Tpg §p(t) + /1 — 7}2),(1 (1)),

t

(3.4)
t

(t)
qu(t)
(t)
(t)

t

Tl
where pr, and ¢qr, are the nominal values of active and reactive power consumption,
respectively; v(t) represents the magnitude of the bus voltage at the load bus; vy is the
initial value of this voltage magnitude at time ¢ = 0; and  defines the voltage dependency
of the load, i.e., v = 0 is used for constant power load, and for constant impedance loads
v = 2 is used.

In (3.4) a, b, and £ have the same meaning as in (2.30). Whereas r,, is the linear
correlation between the two stochastic processes associated with active and reactive load
power consumption, i.e., 1, and n,, respectively. Note that the correlation between the

active and reactive power load consumption can be easily removed using r,, = 0.
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3.5.1.2 Correlated Load Consumption

In practice, some level of spatial and temporal correlation exists between load power
consumption at different load buses. This is true because consumer behaviour is correlated.
The correlation between the load consumption at multiple load buses can be conveniently
modelled using multidimensional correlated SDEs. Modifying (3.4) to include correlated

stochastic disturbances on load consumption of n; buses, gives:

Pt

t

(qr, +m4(1)) 0 vy(
ay(n,(1)) + by(m,(
(

aq(ﬂq(t)) + bq(nq t)) o

Q

- (3.5)

()
(t)
7, (1)
(t)

ur
where vectors p;, € R™ and g, € R™ represent the active and reactive power consumption
at load buses, respectively; p;, € R" and g, € R™ are the initial active and reactive

power consumption at load buses at time ¢ = 0, respectively; and v, € R™ and v, € R™

are vectors, whose elements are calculated as:

vpi(t) = vgi(t) = (vi() fvoa)™ , i =1, m,

where parameter v has the same meaning as in (3.4).

In (3.5) a,, a,, b, and b, are all n;-dimensional vectors with same meanings as in
(2.20); and ¢, € R™ and ¢, € R™ are the vectors of correlated white noises associated to
the stochastic processes, i.e., 7, and n,, on load active and reactive power consumption,

respectively, and are obtained using (2.18), as follows:

= C&(1),

where € € R?™ are the independent white noises; C is a lower-triangular matrix of

dimensions 2n; x 2n;, and is obtained as the Cholesky decomposition of the correlation
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matrix R with the following structure:

R R
pp  tipg
R = ,
Rip Regq
where R, , = R’ and:
q,p 'D,q :
1 Tpipe - Tpipn
R — Tpa,pr 1 o Tpapy
pp =
| "onyor Tongp2 - 1
"o Tpige -+ Tpian
R — Tposqr Tp2ge -+ Tpasay
Pq
_/rpnl »q1 Tpnlﬂn et rpnl qny |
1 Tage o Taian
R — Tg2,q1 1 o Taagy,
0.9 = )
Tanpr Tampa2 -+ 1

3.5.2 Stochastic Power Flow Equations

(3.6)

To ensure a secure operation of the grid, it is required that generation and demand are

balanced at all times. The power balance at i-th bus is given by the well-known power

flow equations, which in polar form are written as:

0 = pa,i(t) — prLi(t)
nB

— (1) Y[, (1)Byy sin(B,(1) — 6,(1))

j=1

<

A~

+ 04(t)Gyj cos(B;(t) — 0;(1))], i=1,...

0= qa,i(t) — qu.(t)
— 0(t) Z[%Gz’j sin(6;(t) — 0;(t))

~

— 0;(t)By; cos(0;(t) — ;(1))], i=1,...
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where pg,; and gq,; represent the sum of the active power generations, and the sum of
reactive power generations at the i-th bus, respectively. Similarly, pr,; and ¢r,; is the sum
of the active power consumption, and the sum of the reactive power consumption at the
i-th bus, respectively. ng is the total number of buses of the grid. G;; and B;;, respectively,
are the real and imaginary part of the (7, j) element of the system admittance matrix.
In [51], stochastic disturbances are included in the bus voltage phasors to account
for effects of random phenomena not modelled in the set of DAEs for transient stability
analysis, e.g., the effects of harmonics, nonlinearities, load unbalances, and electromagnetic
transients, etc. In the same vein, the stochastic disturbances in (3.7) are included through
the variables ©; and éi, which are the bus voltage magnitude and the voltage phase angle,

respectively, and are obtained as ng-dimensional correlated SDE as follows:

where ng is the number of buses in the network; v € R"B is the vector of the noise-free
components of the bus voltage magnitudes; 8 € R"B represents the noise-free components
of the bus voltage phase angles, at network buses; a,, ag, b, and by are all ng-dimensional
vectors with same meanings as in (2.20); and ¢, € R"® and {, € R"® are the vectors
of correlated white noises associated to the stochastic processes, i.e., n, and n,, on bus
voltage magnitudes and phase angles, respectively. The vectors ¢, and ¢, are calculated

from the vector of independent white noises & € R?*"5 using (2.18):

G(t) =C¢(t), (3.9)
Colt)

C € R*x2m8 ip (3.9) is calculated from the correlation matrix R € R?"8*2"5 using

(2.19). R contains the correlation values between the elements of v and 6. The structure
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of R is similar to that of (3.6), namely:

Rv v R'U,O

R=| " : (3.10)
RG,U R@,G
_RT .
where Ry, = R, , and:
1 Toiwe oo Toivng
Tug .0, 1 coo Tugun
_ k) k) B
Rv,v - )
Tongor Tongwa o 1 |
Tv1,61 Tvibe o Tobng
T’UQ 91 T’vz 92 s TUQ en
) ) wnpg
Rv,0 = )
_rUnBﬁl TUnBaGQ e TUnB767LB_
1 701,05 C T91,9nB
T92 01 1 e 7"92 On,
. ) 7 B
R9,0 - X . . X )
_TgnB ,01 T9n3,92 NP 1 |

3.5.3 Stochastic Wind Speeds

The electrical power generated from WPPs is a function of the wind speed, which is
highly affected by weather conditions. In the time-scale of transient stability analysis,
wind speed can be conveniently modelled as a stochastic process. This introduces volatility
in the power system dynamic model. Due to the stochastic nature of the wind speed, it
becomes incredibly important to study its effects on power system dynamics to ensure
a secure and reliable operation. The uncorrelated volatility model of wind speed is the
following:

w(t) = wo + nu(t),

T () = (10 (1)) + bu (N (1)) €u (2)

where wy is the average wind speed in a given period; and a,,, b,, and &, have the same

(3.11)

meaning as in (2.9).
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The spatial and temporal correlation between different wind turbines within a WPP,
as well as among WPPs can be modelled as a set of correlated wind speeds. The model

to correlate wind speeds through correlated SDEs is as follows:

w(t) = wo +n,(t),

() = @w(1,(1)) + bu(1,(t) © (1),

(3.12)

where wy € R™W is the vector of uncorrelated wind speeds; and other variables and

parameters have same meanings as in (2.20).

3.6 Aggregation of Correlated Wind Speeds

In recent years, the modelling of aggregated WPPs has become an important field of
research [7,14,38,40,64,69,77,79]. These works propose various techniques to model an
aggregated WPP that reproduces the behaviour of the detailed network, i.e., generates
similar amount of active power at a given wind speed as in the case of the detailed network.
Some of the works cited above, e.g., [79] and [77], propose a way to calculate an equivalent
wind speed that can be applied to the aggregated WPP to obtain the behaviour of the
active power similar to that generated by the WPPs of the original network. However,
these works model power system dynamics through deterministic DAEs. The drawback
of this approach is that the randomness in wind speeds is included into the set of DAEs
only in the initialization step. Then the wind speed is assumed to remain constant during
the simulation. This approach does not allow the modelling of volatility on wind speeds.

This section presents a formula to calculate an equivalent wind speed process that is
then applied to the aggregated WPP to generate the desired behaviour of the wind power
production at the point of aggregation. This new wind speed process is hereinafter referred
to as “aggregated wind speed process”. The cluster of WPPs of a given region in a grid
can be aggregated by using any of the methods presented in [7,14,38,40,64,69,77,79].
The aggregated WPP is then driven by the aggregated wind speed process so that it
generates active power at the point of aggregation, which has statistical properties similar
to the one generated by the detailed network. This solution is thus convenient when one

is interested in analysing the dynamic behaviour of the power network in the time scale of

43



transients, and in testing the performance of different controllers, and services provided
by the WPPs in the presence of a cluster of WPPs.

The aggregated wind speed process is obtained as the average of the underlying wind
speed processes. This method of averaging the underlying wind speeds has also been
utilised in other works, e.g., [79] and [77]. However, these references consider neither wind
speed dynamics nor correlated wind speeds. In this thesis, on the other hand, we are
interested in the aggregation of the correlated wind speed processes modelled through
correlated stochastic processes in the time scale of transients. The aggregated wind speed
process is thus modelled as a stochastic process that is an average of the underlying
individual wind speed processes in (3.12). The proposed aggregated wind speed model is
built using (3.12) and (2.26), as follows:

S|

Wagg (1) =

[Mwi + e_awit(wi(o) - Mwi) + 1w Z (ijcj,i> } . (3.13)

i=1 j=1

where ¢; ; is the 7, j element of matrix C, and o, is the standard deviation of the j-th

wind speed process from (2.25).

3.7 Conclusions

This chapter provides discussion on the modelling of power system dynamic behaviour
through deterministic DAEs. Then, modelling of stochastic disturbances into power
system dynamic equations through SDAEs is introduced. A general approach to model
power systems as a set of correlated SDAESs is, then, presented. A few examples to model
correlated stochastic disturbances on sources of volatility are discussed. Finally, a model

to aggregate correlated wind speeds is presented.
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Chapter 4

Variances of Power System Algebraic

Variables

4.1 Introduction

This chapter deals with the calculation of the variances of algebraic variables of power
systems modelled as a set of Stochastic Differential Algebraic Equations (SDAEs). The
variances of the algebraic variables are required to ensure that none of the system physical
limits are violated in normal grid operation. With this aim, two methods namely, the
conventional Monte Carlo Method (MC) and a direct method are utilised.

The conventional method, i.e., MC requires that the system of equations is simulated
multiple times. With this regard, the chapter discusses the complexities involved and the
computational burden of the MC. The chapter also illustrates the impact of setting up
the stochastic processes with different Probability Density Functions (PDFs) fitting the
measurement data on the variances of the algebraic variables of the power system with
the help of the MC.

One of the byproducts of the MC is that the variances of the power system variables,
in stationary conditions, are readily available. A relevant aspect of modeling power
system as a set of SDAEs is that system nonlinearities and controller hard limits can be
defined. Whereas this is not the case for the direct methods as they rely on linearization
of the system. Available direct methods can only describe the system linearized around

an equilibrium point and at stationary conditions, and, hence, cannot account for the
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time-continuous variations, i.e., the drift term, of the stochastic processes, any system
nonlinearities or hard limits.

As explained in Chapter 1, available direct methods provide statistical properties
only of the state variables of the power system at stationary conditions. While, in this
chapter the evaluation of the variances of the algebraic variables is the primary goal. The
method presented in this chapter utilises the solution of a Lyapunov equation and requires
the calculation of the state matrix of the system. This method is termed as the Linear
Estimation (LE). The accuracy and the computational efficiency of the LE compared to
the conventional MC has also been demonstrated.

The remainder of the chapter is organized as follows. Section 4.2 presents a discussion
on the computational burden of the MC. Then, the impact of modelling stochastic
processes with various PDFs on the variances of the power system variables and the
probability of violation of system limits in case of a transient are discussed in Section 4.3.
The LE is presented in Section 4.4. The case study presented in Section 4.5 utilises two
power systems of different sizes to demonstrate the accuracy and computational efficiency

of the LE. Finally, conclusions are drawn in Section 4.6.

4.2 Monte Carlo Method

The computational burden of the MC is proportional to the following: the complexity
and size of the power system; the total simulated time; the time-step used for integration;
and the number of trajectories simulated. The latter three aspects are discussed in this
section.

The dynamic behaviour of the set of SDAESs is best studied through Time Domain
Simulations (TDSs). A single trajectory of a stochastic process modeled as Stochastic
Differential Equation (SDE) and simulated using TDS needs to be simulated for at
least ty = 2/a s, where « is the autocorrelation coefficient, to become stationary, i.e.,
reach a constant standard deviation (o(t) = o). This is demonstrated later in Chapter 5,
where the processes with different o are simulated to show that they reach stationarity
at different ¢;. Hence, the smaller the value of a the higher the computational time of
the MC. Similarly, the time-step utilised to integrate the SDAEs has a direct impact on

the computational time of the MC. Note, however, that the integration step-size cannot
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be increased too much because the integration of the Wiener process requires sufficiently
small time steps, as explained in Chapter 2.

Another relevant aspect of the MC that has a greater impact on the computational
time of the MC is the number of trajectories being simulated. The rationale behind this
is explained as follows. Let us consider NV to be the number of trajectories simulated in
the MC. N is chosen based on a hit and trial method. The hit and trial method contains
two steps. Step 1 simulates the process using the MC for a small N, and calculates o(N).
The second step increases N by a small quantity and repeats step 1. Note that the hit and
trial method relies on the fact that for an increase in N an increase in o(N) is observed.
The steps are repeated until o(N) converges, i.e., 0(/N) = o, with a given tolerance.

To illustrate the hit and trial method, the 9-bus (Western Systems Coordinating
Council) system is chosen. The 9-bus system contains 3 synchronous generators, 3 load
devices, and is shown in Figure 4.1. The stochastic disturbances are introduced into
load active and reactive power through (3.5). The stochastic processes are modeled

through independent Ornstein-Uhlenbeck (OU) processes with the following parameters:

Figure 4.1: Single-line diagram of the 9-bus system.
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the autocorrelation coefficients of 7, and 7, are o, = o, = 0.1 s, respectively; and
the standard deviations of 1, and 5, are o(n,) = 0.5% of pr, and o(n,) = 0.5% of qr,,
respectively. The final simulation time for each realization is t; = 2/a = 20 s. The
integration of the deterministic part of SDAESs is performed with a time step At = 0.01 s.
The OU processes are integrated using a step size h = 0.01 s. Figures 4.2 to 4.5 show the
profile of o(N) plotted against N obtained for various power system variables in the 9-bus
system. These figures illustrate that o(N) converges for N — 1000. Note that N = 1000
is used throughout the thesis for the MC.

So far in the thesis the stochastic processes 1 were initialized such that 7;(ty) = 0. As
explained in Chapter 2, n; can be initialized to a random value chosen from the probability
density function of the process. Doing so removes the need to simulate the process, when
using MC, till £y = 2/a s, as the process displays stationarity at ¢y = 0. Note that even
though the process reaches stationarity at ¢y, the dynamics of the SDAEs do not allow

the power system variables to reach stationarity at ty. This is demonstrated as follows.
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Figure 4.2: Standard deviation of load active 7, and reactive 1, power consumption in the 9-bus
system.
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Figure 4.4: Standard deviation of rotor angle § and rotor speed w of the synchronous machines
in the 9-bus system.
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Figure 4.5: Standard deviation of active py, and reactive ¢y, power injections at the sending-end
buses in the 9-bus system.

The stochastic disturbances are introduced in the 9-bus system at load consumption
at bus 5 through the OU process. The values of autocorrelation coefficient of the process
is chosen as a, = o, = 0.1 s7'. Whereas the values of o are chosen from the following
scenarios. Scenario S1 considers o(n,) = 0.1% of pr, and o(n,) = 0.1% of q,; scenario
S2 considers o(n,) = 0.4% of pr, and o(n,) = 0.4% of qv,; and scenario S3 considers
a(n,) = 0.8% of pr, and o(n,) = 0.8% of qr,. The OU process is initialized such that
n(to) ~ N(u, o). The 1,000 trajectories of the stochastic process at load consumption at
bus 5 of the 9-bus system are shown in Figure 4.6. This Figure illustrates that the OU
process reaches stationarity at the start of the simulation, i.e., ¢ = 0. However, this is
not the case for the power system variables. The 1,000 trajectories of rotor speed w of
the synchronous machine G1 in the 9-bus system is illustrated in Figure 4.7. This Figure
shows that the power system variables do not reach stationarity until t; = 2/a s, even

though the stochastic processes show stationarity at tg.
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Figure 4.6: 1,000 trajectories of load active 7, and reactive 7, power consumption at bus 5 in
the 9-bus system.
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Figure 4.7: 1,000 trajectories of rotor speed w of the synchronous machine G1 in the 9-bus
system.

4.3 Probability Distributions of Stochastic Processes

The study presented in this section originates from the observation that when setting
up stochastic processes based on the measurement data, it is often possible that various
PDFs fit to the same data. Based on this observation the question such as what is the
impact of the different PDFs on the variances of the quantities of the power system
modelled as SDAESs, naturally arises. This section aims to provide an answer to this

question.
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With the help of the case study utilising the distribution network, this section
demonstrates that setting up stochastic processes based on the actual PDF type and the
parameters of the modelling PDF calculated from the measurement data leads to a more
realistic estimate on the variances of the power system quantities and the probability of
instability of the power system modelled as a set of SDAEs.

The procedures applied in this section are as follows. In Section 4.3.1, various PDFs
and their respective parameters based on the measurement data required to set up SDAEs
are calculated. Whereas the impact of setting up stochastic processes through different

PDF's on the power system transient behaviour is quantified in Section 4.3.2.

4.3.1 Fitting Probability Density Functions

This section provides details on fitting different PDF's to a given measurement data. In
this case study, wind generation is considered to be the only source of volatility. Note,
however, that the procedures utilised in this study are equally applicable to the other
sources of volatility as well. The wind measurement data in the time-scale of power
system TDSs utilised in this case study are presented in Appendix A.3. The Real-World
Cumulative Density Function (RCDF) of the wind speed measurement data is shown in
Figure 4.8. The next step is to set up stochastic wind speeds using SDE in (3.12). This

is done by employing the procedures described in Section 2.6.
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Figure 4.8: RCDF of measurement data and CDF of four PDF fits.
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The impact of different PDFs on the overall dynamic response of the system is of
interest in this study. With this aim, four PDFs fitting the data of Figure 4.8, namely
Gaussian, Weibull, Beta and Gamma are considered. The parameters of the four PDF's
are determined through the Maximum Likelihood Estimation method, as mentioned in
Section 2.6. The Cumulative Distribution Functions (CDF's) of the fitting PDFs under
consideration are illustrated in Figure 4.8, along with the relative error between the CDF's
of the PDFs and the RCDF of the wind speed measurement data. Figure 4.8 shows that
there are minimal differences between the CDFs and the RCDF. At a first glance, thus,
the four PDF's fit reasonably well the data.

4.3.2 Dynamic Simulations

This section studies the impact of different PDF types of correlated stochastic wind speeds
on the power system dynamic behavior. The power system considered in this section is
the two-area system. The two-area system shown in Figure 4.9 and originally defined
in [36], consists of 11 buses, 12 lines/transformers, and four synchronous generators,
which are modelled via a 6th-order model and are equipped with IEEE Type-I Automatic
Voltage Regulators (AVRs), Turbine Governors (TGs), and an Automatic Generation
Control (AGC) that coordinates the four synchronous generators. In this section, the
original system is modified to include wind generation. With this aim, the wind generation
network is modelled as in Figure 3.1. Then Substation A is connected to bus 9 of the

two-area system.
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1 5 6 7 11okm 8 110km 2 10 11 3
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Figure 4.9: Single-line diagram of the two area system.
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The detailed dynamic behaviour of the two-area system with inclusion of wind
generation is simulated using correlated SDAES, presented in Section 3.4. The WPPs
are modelled through variable-speed doubly-fed induction generators. The correlated
stochastic processes are introduced into the wind speeds using the model described in
Section 3.5.3. Where the stochastic processes are modelled through all the four PDF
types discussed in section 4.3.1. The correlation matrix R of wind speeds is set up using
data given in Table A.2. The power system dynamic simulations are performed using the
MC.

The impact of correlated stochastic wind speeds, simulated through different PDF
types, on the statistical properties of relevant quantities of the power system at the
stationary conditions is analysed first. The only difference in the simulations is the
diffusion term in (3.12), which, as mentioned in Section 2.4, defines the PDF of the
stochastic processes, in this case, wind speeds.

The drift term, which defines the Autocorrelation Function (ACF), on the other hand,
is assumed to be constant and same for all the PDF types. In fact, the ACF of the total
wind active power pying injected at Substation A into the power system is illustrated in
Figure 4.10. This figure shows that the ACF of pying for all the scenarios are similar.
This means that the drift terms of the wind speeds remain unaltered while simulating all
the scenarios.

The impact of correlated stochastic wind speeds with different PDF types on the

relevant power system quantities is quantified in Table 4.1. This table shows the standard

Gaussian Fit

Weibull Fit
—— Beta Fit
—— Gamma Fit

0 10 20 30 40 20 60

Figure 4.10: Average ACF of thousand trajectories of total wind active power injected into the
two-area system with inclusion of wind generation.
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deviation of: the bus voltage magnitudes o(v); and the active power injections o(p,) of the
synchronous machines. The results indicate that o(v) and o(p,) increase from Gaussian
to Gamma PDF in both scenarios.

The results in Table 4.1 are noteworthy because the only parameter that varies is the
PDF of the wind speed. The changes in the statistical properties of the power system
quantities based solely on PDF types of wind speeds are counter intuitive. One would
expect to see no differences in the statistical properties of any of the power system quantity
based on different PDF types of wind speeds. Especially when the differences between
CDFs of the fitting PDF types and the RCDF of data are small.

Further insights on the effect of the PDFs on the dynamic response of the system
can be obtained with a frequency domain analysis. Frequency domain analysis is carried
out using the procedures, which are described later in Chapter 5. With this regard, the
amplitude of the oscillations induced in the inter-area electro-mechanical oscillatory mode
of the power system are analysed. The inter-area mode of the two-area system with
inclusion of wind generation is first calculated as, eigenvalue —0.075167 & 3.540781, and
frequency 0.563 [Hz|. Then, the frequency spectrum of pyinq for the four PDF types,
which is illustrated in Figure 4.11, is evaluated. Results show that the amplitude of
the frequencies in pying is dependent on the PDF types of the underlying wind speeds.
The amplitudes of frequencies in case of Gaussian PDF are the lowest whereas Gamma
PDF shows the highest amplitudes. On the other hand, the amplitudes of frequencies for
Weibull and Beta PDF' are remarkably similar in the whole frequency spectrum.

The amplitude of oscillations induced in the inter-area oscillatory mode is shown in
Figure 4.12, which illustrates the frequency spectrum of voltage magnitude at Bus 8

Upus 08- Figure 4.12 shows highest amplitude of oscillations in the inter-area oscillatory

Table 4.1: Standard deviations (Std.) of power system quantities of the two-area system with
inclusion of wind generation reached at stationary conditions.

Std. [pu] | Gaussian | Weibull Inc. | Beta Inc. | Gamma Inc.
o(vBusos) | 0.0087 0.0091 4.6 | 0.0092 5.75 | 0.0095 9.2
0(VBuso9) | 0.0058 0.0061 5.17 | 0.0062 6.9 | 0.0064 10.34
0 (Pger ) 0.0136 0.0136  4.08 | 0.0138 5.97 | 0.0148 13.1
0 (Pgess ) 0.0135 0.0135 4.07 | 0.0138 5.96 | 0.0147 13.08
0(Pyes) 0.0134 0.0134 4 10.0137 5.89 | 0.0146 13.32
0(Pges) 0.0133 0.0133 3.98 | 0.0136 5.87 | 0.0145 13.27
Inc.: Normalised increment calculated in % with Gaussian PDF as base.
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Figure 4.11: Average of frequency spectrum of thousand trajectories of total wind active power
injected into the two-area system with inclusion of wind generation.

mode for Gamma PDF with the lowest being the Gaussian PDF. These variations in the
amplitudes of the oscillations for different PDF types lead to variations in the statistical
properties of the quantities of the power system as seen in Table 4.1.

Next, the impact of the PDF types on the behavior of the system after the occurrence
of a contingency is evaluated. This consists in the trip of the line connecting buses 8 and
9 at time t = 30 s. The mean trajectories of vg,s s obtained for all the PDF types are
shown in Figure 4.13. This figure also illustrates the deterministic trajectory of vpysos
obtained by simulating the modified two-area system through deterministic DAEs. Figure

4.13 shows that the mean trajectories of vgys s obtained for all the PDF types coincide

with the deterministic trajectory of vpys os.
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Figure 4.12: Average frequency spectrum of thousand trajectories of voltage magnitude at bus 8
of the two-area system with inclusion of wind generation.
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Figure 4.13: Average of thousand trajectories of voltage magnitude at bus 8 of the two-area
system with inclusion of wind generation for different PDF types.

Finally, the trajectories of vp,s s obtained as a result of simulating correlated wind
speeds, through different PDF types, are illustrated in Figure 4.14. While Table 4.1
shows the values of o(vpysos) before the contingency. The standard deviation of vgys g is
the lowest for the Gaussian and the highest for the Gamma PDF'. Figure 4.14 shows that
a considerable number of trajectories of vgysos violate the minimum voltage limit. The
number of trajectories of vgys s that go below the minimum voltage limit at least once in
the period of 30 s <t < 35 s is shown in Table 4.2.

The results shown in Figure 4.14 and Table 4.2 agree with the discussion presented
above in this section, i.e., the Gamma PDF leads to the worst dynamic behavior whereas
the Gaussian PDF to the best. The Weibull and Beta PDF remain close to each other,
which must be expected as the differences in the CDFs of Weibull and Beta PDF vs
RCDF as well as in their frequency spectrum are negligible. These results, while being
non-intuitive, can be understood by analysing the oscillations induced in the power system
by the wind speeds following different PDF types.

Note that the conclusions that can be drawn in this case study do not allow to conclude
that the Gamma PDF always leads to the worst dynamic response, nor that processes
with different PDF's always cause different dynamic impacts. The effect of the PDF
depends on the ACF of the stochastic processes, their locations in the network and on

the oscillatory modes of the system.
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Figure 4.14: Trajectories of voltage magnitude at bus 8 of the two-area system with inclusion of
wind generation for different PDF types.

Table 4.2: Trajectories with under-voltages at bus 8 of the two-area system with inclusion of
wind generation.

PDF Trajectories with under-voltages
Gaussian 42 (4.2 %)
Weibull 56 (5.6 %)

Beta 59 (5.9 %)
Gamma 70 (7.0 %)

4.4 Linear Estimation Method

This section presents a direct method to calculate the variances of the power system
algebraic variables. The SDAE model introduced in Section 3.4 is the starting point of
the power system dynamic model considered in this section. This section models the

dynamic behaviour of the power system in the presence of stochastic disturbances as a set
of index-1 SDAEs:

0,1 =9g(z,y,m), (4.2)
n=a(n)+b(n)o(, (4.3)
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where all the variables and parameters have the same meaning as in (3.3).

To calculate the variances of the power system algebraic variables y, the set of SDAESs
are linearized at an equilibrium point (x,,y,,n,) as per Method I described in [30]. Where
(€0, Y,,M,) is a point for which (4.2) are satisfied such that & = 0,,; and a(n,) = 0,.
The linearization of (4.1)-(4.3) gives:

i: f:z: fy f’r] JA: n,q
Omi| = |92 9y Gn| |U] T | Omg | & (4.4)

where f., f,, fns 9a 9y> 9y, @y are the Jacobian matrices of the system calculated at
(xo,y,,m,). « and 1) represent the deterministic and the stochastic states of the linearized
system. Eliminating the algebraic variables from (4.4) and defining 2 = [z, 7]" leads to a

set of linear SDEs, as follows:

T . fm_fygg;lgm fn_fygy_lgn T + n,q 5
7 0p,n ay, Ul b(n,)
— A2+ B¢, (4.5)

Based on the Fokker-Planck equation, the probability distribution zo(2) of all state

variables in stationary condition satisfies [72]:
1
w (%) = (det | 27D |)7V/2. exp( - §ATD_12) , (4.6)

where D is the variance-covariance matrix of the state variables in (4.5). Matrix D is

symmetric and satisfies the Lyapunov equation:
A,D+DA! = -B,B!, (4.7)

which is a special case of the Riccati equation. The diagonal elements of D are the
steady-state variances of the components of the state variables z. In particular, if the

stochastic processes 1 are not correlated, the last p diagonal elements of D can be written
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as:

L3

kE=1,...
zakv ) 7p7

o7 =
where aj, and by, are k-th diagonal elements of a, and B,, respectively, and o are the
variances of the p stochastic processes 7).

From (4.5), it is observed that & can be written as a linear combination of the entries
of z. Hence, also the elements of & are Gaussian processes. Furthermore, the covariance

matrix K of the small-signal algebraic variables can be written as [61]:
K=G,DG}, (4.8)

where

Go=—9," g, g.]" (4.9)

The diagonal elements of K are the sought variances of the algebraic variables y.

Note that if p < n, i.e., the number of sources of stochastic disturbances is much
smaller than the number of state variables, the covariance matrices D and, hence, K
might not be full rank. A zero element in the k-th position of the diagonal of D (K)
indicates that the associated Z (i) are not affected by stochastic disturbances. In this

case, the vector of stochastic processes 2 is said to be degenerate [27].

4.5 Case Study

This section illustrates the accuracy and numerical efficiency of the LE to calculate the
variances of algebraic variables of the power system. All results are compared to the ones
obtained through the MC. The power systems utilised in this case study are the IEEE
14-bus system and the All-Island Irish Transmission System (AIITS). Equation (4.7) is
solved using the open-source library SLICOT [10].

In both power systems, the sources of stochastic disturbances are modeled as
independent OU processes and included in the loads and, for the AII'TS, also in the wind
speeds. Where the stochastic load consumption model described in Section 3.5.1 is used
to model load consumption, and the wind speeds are modeled through the stochastic wind

speed model in Section 3.5.3.
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The accuracy of the LE is measured by calculating the closeness of the values of
standard deviation of the power system variables obtained through the MC with those
obtained through the LE. With this aim, a measure of closeness index, ¢,, is defined as
follows:

OMC — OLE

e (%) = 1100, (4.10)

omMmcC
where oy, and opg are the standard deviations of the variables obtained through the
MC and the LE, respectively. Note that the choice of o\ as base for ¢, is arbitrary.
Also note that ¢, is calculated for a large number of power system algebraic variables. A
detailed description of the variables utilised is provided in Table 4.3.

Table 4.3: List and description of power system variables.

Variable | Description
Mp Stochastic disturbance on load active power consumption
Mg Stochastic disturbance on load reactive power consumption
o Rotor angle of the synchronous machine
w Rotor speed of the synchronous machine
Dy Active power injection of the synchronous machine
g Reactive power injection of the synchronous machine
14 d-axis current of the synchronous machine
I, g-axis current of the synchronous machine
Vg d-axis voltage of the synchronous machine
Vg g-axis voltage of the synchronous machine
v Bus voltage magnitude
0 Bus voltage angle
Dir Active power injections at the sending-end bus
DPto Active power injections at the receiving-end bus
qfr Reactive power injections at the sending-end bus
Gto Reactive power injections at the receiving-end bus

4.5.1 IEEE 14 Bus System

The TEEE 14-bus system, shown in Figure 4.15, contains 14 buses with 11 loads, 20
lines/transformers, and 5 synchronous machines. The synchronous generators are described
by a sixth-order model, and are equipped with TGs and IEEE Type-1 AVRs. An AGC
is also included in the model [49].
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Figure 4.15: Single line diagram of the IEEE 14-bus system.

The stochastic load consumption is modeled through (3.5) with the following
parameters: the autocorrelation coefficients of 1, and 7, are a, = «a, = 0.01 s7!,
respectively; and the standard deviation of 7, and n, are o(n,) = 5% of pr, and o(n,) = 5%
of ¢, respectively. The simulation time ¢ for each realization is chosen as t; = 2/a = 200
s. The integration of the deterministic part of SDAESs is performed with with a time step
At = 0.01 s. The OU processes are integrated using a step size h = 0.01 s.

Figure 4.16 shows the box plot of the values of €, obtained in the case of the IEEE
14-bus system through the MC and the LE. Results indicate that LE yields org that
are very close to oyc. Note that the box plot is drawn such that the thick horizontal
grey lines show the median of the data, the top and bottom notches contain 5% to 95%
percentile of the data, and the black circles show the outliers.

Note that as 7, and 7, are modeled through the OU process, which is linear and has
a constant diffusion term, the LE yields the variances of 1, and 7,, which are exactly the
same to those obtained from the MC. This is confirmed by the results shown in Figure
4.16, which shows a very close match between the LE and the MC for the stochastic
processes 7, and 7,. Also note that, to test the accuracy of the LE against the nonlinearity

of the SDAES, a wide range of standard deviation of the process, o(n,) = o(n,), ranging
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from 1% to 10% of the initial load consumption is considered. The variations in the values
of ¢, for all the variables were found to be in the same range as in Figure 4.16. In fact,
the standard deviation o(e,) and mean p(e,) of the measure of closeness index for a few

variables are illustrated in Figure 4.17. It is fair to conclude, thus, that the LE works with
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Figure 4.16: Box plot of measure of closeness index for the IEEE 14-bus system.
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an exceptionally good accuracy for a wide range of standard deviation of the stochastic

processes.

4.5.2 All-Island Irish Transmission System

This section demonstrates the robustness and light computational burden of the LE when
applied to the real-world complex systems. For this reason, a dynamic model of the All-
Island Irish Transmission System (AIITS) is considered. The schematic map of the AII'TS
is shown in Figure 4.18. The AII'TS consists of 1479 buses, 1851 lines/transformers, and 22
synchronous generators that are modeled through a VI-order model and are equipped with
IEEE ST1la AVRs, and TGs to ensure a secure operation of the grid. Six conventional
power plants also include a Power System Stabilizer. The AIITS includes 246 load devices.
The AIITS has two 500 MW high-voltage direct-current interconnections with Scotland
and Wales. The AIITS also includes 176 wind power plants, 34 of which are equipped
with constant-speed and 142 with doubly-fed induction generators.

The MC, which is comprised of 1000 TDSs, is employed first to calculate oyc. The
stochastic disturbances are introduced on load consumption through the load model in
(3.5), using independent OU processes. The parameters of i in (3.5) are chosen such
that a, = oy = 0.01s7%; o(n,) = 5% of pr,; and o(n,) = 5% of q1,. The wind speed is
modeled as a OU process through (3.11) with a standard deviation 5 % of the average
wind speed. The final simulated time for the AIITS is calculated as t; = 2/a = 200 s.
Each realization of the MC is simulated with a time step of 0.01 s.

The box plot of ¢, for the AIITS is shown in Figure 4.19. The following remarks are
relevant. The measure of closeness index, €., indicates that the LE deviates more with
respect to the MC for the AIITS than for the IEEE 14-bus system. The values of the
€, of the algebraic variables are larger for the AIITS than for the IEEE 14-bus system.
These deviations, however, are not due to numerical inaccuracies but to the fact that e,
is a relative measure. Larger €, refer to very small values of the standard deviation of the
algebraic variables.

On the other hand, the LE shows a clear advantage with respect to the MC, at least
for large power system models. That is, the LE is characterized by significantly smaller

computational times than the MC. In the case of the AIITS, the total CPU time required
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by the MC was 14763 s, i.e., more than 4 hours, whereas the LE took 54 s, i.e., less than

a minute.
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Figure 4.18: The schematic map of the All-Island Irish Transmission System [18].
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Figure 4.19: Box plot of measure of closeness index for the AIITS.

4.6 Conclusions

This chapter presents methods to calculate the variances of the algebraic variables of power
system modeled as SDAEs. With this regard, the conventional MC and a newly proposed
method, named the LE, are used. The chapter also discuses the impact of modelling
stochastic processes with various PDF's on the variances of the algebraic variables and
the dynamic behaviour of the power system.

The MC is illustrated with the help of case study utilising a 9-bus system. The
case study demonstrates that the computational burden of the MC is dependent on the
autocorrelation coefficient of the stochastic processes; the time-step of the integration
scheme; the number of realizations of the processes; and complexity and size of the power
system.

The impact of modelling stochastic processes with various PDF types on power system
dynamic is demonstrated by simulating a distribution network. It is shown that some
PDF types, despite having similar statistical properties, might have severe impact on
the variances of the power system quantities and as a result the probability that system
physical limits are violated after a contingency is affected. This result is counter intuitive

and cannot be known without actually simulating the system. Note that in this case study
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the results were obtained using the MC. These results cannot be obtained through a
direct method because direct methods can study the system only at stationary conditions.

The proposed direct method, i.e., LE, is based on the solution of the Lyapunov
equation and a linearized method. The LE finds its usage in providing a realistic estimate
of variances of the algebraic variables at stationary conditions, which is crucial to ensure
that none of the system physical limits are violated in normal grid operation. Simulation
results show that the proposed technique has a high accuracy for a wide range of standard
deviation of stochastic processes, and significantly reduced computational time as compared
to the conventional MC.

It is relevant to note that the LE, despite a high accuracy and a clear advantage over
the MC in terms of computational efficiency, is not suitable for the dynamic analyses of
the power systems. The dynamic analyses consist of monitoring the individual trajectories
of the MC for violations of the system limits such as bus voltage limits, or any instabilities
such as loss of synchronism. Such analyses cannot be conducted through a direct method.
Furthermore, the LE is valid only if linearization is valid and cannot consider the

nonlinearities, the hard limits, saturations etc.
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Chapter 5

Autocorrelation

5.1 Introduction

The impact of autocorrelation of the stochastic disturbances on the power system’s
dynamic behavior is the objective of this chapter. For this reason, modelling the power
system as a set of nonlinear Stochastic Differential Algebraic Equations (SDAESs) is
the best formulation choice available [41,51,73]. The SDAE models power system’s
dynamic behaviour independent of its size or complexity. Therefore, no simplification
or linearization is required. A byproduct of this modelling approach, however, is that
no analytical solutions, of the resulting SDAEs that describe the power system model,
are available. For this reason, numerical methods mentioned in Chapter 3 are utilised to
integrate the nonlinear SDAEs.

The goal in this chapter is twofold. To study the impact of autocorrelation of stochastic
disturbances on the stability of the power system; and to study the dynamic coupling
between the drift of stochastic disturbances and the electro-mechanical modes of the
power system. With this regard, two techniques, namely, time- and frequency-domain
analysis are utilised. For simplicity but without loss of generality, this chapter focuses
on the stochastic disturbances introduced into the power system in load consumption.
Stochastic disturbances are modelled using stochastic load model in (3.5).

The discussion presented in this chapter models net load at distribution level. Where
the net load is obtained by subtracting the power injections of non-synchronous Renewable
Energy Sources (RES) from actual load demand. In the remainder of this chapter,

stochastic disturbances are modelled as independent processes, i.e., R = I and are
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described by Ornstein-Uhlenbeck (OU) processes. This assumption allows simplifying the
discussion of the case studies but does not impact on the generality of the conclusions.
The remainder of the chapter is organized as follows. Section 5.2 analyses the transient
behaviour of power system subjected to stochastic disturbances in time-domain. With this
regard, Subsection 5.2.1 presents a detailed discussion on the impact of atutocorrelation of a
stochastic process on its dynamic response. Whereas Subsection 5.2.2 discusses the impact
of autocorrelation of the stochastic disturbances on the dynamic behaviour of the power
system. Section 5.3 focuses on another relevant feature of the autocorrelation, i.e., the
dynamic coupling between the drift of stochastic disturbances and the electro-mechanical

modes of the systems. Finally, conclusions are drawn in Section 5.4.

5.2 Time Domain Analysis

This section studies the impact of autocorrelation of stochastic disturbances on the
transient behaviour of power system in time-domain. With this aim, at first, the impact of
autocorrelation of a stochastic process on the dynamic behaviour of the stochastic process
itself is analysed in Section 5.2.1. Finally, Section 5.2.2 studies the effect of autocorrelation
of the stochastic disturbances on the dynamic behaviour, and hence, stability of power

system. The discussion in this section was originally presented in [4].

5.2.1 Dynamic Response of Stochastic Process

This section presents a detailed discussion on the dynamic analysis of the stochastic
process in time domain. This analysis considers the autocorrelation, i.e., Autocorrelation
Function (ACF) and standard deviation, i.e., Probability Density Function (PDF') of the
stochastic process. For simplicity but without loss of generality, a OU process is chosen.
Note that the discussion presented in this section is valid for other stochastic processes as
well.

The OU process is a linear implementation of the SDE in (2.9) and/or (2.20). Hence,
both drift and diffusion terms can independently modify the dynamic behavior of a OU
process. As a result, the power system dynamic will behave differently dependent on
the modifications in the two terms. The OU process is mean-reverting, i.e., it tends to

its mean value and shows constant standard deviation in stationary conditions. A OU
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process is defined as:

n=—a(n—p) +pE, (5.1)

where « is the autocorrelation coefficient or the speed of the mean reversion; g is the
coefficient of the diffusion term; p is the mean value; and ¢ is the white noise. The
process resulting from (5.1) is a real-valued process that follows a Gaussian PDF given
by N (i, 0?), and § = 0v/2a.

The process defined in (5.1) is a linear combination of two terms: drift and diffusion.
This allows for both terms to be adjusted independently. As a result, OU processes
with different values of a and, hence, different dynamic behavior, can have same PDF
in stationary conditions. In fact, the PDF of (5.1) is defined as in (2.6), which does not
depend on a.

Table 5.1 shows a set of parameters of OU processes. Figure 5.1 illustrates the time
series of OU processes generated from the parameters in Table 5.1. It is important to note
that the processes shown in the top panel Figure 5.1 have the same PDF in stationary
conditions. However, their transient behavior is significantly different because of the
different values of a. On the other hand, the bottom panel of Figure 5.1 illustrates OU
processes generated with different values of o but same values of a. Comparing the upper
and lower panel of Figure 5.1, it is evident that from the dynamic point of view, a process
with high o and low standard deviation has a similar effect as a process with low o and
high standard deviation.

The autocorrelation coefficient of a stationary stochastic process is calculated from the
ACF. As explained in Chapter 2, the ACF of a stationary stochastic process measures
the dependence of present values, of a given time series, on the past values, of the same
time series, as a function of time lag, and is calculated using (2.13). Figure 5.2 illustrates
the ACFs, calculated using (2.13), of the OU processes shown in Figure 5.1. The ACF
is always equal to 1 for 7 = 0 by definition. As 7 increases the correlation of the OU

processes between current and future values decreases exponentially and decreases the

Table 5.1: Parameters of OU processes.

Parameters | 71 12 N3 n M5 N6
« 1 0.1 0.01 0.01 0.01 0.01
o 01 01 01 04 03 02
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Figure 5.2: Exponentially decaying ACF's of OU processes defined in Table 5.1.

faster the higher the value of . In fact, the analytical expression of ACF of a OU process
is given as R(7) = e~ 7. Note, however, that processes with different ¢ and same a show
similar time evolution of the ACF (see bottom panel of Figure 5.2).

It is interesting to note that, taken alone, neither the time series of the OU processes,
shown in Figure 5.1, nor the dynamic behavior of the ACF, shown in Figure 5.2, allow to
distinguish between the OU processes. A more effective way to visualize the behavior
of stochastic processes is through the MC. With this aim, 1,000 trajectories of each
process of Table 5.1, with initial condition 7;(0) = 0 and a time step h = 0.01 s for the
increments of the Wiener process, are simulated. The spread of the 1,000 trajectories of

the OU processes can be visualized in Figure 5.3. Top panel of Figure 5.3 shows that the
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OU processes reach same standard deviation at stationary conditions, i.e., o(t) = o, at
separate times depending on a. Whereas the OU processes with same « but different o
reach different standard deviation at the stationary conditions all at the same time.

For the proof of concept, the standard deviation of all the trajectories for each process
is calculated at every time step and plotted against time in Figure 5.4. The results shown
in Figure 5.4 indicate that the time at which a stochastic process becomes stationary
depends only on «a of the process. In fact, the expression for a stochastic process to
reach stationarity is given by ¢y = 2/c, which is not dependent on ¢. On the other hand,
the spread of the trajectories in stationary conditions depends only on the value of the

standard deviation.
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Figure 5.3: 1,000 trajectories of OU processes defined in Table 5.1.
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Figure 5.4: Standard deviations of 1,000 trajectories of OU processes defined in Table 5.1.
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So far, independent OU processes have been considered. In the SDAE model in (3.3),
however, the OU processes are dynamically coupled with the rest of the system. Common
sense would suggest that ACF's of the OU processes affect exclusively the transient, while
the standard deviation affects only the stationary conditions. However, since the variables
1 appear in the nonlinear differential-algebraic equations, this intuition is not always
correct. The next subsection of this section shows that the ACF of the OU processes

also impact on the stationary conditions of the system.

5.2.2 Dynamic Response of Power Systems

This section analyses the impact of the autocorrelation of stochastic disturbances on
the dynamic behavior of the power system in time domain. This analysis is performed
considering the evolution in time of the standard deviation of relevant variables of the
system. With this aim, the MC is employed to extract meaningful statistical properties,
such as the standard deviation and the autocorrelation of the trajectories of relevant
variables, and also to assess the stability of the power system subject to stochastic
disturbances. The MC utilises the dynamic model of two power systems, namely the
well-known Kundur’s two-area system and the dynamic model of the real-world All-Island
Irish Transmission System (AIITS).

With the aim of studying the impact of autocorrelation coeficient «, six scenarios with
various combinations of o and o of the OU processes that describe the loads are defined
in Table 5.2. The MC simulates 1,000 trajectories for each scenario in Table 5.2. The
numerical integration schemes utilise a time step of h = 0.01 s to integrate the Wiener

Table 5.2: Autocorrelation a and standard deviation o of stochastic load consumption for
different cases.

Scenarios | a [s7'] | a(n,) [% of pro] | o(ny) [% of quo)
Sla 0.01 0.4 0.4
S1b 0.1 0.4 0.4
Slc 1 0.4 0.4
S2a 0.01 0.6 0.6
S2b 0.1 0.6 0.6
S2c 1 0.6 0.6
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process in the non-linear SDAEs, while the deterministic part is integrated with a step

size of At = 0.01 s. The total simulated time for each trajectory is t = 200 s.

5.2.2.1 Two-Area System

The original two-area system introduced in Section 4.3.2 and shown in Figure 4.9 is used
in this case study. The impact of standard deviations of the stochastic disturbances on
the power system algebraic variables is considered first. For this reason, the values of
standard deviation of bus voltage magnitude o(v); and of active o(p,) and reactive o(q,)
power generation of the synchronous generators calculated for scenarios Sla, S2a, S1b,
and S2b are shown in Table 5.3. The values of o(v), o(p,) and o(q,) reported in Table
5.3 show an increase of 50% from scenario Sla to S2a and scenario S1b to S2b. Note that
in the scenarios compared in Table 5.3, a of stochastic processes remains constant while
o is increased by 50% from the base scenario. The results indicate that in stationary
conditions, the variations in o of stochastic processes while keeping o constant lead to
variations in ¢ of the power system variables in the same proportion. This behaviour is

expected from a power system in stationary conditions.

Table 5.3: Standard deviation (Std.) of power system algebraic variables of the two-area system
with stochastic loads for scenarios Sla, S2a, S1b, and S2b.

Std. Sla S2a % increase S1b S2b % increase

UBus1 | 0.0008 0.0012 20 0.0023 0.0034 47.83
vBus2 | 0.001  0.0016 60 0.0029 0.0044 51.72
UBus 3 | 0.0008 0.0012 50 0.0021  0.0032 52.38
UBus4 | 0.001  0.0016 60 0.0028 0.0042 50

Upus7 | 0.0021 0.0032 5238 | 0.0046 0.007  52.17
Upuso | 0.0023 0.0035 5217 | 0.0046 0.007  52.17
Pger | 0.0224 00333 48.66 | 0.0267 0.0394  47.57
Doy | 00222 0.033 4865 | 0.0252 0.0371  47.22
Pos | 00223 0.033 4798 | 0.0248 0.0366  47.58
Poos | 0.0223 0033 4798 | 0.025 0.0368  47.20
oo, | 0.0306 0.0463  51.31 | 0.0531 0.079  48.78
ooe | 0.0479 0.0725  51.36 | 0.0711 0.1056  48.52
Goos | 0.0321 0.0487  51.71 0.05  0.0745 49
Goos | 0.0526 0.0796  51.33 | 0.0708 0.1051  48.45
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Next, the impact of «a of stochastic processes on the statistical properties, i.e., mean
and variance, of power system variables in stationary conditions is considered. With this
regard, the time evolution of o(v) at load buses 7 and 9 are shown in Figures 5.5 and 5.6,
respectively. By observing the Figures 5.5 and 5.6, it is obvious that a of the underlying
stochastic processes has a significant impact on ¢(v) in stationary conditions. The actual

1

values of o(v) at generator and load buses for base scenario, which is a = 0.01s™', and

their % increase calculated from the base scenarios are shown in Tables 5.4 and 5.5. Note
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Figure 5.5: Standard deviation of voltage magnitude at load bus 7 of the two-area system with
stochastic loads.
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Figure 5.6: Standard deviation of voltage magnitude at load bus 9 of the two-area system with
stochastic loads.
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that the results presented in Tables 5.4 and 5.5 indicate that o(v) varies from 100% to
775% for a variation in « from 0.01 to 1s~!. These variations in ¢(v) are dependent only
on « of the underlying stochastic processes and are independent of o of the stochastic
processes.

Finally, the variations in o(p,) and o(g,) for variations in « of stochastic processes are
observed. Figures 5.7 and 5.8 illustrate the time evolution of o(p,) of generators G1 and
G3, respectively. Whereas the time evolution of o(g,) of generators G2 and G4 are shown
in Figures 5.9 and 5.10, respectively. These figures show an increase in o for an increase in
a. The actual values of o(p,) and o(g,) along with their % increase are shown in Tables
5.4 and 5.5. The results in both tables indicate that the o(p,) and o(g,) increase from
85% to 330%, as « is increased from 0.01 to 1s71.

It is also interesting to note that 197 simulations were found to be unstable for scenario
S2c. For illustration, a selection of the unstable trajectories from scenario S2¢ are shown

in Figures 5.11 to 5.13. These figures indicate that the loss of stability in scenario S2¢ are

Table 5.4: Standard deviation of power system algebraic variables of the two-area system with
stochastic loads for scenarios Sla, S1b and Slc.

Standard Sla S1b Slc
deviation | absolute [pu] | % increase' | % increase’
UBus 1 0.0008 187.5 712.5
UBus 2 0.001 190 740
UBus 3 0.0008 162.5 637.5
UBus 4 0.001 180 680
UBus 7 0.0021 119.05 504.76
UBus 9 0.0023 100 434.78
Doc, 0.0224 19.2 120.09
Poc 0.0222 13.51 87.39
Pocs 0.0223 11.21 82.96
Dyca 0.0223 12.11 87.89
Qo 0.0306 73.53 336.27
docs 0.0479 48.43 244.05
doce 0.0321 55.76 260.44
Qgca 0.0526 34.6 181.37

I Note: % increase is calculated based on Sla.
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Table 5.5: Standard deviation of power system algebraic variables of the two-area system with
stochastic loads for scenarios S2a, S2b, and S2c.

Standard S2a S52b S2c
deviation | absolute [pu] | % increase? | % increase?
UBus 1 0.0012 183.33 775
UBus 2 0.0016 175 743.75
UBus 3 0.0012 166.67 708.33
UBus 4 0.0016 162.5 700
UBus 7 0.0032 118.75 543.75
UBus 9 0.0035 100 471.43
Dy 0.0333 18.32 133.33
Pocs 0.033 12.42 97.83
Poc 0.033 10.91 94.24
Poc 0.033 11.52 95.45
Qgc 0.0463 70.63 364.36
Qgcs 0.0725 45.66 265.93
doc 0.0487 52.98 286.86
doc 0.0796 32.04 202.01

2Note: % increase is calculated based on S2a.
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Figure 5.7: Standard deviation of active power injection of synchronous generator G1 of the
two-area system with stochastic loads calculated against time for all the cases.
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due to shortage of reactive power that leads to voltage collapse. On the other hand, no
instability occurs for scenarios S2a and S2b. These results indicate that a of stochastic
processes, not ¢ and PDFs alone, are crucial parameters for the stability analysis of
power systems. In fact, high ¢ might not be dangerous for the system if « is sufficiently
low. On the other hand, if a of the stochastic processes are sufficiently high, even if their

o are low, instability can occur.
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Figure 5.8: Standard deviation of active power injection of synchronous generator G3 of the
two-area system with stochastic loads calculated against time for all the cases.
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Figure 5.9: Standard deviation of reactive power injection of synchronous generator G2 of the
two-area system with stochastic loads calculated against time for all the cases.
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Figure 5.10: Standard deviation of reactive power injection of synchronous generator G4 of the
two-area system with stochastic loads calculated against time for all the cases.
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Figure 5.11: Few unstable trajectories of the active power generation of all synchronous machines
of the two-area system with stochastic loads from scenario S2c.
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Figure 5.12: Few unstable trajectories of the reactive power generation of all synchronous
machines of the two-area system with stochastic loads from scenario S2c.
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Figure 5.13: Few unstable trajectories of the voltage magnitude at bus 8 of the two-area system
with stochastic loads from scenario S2c.

5.2.2.2 All-Island Irish Transmission System

The power system chosen in this section is the AIITS, presented in Section 4.5.2. The
impact of stationary probability distributions of stochastic processes on the power system
algebraic variables is considered first. For this reason, the values of o(v) at few buses, and

values of o(p,) and o(g,) of a few synchronous generators obtained for scenarios Sla, S2a,

80



S1b, and S2b are shown in Table 5.6. The % increase in the values of o(v), o(p,) and
o(q,) calculated using scenarios Sla and S2a as base are also reported in Table 5.6. From
Table 5.6, it is evident that o(v), o(p,) and o(g,) show an increase of 50% for an increase
of 50% in o of the stochastic processes, when « is kept constant. This result substantiates
the results obtained for the two-area system, see Table 5.3.

Next, the impact of the autocorrelation of stochastic processes on the statistical
properties of algebraic variables of the AIITS in stationary conditions is observed. With
this regard, the values of o(v), o(p,) and o(g,) obtained for the six scenarios, in Table
5.2, are presented in Tables 5.7 and 5.8. From the results in Tables 5.7 and 5.8, it can

be seen that o of power system algebraic variables increases for an increase in « of the

Table 5.6: Standard deviation of power system algebraic variables of the AIITS with stochastic
loads for scenarios Sla, S2a, S1b, and S2b.

Standard Sla S2a S1b S52b
deviation | x10™* [pu] | x10™* [pu] % increase | x107* [pu] | x10™* [pu] % increase
UBus 1 0.013 0.0194 49.23 0.0134 0.0201 50
UBus 2 0.01 0.0149 49 0.0106 0.0158 49.06
UBus 13 0.0115 0.0173 50.43 0.0115 0.0173 50.43
UBus 170 0.0101 0.0151 49.5 0.0108 0.0163 50.93
UBus 1000 0.0119 0.0178 49.58 0.0119 0.0178 49.58
UBus 1479 0.024 0.036 50 0.0239 0.0359 50.21
Dgen 5.7601 8.6401 20 0.8416 8.7624 50
Dgca 2.4508 3.6762 20 2.4824 3.7237 50
Pgcs 8.5706 12.8559 50 8.7562 13.1343 50
Docs 4.6096 6.9144 50 4.6019 6.9029 50
Dycs 8.0003 12.0004 50 7.9359 11.9039 50
Poce 1.9401 2.9101 50 1.975 2.9625 50
Dycr 2.9027 4.354 50 2.8731 4.3097 50
. 0.2049 0.3073 49.98 0.2018 0.3027 50
Qgcs 0.4183 0.6275 50.01 0.4343 0.6515 50.01
Qgcs 0.2354 0.3531 20 0.2876 0.4313 49.97
Qgcs 0.2455 0.3683 50.02 0.2998 0.4497 50
Qgas 1.2566 1.885 50.01 1.2145 1.8217 50
Qe 1.5121 2.2682 50 1.4179 2.1268 50
Qg 5.7973 8.6959 50 5.6656 8.4985 50
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stochastic processes regardless the fact that the stationary probability distribution of the

stochastic process remains unaltered.

Note that the results presented in Tables 5.7 and 5.8 show that o(v), o(p,) and o(g,)

in the AIITS increase by a small percentage as compared to the two-areas system in

Section 5.2.2.1. This slight increase in o(v), o(p,) and o(g,) in the AIITS is because loads

are well distributed throughout the system, and the eigenvalues are very well damped.

Whereas this is not the case in the two-area system where the loads are concentrated in

large amount only on the two buses, and the eigenvalues of the system are poorly damped.

The eigenvalues of the critical modes are shown in Section 5.3 later in this chapter.

Table 5.7: Standard deviation of power system algebraic variables of the AIITS with stochastic
loads for scenarios Sla, S1b and Slc.

Standard Sla S1b Slc
deviation | absolute x10™* [pu] | % increase® | % increase®
UBus 400 0.0403 71.22 203.72
UBus 450 0.0551 57.17 171.87
UBus 500 0.187 29.52 169.63
UBus 550 0.187 29.52 169.63
UBus 600 0.0408 51.96 142.89
UBus 650 0.1542 22.96 139.75
Dyca 3.6837 1.62 37.71
Pocs 1.5446 3.16 37.14
Poce 1.9401 1.8 36.47
Dy 8.5706 2.17 35.54
Dycs 2.4508 1.29 34.92
Paco 5.7601 1.41 18.33
Qgca 0.2354 22.18 21.11
Qgcs 0.244 22.99 20.25
Qocs 0.2455 22.12 19.47
Qgcn 0.1625 12.86 16.55
Jgcs 0.5555 16.11 16.11
Qgco 0.8684 4.17 15.63

3 Note: % increase is calculated based on Sla.
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Table 5.8: Standard deviation of power system algebraic variables of the AIITS with stochastic
loads for scenarios S2a, S2b, and S2c.

Standard S2a S2b S2c
deviation | absolute x10™* [pu] | % increase? | % increase®
UBus 400 0.0827 07.19 171.7
UBus 450 0.2805 29.48 169.63
Vs 500 0.0612 52.12 142.97
UBus 550 0.2312 22.97 139.84
UBus 600 0.1832 18.45 117.74
UBus 650 0.1323 15.04 103.33
Dyca 4.0811 11.46 114.52
Doc 5.5255 1.63 37.72
Pocs 2.3168 3.16 37.15
Pocs 2.9101 1.8 36.48
Docs 12.8559 2.17 35.54
Doce 13.6762 1.29 34.92
Yoo 2.2397 16 49.85
Gocs 2.7262 30.82 37.45
Gocs 0.3531 22.15 21.13
Goes 0.3659 23.04 20.28
Gocs 0.3683 22.1 19.47
Goce 0.2437 12.88 16.58

4 Note: % increase is calculated based on S2a.

5.2.2.3 Discussion

From the results presented above in this section, it is evident that the standard deviation o,
while keeping autocorrelation coefficient o constant, of the power system output variables
increases in the same proportion as the o of the stochastic processes. The standard
deviation of output variables is also directly impacted by a of the stochastic processes.
This occurs despite the fact that the processes have the same probability distribution in
stationary conditions, as shown in Figure 5.4. Note that all the scenarios reach the same
mean value.

It is important to note that the variables v, p, and g, belong to the vector of algebraic
variable y of (3.3), i.e., their stochastic behavior is the result of the inclusion in f and g

of the stochastic variable . It is observed that high values of the autocorrelation can
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drive the system to instability even if the standard deviation of the stochastic processes
is small, and acceptable in stationary conditions. This non-intuitive result is due to the
dynamic coupling of the autocorrelation of stochastic processes with the nonlinearity of

the SDAESs that define the power system model.

5.3 Frequency Domain Analysis

This section investigates whether stochastic processes can trigger the electro-mechanical
modes of the power system and hence, modify its dynamic response. With this aim, at
first, the electro-mechanical modes are identified by calculating the dominant eigenvalues
and their participation factors. Then, the frequency spectrums of relevant variables of the
system are analysed to quantify the impact of the autocorrelation of stochastic processes
on the overall system dynamic response.

This approach is conceptually similar to the signal probing technique, e.g., [62, 85, 86,
which utilises a Fourier analysis of measurement data to determine the frequency, damping,
and participation factors associated with the inter-area oscillatory modes of the power

system. The results discussed in this section were presented in [5].

5.3.1 Dynamic Response of Stochastic Processes

It is relevant to analyse the effect of o on the dynamic response of stochastic process,
which is modelled as a OU process using (5.1). Top panel of Figure 5.1 shows three
realizations of (5.1), obtained for y =0, ¢ = 0.1 and different values of «.

The three processes shown in top panel of Figure 5.1 have the same PDF's in stationary
condition. However, their dynamic behavior is significantly different because of the different
value of o and, hence, of their autocrrelation. This can be observed in top panel of Figure
5.1: the higher the value of «, the faster the variations in the stochastic process in the
unit of time.

An effective way to differentiate stochastic processes having same PDFs but different
« is offered by the frequency spectrum of the time series obtained by Fourier Transform.
Figure 5.14 illustrates the frequency spectrum of the time series observed in the top panel

of Figure 5.1. Figure 5.14 shows that the higher the value of «, the bigger the amplitudes
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Figure 5.14: Frequency spectrum of realizations of OU processes with ¢ = 0; ¢ = 0.1; and
a1 =0.01s" ap=01s"! and ag=1s""

of the frequencies of which a OU process is composed. Thus, the amplitudes of the

frequencies, of which a OU process is composed, is directly proportional to the «.

5.3.2 Dynamic Response of Power Systems

This section studies two power systems, namely, the well-known Kundur’s two-area system
and a dynamic model of the AIITS. Both systems are modelled as a set of nonlinear
SDAESs. In all simulations, the realizations of the Wiener processes are integrated with a
sufficiently small step size of h = 0.01 s, whereas the integration of the deterministic part
utilises a step length At = 0.01 s. Each trajectory simulated for a total simulation time
of 200 s. In this time period, the stochastic processes reach stationarity.

Three scenarios where stochastic processes are characterized by low-, medium- and

high-speed exponentially decaying autocorrelations, respectively, are defined as follows:
e S1: a=0.01s"1
e S2: v =0.1s71.
e S3: =151

The values above are in the range of real-world stochastic processes that are found in

power systems.
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5.3.2.1 Two-Area System

The two-area system introduced in Section 4.3.2, and shown in Figure 4.9, is simulated
using the SDAE model described in (3.3). Stochastic processes are introduced through
stochastic load model in (3.5). Stochastic processes 1 in (3.5) are modelled as independent
OU processes using (5.1). Note that (3.5) models net load. The impact of the stochastic
processes on the dynamic response of the system is studied considering each area

independently.

Stochastic Loads only in area 1

The dominant electro-mechanical modes of the system along with the participation factors
of the machines after introducing stochastic processes in area 1 are shown in Table 5.9.
These modes are calculated as a result of including stochastic processes in load power
consumption in area 1 through OU processes. The standard deviation of OU processes
is set to o = 1% of the mean load value for all scenarios. For each scenario, the OU
processes have the same frequency spectrum as shown in Figure 5.14.

The impact of the autocorrelations of stochastic processes on the bus voltage magnitude
v at load buses is analysed first. With this regard, the time domain profile of v at load
buses 7 and 9 is shown in Figure 5.15. From Figure 5.15, it is evident that v at bus 7
experiences higher variations in time as compared to v at bus 9. While the amplitude of
the variations in v at both buses is dependent on the value of o. This is further confirmed
by analysing the frequency spectrum of the time domain profile of v. Figure 5.16 illustrates
the frequency spectrum of v at buses 7 and 9. This figure shows that the amplitude of the
oscillation of the dominant electro-mechanical mode is dependent on « of the stochastic
process. Note that v on both buses observes oscillations only in the inter-area oscillatory
mode i.e, mode 1 in Table 5.9. Since stochastic processes are modelled only in area 1, v
at bus 7, which is in area 1, experiences higher amplitude oscillations as compared to v at
bus 9, which is in area 2.

Next, the reactive power generation g, of the synchronous generators in the two-area
system is analysed in both time- and frequency-domain. Figure 5.17 illustrates the time
profile of g, of all the synchronous generators. By observing Figure 5.17, it is clear that the
synchronous generators in area 1, i.e., G1 and G2, provide more reactive power support

than those in area 2, i.e., G3 and G4. For the proof of concept, the frequency spectrum
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of g, of all the generators is shown in Figure 5.18. From Figure 5.18, it is evident that

generators in area 1 experience higher amplitude oscillations for higher o as compared to

Table 5.9: Electro-mechanical modes and corresponding participation factors of the two-area
system with stochastic load in area 1.

Participation Factors
G1 G2 G3 G4
1 -0.063=£]3.866 0.615 19.05 11.01 34.86 21.85
-0.300+£j7.112 1.132 42.07 5293 1.63 1.25
3 -0.3004£j7.392 1.176 1.02 147 3777 57.52

Mode | Eigenvalue | Freq. [Hz]
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Figure 5.15: Time profile of voltage magnitude at load buses 7 and 9 of the two-area system
with stochastic load in area 1.
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Figure 5.16: Frequency spectrum of voltage magnitude at load buses 7 and 9 of the two-area
system with stochastic load in area 1.
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Figure 5.17: Time profile of reactive power injections of all the synchronous generators of the

two-area system with stochastic load in area 1.
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Figure 5.18: Frequency spectrum of reactive power injections of all the synchronous generators

of the two-area system with stochastic load in area 1.
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generators in area 2. Note that g, experiences oscillations only in the inter-area oscillatory
mode, which is the same as with v.

Next, the impact of the autocorrelation of the stochastic processes on the active power
injections p, of the synchronous generators is observed. The time profile of p, of all
the synchronous generators is shown in Figure 5.19. The oscillations of these generators
are higher the higher the value of a of the stochastic processes included in the load
consumption. Figure 5.20 illustrates the frequency spectrum of p, of the synchronous
generators. By comparing the frequencies of the dominant electro-mechanical modes
shown in Table 5.9 with the frequency spectrum shown in Figure 5.20, it is clear that
an increase in « causes an increase in the amplitude of the oscillations in the dominant
electro-mechanical modes. Note also that the frequency spectrum of p, shows well the
coupling of the oscillatory modes of the two-area system with the values of a.

The amplitudes of the oscillations observed in p, also depend on the participation
factors of the machines. This is particularly evident for the inter-area oscillatory mode,
which shows significant participation from all the generators. The amplitude of the inter-
area oscillatory mode observed in all the generators is proportional to their participation
factors. This behavior can be verified by observing the participation factors of generators
in modes 2 and 3. Since mode 2 has significant participation from G1 and G2, and
provided that the disturbance originates in area 1, negligible oscillations are observed in
mode 2 in the generators G3 and G4, located in area 2. Whereas mode 3 has significant
participation from G3 and G4. Hence, negligible oscillations are observed in mode 3 from
all the generators. This is due, again, to the fact that the disturbance is located in area 1.

Finally, the impact of the autocorrelation coefficient on the stability of power system
is analysed with MC. With this aim, 1,000 Time Domain Simulations (TDSs) are carried
out. The results of these simulations are presented in Table 5.10, which indicates that

none of the trajectories were found to be unstable for the three scenarios.
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Figure 5.19: Time profile of active power injections of all the synchronous generators of the
two-area system with stochastic load in area 1.
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Figure 5.20: Frequency spectrum of active power injections of all the synchronous generators of
the two-area system with stochastic load in area 1.
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Table 5.10: Unstable trajectories for the two-area system with stochastic loads.

Stochastic Processes in area 1 | Stochastic Processes in area 2
Scenario Unstable trajectories Unstable trajectories
S1 0 0
S2 0 0
S3 0 521 (52.1%)

Stochastic Loads only in area 2

The dominant electro-mechanical modes of the system along with the participation factors
of the machines after introducing stochastic processes in area 2 are shown in Table 5.11.
The parameters of the stochastic loads are the same as those utilised in the example above
except for the standard deviation that is set to o = 0.5% of the mean load consumption.

The time domain profile and frequency spectrum of v at load buses 7 and 9 are
illustrated in Figures 5.21 and 5.22, respectively. These figures show that higher amplitude
oscillations are observed for higher values of . These figures also show that the oscillations
are observed only in the inter-area oscillatory mode with similar amplitude in v at buses 7
and 9 in Areas 1 and 2, respectively. Note that this result is different from that obtained
by considering that stochastic processes are modelled only in area 1, as can be seen in
Figures 5.15 and 5.16. The rationale for this difference is as follows.

Figures 5.23 and 5.24 illustrate the time- and frequency-domain profile of g, of all
the synchronous generators, respectively. Note that the generators in both areas observe
oscillations with similar amplitudes. This behaviour of g, coincides with the behaviour
observed in v, seen in Figures 5.21 and 5.22. This happens despite the fact that disturbance
is only in area 2. The reason behind this is that the generators in area 1 are providing
more reactive power support than the generators in area 2. This causes reactive power
being exported from area 1 to area 2, which makes the generators in area 1 experience
oscillations with amplitudes similar to those in area 2.

Next, the time domain profile of p, of all the synchronous generators is illustrated
in Figure 5.25. While Figure 5.26 shows the frequency spectrum of all the synchronous
generators in the two-area system. The results show that generators G3 and G4 in area 2
show higher amplitude oscillations as compared to generators G1 and G2 in area 1. The
rationale of this result is given by the participation of the generators to the inter-area

mode (see Table 5.11). These results are consistent with those discussed in the example
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above, i.e., the higher the a the higher the oscillations observed in the generators of area

2. Note that even though modes 2 and 3 have similar frequency, only the p, of machines

Table 5.11: Electro-mechanical modes and corresponding participation factors of the two-area
system with stochastic load in area 2.

Participation Factors
G1 G2 G3 G4
1 -0.1394j2.690 0.428 5.20  7.62 27.07 34.64
2 -0.2924+j7.154 1.139 38.67 52.67 2.82  2.62
3 -0.331+£j7.214 1.148 2.03 4.16 4297 46.4

Mode | Eigenvalue | Freq. [Hz]
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Figure 5.21: Time profile of voltage magnitude at load buses 7 and 9 of the two-area system
with stochastic load in area 2.
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system with stochastic load in area 2.
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Figure 5.23: Time profile of reactive power injections of all the synchronous generators of the
two-area system with stochastic load in area 2.
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Figure 5.24: Frequency spectrum of reactive power injections of all the synchronous generators
of the two-area system with stochastic load in area 2.
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Figure 5.25: Time profile of active power injections of all the synchronous generators of the
two-area system with stochastic load in area 2.
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Figure 5.26: Frequency spectrum of active power injections of all the synchronous generators of
the two-area system with stochastic load in area 2.
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G3 and G4 show a relevant increase in the amplitude of the frequency of mode 3 because
the sources of stochastic disturbances are in area 2.

Finally, the effect on the stability of the two-area system of the autocorrelation of the
stochastic processes included in area 2 is analysed using MC, which comprises of 1,000
simulations. The trajectories of v, p, and g, are observed and the results for unstable
trajectories are presented in Table 5.10. Table 5.10 shows that 52.1% of trajectories are
unstable for scenario S3. For illustration purposes, a few unstable trajectories of the
selected power system variables are shown in Figures 5.27 to 5.29. From the results the
two-area system appears to have run out of reactive power support. It is important to note
that, for all scenarios, the standard distribution of the processes is kept the same while
the autocorrelation coefficient of the processes is varied. This implies that sufficiently high
values of the autocorrelation coefficient of the stochastic processes, which may originate
only in one area of the system, may drive a system to instability, which may lead to a

voltage collapse.
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Figure 5.27: Few unstable trajectories of the active power injections of the synchronous generators
of the two-area system with stochastic load in area 2 for scenario S3.
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Figure 5.28: Few unstable trajectories of the reactive power injections of the synchronous
generators of the two-area system with stochastic load in area 2 for scenario S3.
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Figure 5.29: Few unstable trajectories of the voltage magnitude at bus 8 of the two-area system
with stochastic load in area 2 for scenario S3.

5.3.2.2 All-Island Irish Transmission System

In this section, a dynamic model of the AIITS introduced in Section 4.5.2 is considered.

The AIITS is modelled as a set of non-linear SDAEs in (3.3). Stochastic processes are
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included in the load consumption using the stochastic load model provided in Section
3.5.1.2, with R = I, where stochastic processes are modelled as OU processes.

The dominant electro-mechanical oscillation modes of the AIITS are shown in Table
5.12. Whereas the frequency spectrum of p, of a few synchronous generators of the AII'TS
are shown in Figures 5.30 and 5.31. The results show that the amplitude of the oscillations
induced in p, are dependent not only on the participation factors of the generators but
also on the damping of the relevant mode.

Figure 5.30 illustrates that generator G3 shows low amplitude oscillations in the
relevant mode, despite the fact that it has the highest participation factor as compared

to generators G1 and G2. Whereas the generators G1 and G2 show higher amplitude

Table 5.12: Electro-mechanical modes and corresponding participation factors of the AIITS
with stochastic loads.

) Participation Factors
Mode | Eigenvalue | Freq. [Hz] | Damp. [%] 01 G2 O3 G4 G5 Q6
1 -0.3924j4.689 0.746 8.33 54.5 29.73 — - - -
2 -0.8261j4.595 0.731 17.7 26 148 739 - - -
3 -1.059435.948 0.971 17.10 - - - 21.1 73.6 -
4 -1.1504+j6.368 1.013 17.78 - - - - - 91.26
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Figure 5.30: Frequency spectrum of active power injections of the synchronous generators G1,
G2 and G3 of the AIITS with stochastic loads.
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Figure 5.31: Frequency spectrum of active power injections of the synchronous generators G4,
GbH and G6 of the AIITS with stochastic loads.

oscillations in their relevant modes despite having low participation as compared to G3.
The rationale behind this result is that the damping of mode related to G3 is exceedingly
high as compared to the damping of mode related to G1 and G2 (see Table 5.12). Similar
behaviour is observed in generators G4 to G6 in Figure 5.31, where the relevant modes have
higher damping. The results shown in Figures 5.30 and 5.31 are similar to those obtained
for the two-area system, i.e., the amplitude of the frequency of the electro-mechanical

oscillation modes is increased by increasing the autocorrelation coefficient «.

5.4 Conclusions

This chapter analyses the impact of the autocorrelation coefficient of the stochastic
disturbances originating in power systems from sources of volatility such as load power
consumption and non-synchronous RES penetration. With this regard, two methods,
namely, time- and frequency-domain analysis, are utilised.

The time-domain analysis focuses on the power system output variables in stationary
conditions. The results show that the standard deviations of the power system variables
depend not only on the stationary distributions of the stochastic disturbances but also on

the autocorrelation coefficient. Whereas the frequency-domain analysis studies the effect
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of time-dependence of the stochastic disturbances on the dynamic response of the power
system in the time-scale of power system transient. This method particularly focuses on
the electro-mechanical oscillations in the power system triggered by these disturbances.

The results of the frequency-domain analysis allow drawing the following relevant remarks.

e The higher the autocorrelation coefficient of the stochastic disturbances, the higher

the amplitude of the frequency of dominant electro-mechanical modes.

e Stochastic disturbances originated in an area propagate to other areas through

inter-area modes or through reactive power transfer from one area to another.

e The presence of stochastic disturbances in an area of the system has a reduced effect
on the local modes of other areas. This is due to the fact that the noise originated

in an area propagates to other areas through inter-area modes.

e Stochastic disturbances included in an area and exhibiting high values of
autocorrelation coefficients may cause instability in the power system than those
included in another area with the same statistical properties. Hence, it is crucial
to know the autocorrelation coefficient of the stochastic processes along with their

stationary distribution.

The case studies indicate that it is important to assess the instability probability of a
power system subjected to stochastic disturbances based not only on the stationary PDF
but also on the autocorrelation coefficient. With this result, the case study highlights
the importance of solving TDSs with the actual values of the autocorrelation coefficients
of all the stochastic processes present in a power system. It can also be observed that
with the increasing penetration of non-synchronous RES and flexible loads, instabilities
originated due to their stochastic nature are going to be increasingly likely in the future.

Note that the results presented in this chapter have been verified with various numerical
integration schemes. This allows concluding that the instabilities observed for some
scenarios are in effect due to the actual behavior of the system and not to numerical

1ssues.
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Chapter 6

Correlation

6.1 Introduction

This chapter illustrates several case studies based on the set of correlated Stochastic
Differential Algebraic Equations (SDAESs) introduced in Chapter 3, to quantify the
impact of correlated stochastic disturbances on the dynamic behaviour of the power
system. The construction of the correlation matrix, which is the fundamental element
to set up correlated SDAEs, based on measurement data is discussed first. Then the
impact of modelling correlated stochastic processes on load active and reactive power
consumption and wind speed fluctuations is demonstrated. Finally, the chapter presents
several case studies that model correlation on different sources of volatility, i.e., stochastic
load consumption, bus voltage phasors, and renewable energy sources penetrations, i.e.,
wind generation, and study their impact on the power system dynamic behaviour.

The remainder of the chapter is organized as follows. The construction of correlation
matrix based on measurement data is discussed in Section 6.2. The scenarios of correlation
utilised for the case studies are presented in Section 6.3. The impact of correlated active
and reactive power, and correlated wind speeds on the standard deviation of the power
system variables is discussed in Sections 6.4 and 6.5, respectively. Section 6.6 presents a
case study utilising three power systems including the model of the real-world dynamic
All-Island Irish Transmission System (AIITS) to assess the impact of correlated volatility

on the power system dynamic. Conclusions are drawn in Section 6.7.
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6.2 Correlation Matrix

This section utilises the methods described in Section 2.5.2 to illustrate the construction
of correlation matrix based on measurement data. With this regard, at first, Section 6.2.1
provides details on the measurement data and the calculation of the noise elements from
the data. The noise elements obtained from data are utilised to build the correlation

matrix in Section 6.2.2.

6.2.1 Extraction of Noise Elements from Measurement Data

This section illustrates the procedure presented in Section 2.5.2 to extract the noise
elements di from the measurement data. For this purpose, a variety of wind speed
measurement data exhibiting different fitting PDF' types and different time scales ranging
from 1 second to 1 hour, presented in Appendix A.3, are utilised. Since the Irish system
has a very high share of wind penetration, the wind speed measurement data was easily
available. Nonetheless, the method utilised in this section is equally applicable to the
measurement data from other sources as well.

For the extraction of dvy from the wind speed measurement data the following elements
are the fundamental requirement: the fitting PDF; the parameters of the fitting PDF; and
the Autocorrelation Function (ACF), i,e., autocorrelation coefficient, of the measurement
data. These are obtained utilising the procedures described in Section 2.6. The di are
then extracted from the data by employing the method provided in Section 2.5.2. The
PDFs of diy obtained from the measurement data, presented in Table A.1, are shown in
Figure 6.1. This figure illustrates that the PDF of dv is independent of the ACF, PDF
and time-scale of the process; and follows the normal random variable with zero mean

and unit variance, and is in accordance with the discussion in Section 2.5.2.

6.2.2 Construction of the Correlation Matrix

This section demonstrates the construction of the correlation matrix R from the
measurement data. The elements of R represent the spatio-temporal correlation between
the increments of the noise elements, i.e., di); and di);. The noise elements are calculated

from the measurement data as illustrated in Section 6.2.1. Once the time series of di) is
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Figure 6.1: PDFs of di obtained from wind data, in Table A.1, using (2.29).

obtained, each element of R, i.e., r; ; = corr|[di;, di);] is calculated by employing Pearson’s
correlation coefficient, presented in Appendix B.2.1.

In this section, R is constructed for the ten wind sites of the distribution network
shown in Figure 3.1. The scatter plot of di of selected wind sites is illustrated in Figure
6.2. This figure shows that some wind sites show a stronger correlation between them
as compared to the others. This correlation depends on the distance between the sites.
The scatter plot in Figure 6.2 accounts only for the spatial correlation, i.e., correlation
with respect to distance. This correlation between the wind sites remains fixed because
the distance between any two wind sites will always remain the same. To account for the
temporal correlation large amount of data spanning over several years in the time-scale of
power system dynamic will be required. This will help in understanding if the correlation
between any two wind sites is a function of time or not. These data are not available at

this stage.
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Figure 6.2: Scatter plot of diy obtained from wind data, for the wind sites in the distribution
network in Figure 3.1.

Once the scatter plots are obtained, which are provided for illustration purposes only.
The Pearson’s correlation coefficient is applied to calculate linear correlation between any
two wind sites. These correlations are then populated in R in their respective positions,
ie., r;; = corr[dy;, dip;]. The wind correlation matrix for the distribution network of
Figure 3.1 is presented in Table A.2. For illustration purposes the correlation values
obtained from the wind measurement data are plotted against the distance and are shown
in Figure 6.3. Figure 6.3 shows that the correlation between the wind sites depends
exponentially on the distance between them. The trend observed for the wind correlation

in Figure 6.3 is consistent with the results reported in other studies [24,45,65].
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Figure 6.3: Correlation against distance between the wind sites in the distribution network in
Figure 3.1.

6.3 Correlation Scenarios

The correlation matrix R is the fundamental tool required to set up correlated SDAEs.
The entries of R represent the correlation between two given stochastic processes. This
correlation is calculated using the measurement data. As explained in Section 6.2, a
limited amount of data are available to account for correlation in the time-scale of power
system dynamic simulations. This makes it almost impossible to construct R.

In the remainder of this chapter, a sensitivity analysis is performed. Three scenarios

of correlation are defined as follows:

e Scenario 1 (S1) represents the fully uncorrelated SDAE model, i.e., the correlation

between any two stochastic processes ¢ and j is 7 ; = 0.

e Scenario 2 (S2) considers a low level of correlation among processes, i.e., the

correlation between any two stochastic processes ¢ and j is set to r; ; = 0.4.

e Scenario 3 (S3) considers a high level of correlation among processes, i.e., the value

of correlation between any two stochastic processes 7 and j is set to r; ; = 0.8 .
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6.4 Correlated Stochastic Active and Reactive Power

This section studies the impact of modelling correlation on stochastic active pr, and
reactive g, power consumption of loads on the statistical properties of power system
relevant quantity, i.e., bus voltage magnitude v at the load buses. For this reason, the
detailed dynamic model of the 9-bus system introduced in Section 4.2 is simulated through
correlated SDAEs in 3.3. Where, the loads are modelled as described in Section 3.5.1.1.

The three scenarios of correlation defined in Section 6.3 are considered. The stochastic
disturbances at load consumption are defined through the correlated Ornstein-Uhlenbeck
(OU) processes introduced in Section 2.7.1. The values of the parameters are chosen as
follows: ay, = a; = 1s7%; o(n,) = 4% of pro; and o(n,) = 4% of gro. The MC is chosen to
simulate the 9-bus system.

The stationary PDFs of the stochastic processes are not altered when correlating
processes using (2.20), as explained in Section 2.5. The time domain trajectories and
stationary PDF's of the correlated OU processes are shown in Section 2.7.1. The standard
deviations of correlated pr, and qr,, obtained through the MC, at load buses are illustrated
in Figures 6.4 and 6.5, respectively. These figures show that the standard deviation of py,
and qr,, in stationary conditions, remain the same despite being correlated.

The time profiles of v at load buses are illustrated in Figure 6.6. This figure shows a
slight increase in v for an increase in correlations between py, and gr,. An effective way to

differentiate between the time profiles of v shown in Figure 6.6 is through the standard
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Figure 6.4: Standard deviation of active power consumption at load buses of the 9-bus system
with correlated active and reactive power loads.
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Figure 6.5: Standard deviation of reactive power consumption at load buses of the 9-bus system
with correlated active and reactive power loads.
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Figure 6.6: Trajectories of voltage magnitude at load buses of the 9-bus system with correlated
active and reactive power loads.

deviation. For this reason, the standard deviation of v at the load buses is calculated
against time and illustrated in Figure 6.7. This figure shows that the standard deviation
of v at load buses is directly proportional to the level of correlation between pr, and qr..
The effect of the correlation on p;, and ¢, in stationary conditions as well as during a

transient is discussed in detail in Section 6.6.1.
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Figure 6.7: Standard deviation of voltage magnitude at load buses of the 9-bus system with
correlated active and reactive power loads.

6.5 Correlated Stochastic Wind Speeds

This section studies the impact of correlated wind speeds on the dynamic behaviour of
the active power injections p. of the WPPs in the distribution network. The distribution
network utilised in this section is the one introduced in Section 3.6 and shown in Figure
3.1. The wind speeds of the WPPs connected to bus Trien in the distribution network
are correlated using the model described in Section 3.5.3. The correlated wind speeds
are modelled through Gamma distribution as introduced in Section 2.7.2.2. Note that
it is important to model the wind speeds with the right PDFs obtained through the
measurements, as discussed in Section 4.3.1.

The dynamic behaviour of the processes being correlated depends on the level of
correlation between them, see Figure 2.10. Note that the dynamic behaviour of the
processes is modified without altering the stationary PDFs of the processes, as explained
in Section 2.7.2.3. The effect of correlation between wind speeds is transferred to p, of
the WPPs. Figure 6.8 illustrates the time profile of p, for distinct levels of correlation
modelled on the underlying wind speeds. In Figure 6.8, it can be observed that, as the
level of correlation between the wind speeds is increased, the time profiles of p. come

closer to each other, which modifies the dynamic behavior of p.. However, this does not
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Figure 6.8: Active power injections of the WPPs connected to bus Trien for various levels of
correlation between wind speeds.

modify the statistical properties of p,, as the statistical properties of the wind speeds
remain unaltered.

To show that standard deviation of p, is not affected by the correlation between the
wind speeds, the MC is adopted. The MC simulates 1,000 trajectories of the active power
pe. The standard deviations of p, of the WPPs at bus Trien are calculated against time
and illustrated in Figure 6.9. This figure shows that standard deviation of p. of the WPPs
remains the same at any level of correlation. Conversely, the standard deviation of total p,
injected at bus Trien is dependent on the level of correlation between the underlying wind
speeds. The standard deviation of total p. injected at bus Trien is illustrated in Figure
6.10. The rationale behind this is that p. of each WPP being correlated will show similar
variations in time dependent on the correlation between the underlying wind speeds. This
makes the sum of p, rise or fall dependent on the correlation, which causes p. injected at

the bus to have a higher standard deviation for higher correlation.
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Figure 6.10: Standard deviation of the active power injected at bus Trien.

6.6 Case Study

This case study aims at evaluating the effect of the correlated stochastic disturbances on

the dynamic behavior of power systems. With this goal, the standard deviations of the

trajectories of system variables such as the active power of synchronous generators and

bus voltage magnitudes considering the cases of correlated and uncorrelated disturbances

are compared. The power systems considered are (i) the two-area system, (ii) the two-area

system with inclusion of wind generation, and (iii) a dynamic model of the All-Island

Irish Transmission System (AIITS).
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The impact of the correlation of disturbances is evaluated by observing the trajectories
of relevant quantities of the system. With this aim, the MC is chosen. Each simulation
requires about 8,000 realizations of the Wiener processes for all wind speeds, bus voltage

phasors, and load active and reactive power consumption.

6.6.1 Two-Area System

The two-area system introduced in Section 4.3.2 is modified as shown in Figure 6.11.
Correlated disturbances in the two-area system are modelled as correlated OU processes
using the procedure described in Section 2.7.1. These are included into the modified
two-area system through stochastic load consumption, and bus voltage phasors, with the
following parameters: a, = a, = a, = ay = 1s7%; a(n,) = 0.6% of pro; o(n,) = 0.6% of
qro; o(ny) = 0.3% of vy; and o(ny) = 0.3% of 6. The results discussed in this section were
originally presented in [3].

First, the correlated stochastic disturbances are introduced in stochastic load
consumption using the load model (3.5). The correlation matrix R utilised to model
correlation on stochastic load consumption is shown in Table 6.1, where r represents
the correlation between any two given quantities. The value of r is chosen based on the
scenarios described in Section 6.3. The case study considers correlation between the load
devices connected in the same area. Hence, inter-area correlation is not considered.

The trajectories of the voltage profile at bus 8 are observed for the three scenarios

simulated, and the results are presented in Table 6.2. Results indicate that the higher

G3
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Figure 6.11: Single-line diagram of the modified two-area system [3].
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the correlation among processes, the higher the probability that the system becomes
unstable. This result can be explained as follows: the loads will require more/less power
from generators if they all increase/decrease in a coordinated manner. For illustration
purposes, a selection of the unstable trajectories from scenarios S2 and S3, are shown in
Figures 6.12-6.14 and Figures 6.15-6.17, respectively. Simulations indicate that the loss of

stability, in this case, is due to a shortage of reactive power that leads to voltage collapse.

Table 6.1: Correlation matrix of the stochastic loads of the modified two-area system.

Pr P2 P3 P4 G1 QG2 43 44
pr| 1 » 0 0 r r O
ppolr 1 0 O » r 0 O
ps| 0O 0 1 »» O O r r
ps| 0 O » 1 0 0 7 r
| r r 0 0 1 » 0 O
Q| r r 0 0 r 1 0 0
g0 0 » » 0 0 1 r
|0 0 » » 0 0 r 1

Table 6.2: Unstable trajectories of the modified two-area system with correlated stochastic loads.

Disconnection of load Lj:
Scenario | Unstable trajectories 5

Unstable trajectories

S1 0 0
S2 68 (6.8%) 19 (1.9%)
S3 369 (36.9%) 68 (6.8%)
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Figure 6.12: Few unstable trajectories of voltage magnitude at bus 8 of the modified two-area
system with correlated stochastic loads for selected unstable trajectories for scenario S2.
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Figure 6.13: Few unstable trajectories of active power injections of the synchronous generators
of the modified two-area system with correlated stochastic loads for scenario S2.

Reactive Power [pu(MVAr)]
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Figure 6.14: Few unstable trajectories of reactive power injections of the synchronous generators
of the modified two-area system with correlated stochastic loads for scenario S2.
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Figure 6.15: Few unstable trajectories of active power injections of the synchronous generators
of the modified two-area system with correlated stochastic loads for scenario S3.
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Figure 6.16: Few unstable trajectories of reactive power injections of the synchronous generators
of the modified two-area system with correlated stochastic loads for scenario S3.
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Figure 6.17: Few unstable trajectories of voltage magnitude at bus 8 of the modified two-area
system with correlated stochastic loads for selected unstable trajectories for scenario S3.

An effective way to evaluate the effect of correlation between the loads is through
observing the statistical properties of the relevant quantities. The statistical property, and
the quantity chosen in this case study is the standard deviation of the active and reactive
power generation of synchronous generators, namely, o(p,) and o(g,), respectively. The
standard deviation of stable trajectories of active p, and reactive g, power generation of
synchronous generators obtained from the simulations presented above in this section is

calculated and presented in Table 6.3. This table indicates that the values of o(p,) and

Table 6.3: Standard deviation of active and reactive powers of synchronous generators for the
modified two-area system with correlated stochastic loads.

Standard S1 S2 S3
deviation | absolute | % increase ! | % increase!
DPyca 0.0519 22.73 45.04
Dygo 0.0439 22.34 44.15
Dyas 0.0432 22.76 45.03
Pyaa 0.0442 21.94 42.53
Qgcr 0.1399 24.37 48.88
Qgco 0.1726 24.37 48.89
Qgcs 0.1215 25.22 50.82
Qgca 0.1554 25.13 50.95

1 Note: % increase is calculated based on scenario S1.
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o(qy) increase by about 25% comparing scenarios S1 to S2 and by about 50% comparing
scenarios S1 and S3.

Next, the impact of correlated stochastic disturbances in bus voltage phasors on o(p,)
and o(q,) of the synchronous generators is evaluated by modelling the correlated stochastic
disturbances on the bus voltage phasors through the model introduced in Section 3.5.2.
The correlation matrix is built in such a way that stochastic processes modelled on intra
area buses are considered to be correlated, whereas no correlation is considered between
the inter area buses. In this example, load power consumption does not include stochastic
disturbances. Table 6.4 shows o(p,) and o(g,) of synchronous generators calculated for
the three scenarios S1, S2, and S3. It appears that the correlation among the stochastic
bus voltage phasors is inversely proportional to the o(p,) and o(g,) of the generators.
Note that none of the trajectories were found to be unstable. This effect is thus the
opposite as the one obtained when varying the correlation of the load power consumption.

Finally, the impact of correlated stochastic disturbances on the transient behaviour
of the power system undergoing a contingency is considered. With this aim, the two-
area system is simulated using correlated stochastic loads with the following parameters:
a, = a, =157 a(n,) = 0.5% of pro; and o(n,) = 0.5% of qo. The contingency planned
is the disconnection of loads connected to bus 9 at ¢ = 10s. The simulation results for

unstable trajectories for the three scenarios of correlation are shown in Table 6.2. The

Table 6.4: Standard deviation of active and reactive powers of synchronous generators for the
modified two-area system with correlated stochastic voltages.

Standard S1 S2 S3
deviation | absolute | % increase ! | % increase!
Pcs 0.0495 220.06 47.24
Poca 0.0547 120.68 -49.20
Pocs 0.0908 17.51 139.67
Dyca 0.0909 -18.22 -41.70
Goe 0.0598 |  -18.75 142,93
Gocs 0.0705 17.63 14022
Gocs 0.0420 121.49 150.79
Jgca 0.0516 -20.75 -49.49

I Note: % increase is calculated based on scenario S1.
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results show that the system experiences increased number of unstable trajectories for
higher values of correlation. A section of unstable trajectories of rotor angle ¢ of all
the synchronous machines for scenario S2 are shown in Figure 6.18, whereas the stable

trajectories of ¢ obtained for scenario S3 are shown in Figure 6.19.
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Figure 6.18: Few unstable trajectories of rotor angles of all the synchronous machines of the
modified two-area system for scenario S2.

dc1

1.5 1
=
£,

g 11
)
=
<
5

B 0.5 1
~

0 .

0 5 10 15 20 25 30 35 40

Time [s]

Figure 6.19: Stable trajectories of rotor angles of all the synchronous machines of the modified
two-area system for scenario S3.
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6.6.2 Two-Area System With Wind Generation

The power system utilised in this section is the well-known two-area system with inclusion of
wind generation network, which was presented in Section 4.3.2. The results presented in this
section were originally discussed in [6]. The WPPs are modelled through variable-speed
doubly-fed induction generators. The correlated stochastic disturbances are introduced
into the wind speeds using the model described in Section 3.5.3. As discussed in Section
6.5, the wind speeds are modelled using Gamma distribution. The correlation matrix
R of wind speeds is provided in Table A.2. The power system dynamic simulations are
performed using the M C.

To study the impact of correlated wind speeds on the power system dynamic, a

sensitivity analysis is adopted. With this aim, the following scenarios are considered:
e Scenario 1 (S1) considers no correlation among wind speeds.
e Scenario 2 (S2) considers correlation among all wind speeds.

Firstly, the impact of modelling correlation on the standard deviation of the power
system variables is quantified. The standard deviation of the frequency of the center of
inertia we,; for both scenarios is illustrated in Figure 6.20. while the standard deviations of
bus voltage magnitude o(v), and active power o(p,) injections of the synchronous machines
are shown in Table 6.5. Figure 6.20 and Table 6.5 show that the standard deviations of the

power system variables are increased with an increase in the level of correlation among the
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Figure 6.20: Standard deviation of the frequency of the center of inertia of the two-area system
with inclusion of correlated wind fluctuations.
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Table 6.5: Standard deviation of bus voltage magnitudes and active power injections of the
synchronous generators in the two-area system with inclusion of correlated wind fluctuations.

Std. [pu] S1 S2 % increase
o(vBusos) | 0.0049 | 0.0095 93.88
(UBus o) | 0.0033 | 0.0064  93.94
(pc1) 0.0075 | 0.0148 97.33
o(pas) | 0.0074 | 0.0147  98.65
(Pas)
(Pca)

0.0075 | 0.0146 94.67
0.0074 | 0.0145 95.95

wind speeds. This indicates that correlated wind speeds can modifying the distribution of
power system quantities without modifying the distribution of power injections of WPPs.

In this second case, the two-area system modified to include wind generation is
subjected to both correlated wind speeds and a contingency. The contingency consists of
the trip of the line connecting buses 8 and 9 at time ¢ = 30 s. The voltage profile at Bus
8 for the two scenarios of correlation is illustrated in Figures 6.21 and 6.22. These figures
show the trajectories of the bus voltage magnitude v at bus 8 along with the mean of the

trajectories for the system modelled through correlated SDAESs, for the two scenarios.

1
Voltage Trajectories
0.98 4 —— Mean Trajectory
—+— Deterministic Trajectory
— 0.96 - - = Minimum Voltage Limit
e
-
=
24 0.94 A
z
£0.92 -
09+ - - - = = = = = = - = = - - = = - - = -=
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Figure 6.21: Voltage profile at bus 8 for scenario S1 for the two-area system with inclusion of
correlated wind fluctuations.
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Figure 6.22: Voltage profile at bus 8 for scenario S2 for the two-area system with inclusion of
correlated wind fluctuations.

The trajectory of the bus voltage magnitude at bus 8 for the system modelled through set
of deterministic DAEs using constant wind speeds is also shown in Figures 6.21 and 6.22.

The mean trajectory of v coincides with the deterministic trajectory in both scenarios.
This was to be expected as the level of correlation among wind speeds does not impact on
the wind speed average values. On the other hand, the standard deviation of v increases
as the wind correlation increases. This increase of the standard deviation causes 70 (7.0
%) trajectories of v to violate the minimum voltage limit for at least 5 s for case 2 (see
Figure 6.22).

The results presented in this section were obtained by simulating the wind generation
network in detail as in Figure 3.1. The wind generation network of WPPs in Figure 3.1
is formed in a hierarchical manner. In such a network the WPPs can be aggregated at
different hierarchical levels of the network, i.e., bus, distribution, and transmission. The
aggregated WPPs can then be driven by an aggregated wind speed process, presented in
Section 3.6. This new network, when driven by the aggregated wind speed should produce
results similar to those obtained above in this section.

The accuracy of the wind speed aggregation model, in Section 3.6, is measured by
comparing the standard deviation of the trajectories of active power o(p.) generated

at various levels of the grid by simulating the entire network to o(p.) generated by the
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aggregated WPP driven by the aggregated wind speed process. The wind aggregation
model is considered to work with high accuracy if o(p.) of wind generation obtained
through aggregating WPPs in different regions of the grid is close to o(p.) obtained by
individually modelling WPPs in the network. The values of o(p.) calculated for detailed
and aggregated WPPs along with the errors are presented in Table 6.6. The low values
of the errors shown in Table 6.6 is an evidence of the accuracy of the proposed aggregated

wind speed model.

Table 6.6: Standard deviation of active power generation of aggregated WPP.

Aggregation ) SPM
Location Error
Level Detailed Aggregated
Tralee 57.73 60.71 2.78
Bus Garrow 61.8 63.72 3.1
Trien 62.31 64.4 3.35
o Substation B 44 .21 45.53 2.88
Distribution
Substation C 51.66 52.59 1.8
Transmission | Substation A 46.64 47.36 1.53

SPM: Standard deviation of p, expressed in percent of the mean value.
Error: Absolute normalised error in % between detailed and aggregated.

6.6.3 All-Island Irish Transmission System

In this section, the AIITS introduced in Section 4.5.2 is considered. Correlated stochastic
disturbances are introduced in stochastic load consumption, and power flow equations.
The wind speeds driving the WPPs are modelled using correlated wind speeds explained
in Section 3.5.3. The results discussed in this section were originally presented in [3].
Stochastic disturbances are modelled as correlated OU processes. The parameters for
stochastic load consumption, stochastic bus voltage phasors, and stochastic wind speeds
are as follows: o, = oy = a, = @p = ay, = 1s7; a(n,) = 0.5% of pro; o(n,) = 0.5% of
qro; o(nw) = 0.5% of wy; a(n,) = 0.3% of vy; and o(ny) = 0.3% of . Note that the
correlation matrix in the case study in this section is constructed in such a way that
stochastic disturbances on every device connected in same area are correlated whereas no

correlation is considered among the devices connected in different areas.
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The impact of correlated load consumption on o(p,) and o(g,) of the synchronous
generators is discussed first. In this example, wind, and bus voltage phasors do not
include stochastic disturbances. Table 6.7 shows o(p,) and o(g,) of selected synchronous
generators calculated for the three scenarios S1, S2, and S3. The correlation among the
stochastic loads has a direct impact on o(p,) and o(g,) of the generators. The values of
o(pg) and o(g,) almost double when the correlation among stochastic loads is doubled.
This is a noteworthy result as the standard deviation of the loads remains the same in
all three scenarios. This result also substantiates the results obtained for the two-area
system.

Next, the impact of correlated stochastic disturbances modelled on bus voltage phasors,
using the procedure described in Section 3.5.2, on o(p,) and o(g,) of the synchronous
generators is considered. In this example, wind, and load power consumption do not
include stochastic disturbances. Table 6.8 shows o(p,) and o(q,) of selected synchronous
generators calculated for the three scenarios S1, S2, and S3. These results corroborate the
results obtained in Table 6.4. Henceforth, modelling correlation on stochastic bus voltage
phasors leads to reduction in the values of o(p,) and o(q,) of the generators. This effect
is thus the opposite as the one obtained when varying the correlation of the load power
consumption.

Table 6.7: Standard deviation of active and reactive powers of synchronous generators in the
AIITS simulated with correlated stochastic loads.

Standard S1 S2 S3
deviation | absolute | % increase ! | % increase!
o(Poey) | 0.0025 44 76
0 (Pgess) 0.0037 56.76 94.59
0 (Pgess ) 0.0013 53.85 92.31
o(pe,) | 0.0012 58.33 100
o(pye,) | 0.002 55 90
0(dge) | 0.0004 25 50
o(dgs,) | 0.001 50 80
0(dss) | 0.0003 33.33 66.67
o(dey) | 0.0004 50 75
0(dges) | 0.0006 50 83.33

I Note: % increase is calculated based on scenario S1.
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Table 6.8: Standard deviation of active and reactive powers of synchronous generators in the
AIITS simulated with correlated stochastic bus voltage phasors.

Standard S1 S2 S3
deviation | absolute | % increase ! | % increase!
o(pgy) | 0.0193 22.8 42.49
0(py) | 0.0234 1188 132.48
o (Dyey) 0.01 220 41
o(poey) | 0.0099 -20.2 -40.4
o(pe) | 00127 | -18.11 134.65
o(d0e) | 0.0176 |  -19.89 50,57
o(gp,) | 00208 | -18.79 148.32
0(dhe,) | 0.0159 | -22.64 -49.06
0(qye,) | 0.0148 |  -20.27 ~41.89
o(d0es) | 0.0188 |  -16.49 -40.43

I Note: % increase is calculated based on scenario S1.

In the following example, the AIITS incorporating the correlated stochastic
disturbances, i.e., correlated stochastic loads, and correlated wind speeds, using the
parameter values presented above in this section is considered. The effect of correlation
between different stochastic disturbances on the system dynamics is studied by considering
the sum of the trajectories of the relevant quantities such as active power consumption
and generation of all the devices connected in the same area. Figure 6.23 illustrates the
sum of the active powers pi.q consumed by all loads; the sum of the active powers pying
generated by all wind power plants; and the sum of the active powers pgy, generated by
all synchronous generators for the three scenarios of correlation, i.e., S1, S2, and S3. Even
though the standard deviation of the individual stochastic processes remains the same
regardless of the level of correlation being used, Figure 6.23 shows that the spread, in
terms of standard deviation, of the sum of the quantities above increases as the correlation
between the stochastic process is increased.

Finally, a model of the AIITS that incorporates all stochastic disturbances, i.e.,
correlated stochastic loads, correlated stochastic bus voltage phasors, and correlated wind
speeds, using the parameter values presented above in this section is considered. In
addition to the stochastic disturbances, the AIITS undergoes a disconnection of a load

connected to the interconnector between Ireland and Wales at ¢ = 10 s.

122



27.8 |
\iw&\h\r&p
= 276 -
=)
&, 5.55 M
g
3 \\\/\/\’\/
o
[l
£ 55
5
< 236 W
| AfA '
WAy
23.4
0 10 20 30 40 50
Time [s]

Figure 6.23: Total active power consumed by loads; total active power generated by WPPs;
total active power generated by synchronous generators in the AII'TS simulating correlated
stochastic processes for the three scenarios of correlation, i.e., S1, S2 and S3.

Figure 6.24 shows the time domain profile of voltage magnitude at bus Woodland,
for the 1,000 simulations, for S1, i.e., for the fully uncorrelated SDAE model. The
black solid line shows the mean value of the 1,000 trajectories, which reflects the voltage
profile of a deterministic solution, since all Wiener processes have zero average. This
is evident from Figure 6.24 that the mean trajectory coincides with the deterministic
trajectory. The deterministic trajectory is obtained for simulating the AIITS for same
fault conditions using deterministic DAEs. Figure 6.24 indicates that the voltage profile
for the deterministic solution is below the maximum voltage limit, which is shown by a
dashed line. It is also relevant to note that 24.4% of the trajectories exceed the maximum
voltage limit at least once in the period 10 s < ¢t < 30 s.

Figures 6.25 and 6.26 illustrate the 1,000 trajectories of voltage magnitude at bus
Woodland, for scenarios S2 and S3, respectively. Results indicate that the higher the
correlation among the processes the lower the standard deviation of the trajectories. For
scenario S3, i.e., for the maximum correlation considered in this case study, no trajectory

crosses the maximum voltage limit. These results are summarized in Table 6.9. In this
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example, the uncorrelated stochastic model shows more conservative results than the

scenarios that take into account correlation.
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Figure 6.24: Bus voltage magnitude at bus Woodland in the AIITS simulating correlated
stochastic processes for scenario S1.
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Figure 6.25: Bus voltage magnitude at bus Woodland in the AIITS simulating correlated
stochastic processes for scenario S2.
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Figure 6.26: Bus voltage magnitude at bus Woodland in the AIITS simulating correlated
stochastic processes for scenario S3.

Table 6.9: Trajectories with over-voltages at bus Woodland in the AIITS simulating correlated
stochastic processes.

Scenarios | Trajectories with over-voltages
S1 244 (24.4%)
52 70 (7%)
S3 0

6.7 Conclusions

This chapter discusses the impact of correlated stochastic disturbances on the dynamic
behaviour of the power system. With this regard the construction of the correlation matrix
required to set up correlated SDAEs is discussed first. Then, the effect of correlated active
and reactive power consumption, and correlated wind speeds on the dynamic behaviour
of the power system is studied. Finally, the case study models correlation on a variety
of sources of correlated stochastic disturbances such as load consumption, bus voltage
phasors and wind generation and studies their impact on the power system dynamic
through a sensitivity analysis. The case study in this chapter utilises three different power
systems including the real-world model of the AIITS to perform power system dynamic

simulations.
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The examples discussed in the case study lead to conclude that the correlation among
stochastic disturbances has a significant impact on the dynamic response of the system
and that such an impact is not known a priori as, in some cases, considering correlation
leads to more conservative results and in others to less conservative results than assuming
fully uncorrelated processes. For example, modelling correlation on load consumption and
wind speeds increases the standard deviation of the power system quantities and amplifies
the effect of contingencies. Whereas modelling correlation on bus voltage phasors causes
a reduction in the standard deviation of power system quantities and alleviates the effect
of the contingencies. Correlation has thus to be modelled correctly to properly estimate
the standard deviation of variables and the instability probability of the system.

Note that the case studies in this chapter perform a sensitivity analysis to quantify the
impact of the correlated stochastic disturbances on the dynamic behaviour of the power
system. Due to the lack of measurement data, this is only possible to study at this stage.
Even though wind speed measurement data is utilised to demonstrate the construction of
the correlation matrix. The available wind speed data is limited to a few wind sites and,
hence, cannot be utilised to construct the correlation matrix for the higher order system

such as the AIITS.
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Chapter 7

Conclusions and Future Work

7.1 Summary

This thesis provides generalised data-driven methods to model the sources of stochastic
disturbances in power system dynamic studies. Correlated Stochastic Differential
Equations (SDEs) are utilised to model correlated stochastic disturbances independent of
their statistical properties and time-scales.

A generalised method to construct the correlation matrix, which is the fundamental
tool to set up correlated SDEs, from measurement data is discussed. The proposed
correlated SDE models are general in the sense that they can model correlation on
stochastic processes with arbitrary Autocorrelation Functions (ACFs), Probability
Density Functions (PDF's), time-scales, and dimensions. The correlated SDEs are
then included into the power system dynamic modelled through a deterministic set
of differential-algebraic equations to generate non-deterministic correlated Stochastic
Differential Algebraic Equations (SDAEs). Correlated SDAFEs are systematic and general
and can be used to model any source of volatility such as load consumption or Renewable
Energy Sources (RES) generations. Correlated SDAEs are utilised throughout the thesis
to study the impact of stochastic disturbances on the short-term dynamic of power system.

A direct method based on the solution of Lyaponov equation to evaluate the standard
deviation of the power system algebraic variables in the presence of stochastic disturbances
in stationary conditions is also presented. This method is useful when the assessment
of the probability of the violation of any system physical limit is of interest. Using the

real-world Irish system as a bench mark the thesis shows that the direct method works
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with much higher accuracy for a wide range of stationary distributions of the stochastic
disturbances. Another advantage of the direct method is the considerable reduction in
computational time for systems of large order such as the Irish system.

The impact of ACF of stochastic disturbances on power system dynamic is illustrated
in time- and frequency-domain. Results show that for normal operation an increase in the
value of autocorrelation coefficient of the stochastic disturbances causes an increase in
the standard deviation of the system variables. The results also illustrate that the higher
value of autocorrelation coefficient can drive the system to instability even if the standard
deviation of the stochastic process is acceptable in stationary conditions.

A case study in this thesis illustrates the method to build the correlation matrix based
on measurement data.The thesis demonstrates that the stochastic processes constructed
using different types of PDFs have different impact on the standard deviation of the
power system quantities and, consequently, the probability that a bus voltage magnitude
violates the system limits after a contingency. The thesis also validates the accuracy of
the presented model to set up aggregated wind speeds using correlated SDAEs against
the detailed model.

The impact of correlation of stochastic disturbances on the power system dynamic is
analysed. The results illustrate that correlated stochastic disturbances when modelled
on stochastic loads, and wind speeds tend to increase the standard deviation of power
system variables in stationary conditions. Such disturbances also pose a worsening effect
on the contingencies. On the contrary, the correlation modelled on bus voltage phasors
reduces the standard deviation of the power system variables in stationary conditions and
alleviates the effect of contingencies.

The results above cannot be obtained without simulating the detailed dynamic model
of the system because of the non-linearity of the power system, control hard limits,
saturations, etc. The novel contribution of the presented case studies is the identification
that the autocorrelation and correlation coefficients of the stochastic disturbances play a
significant role in the dynamic behavior of the system and are thus crucial parameters
as much as the standard deviation. The fact that the identification of the effect of the
autocorrelation and correlation coefficients can be obtained with well- assesssed techniques

makes the illustrated approach general and, hopefully, easy to adopt by TSOs.

128



7.2 Conclusions and Recommendations

The main take-aways from the thesis are as follows.

An increase in either of the value of autocorrelation or correlation coefficient of the
stochastic disturbances causes an increase in the standard deviation of the system variables
in stationary conditions. This means that the T'SOs will have to consider this increase in
the standard deviation of the concerned variables such as bus voltage magnitudes, and
line current flows, in the normal operation of the grid to make sure that none of the
limits are violated by this simple increase in the standard deviation of the concerned
variables during usual operation of the grid. Moreover, a higher value of autocorrelation
and/or correlation coefficient coupled with a lower value of standard deviation, which
might be acceptable in stationary conditions, may lead the system towards instability
after a contingency. Due to non-linearity, this result cannot be known without actually
simulating the system based on actual parameter values.

Another relevant aspect that has been illustrated in this thesis is that it is important
to not only know the statistical parameters of the stochastic disturbances in the time-scale
of power system transient in stationary condition but also which PDF type should be used
to model such data. The thesis shows that certain PDFs may lead to more conservative
results than others. Thus, it is essential to model the stochastic disturbances with the
right PDF type based on measurement data and power system dynamic analysis.

Assessing the effect of a specific PDF type on the dynamic behavior of the system is
not a straightforward task to solve as both system equations and the diffusion terms of the
processes are nonlinear. In this thesis, Time Domain Simulations (TDSs) are performed
utilising the cumbersome Monte Carlo Method (MC). These are computationally
expensive, as the scenarios for each PDF type should be simulated separately. The
thesis shows that the analysis of the spectra of random processes characterized by different
although remarkably similar PDF types is a promising alternative approach. Even if the
PDFs are similar, in fact, the spectra are different and so might be their impact on the
dynamic of the system. How to exactly quantify this impact is currently an open question.

An analytical method to assess the probability that the system variables violate the
system physical limits when power systems are subjected to stochastic disturbances is

presented in the thesis. This method works with high accuracy for a wide range of
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standard deviation of stochastic disturbances independent of the size and complexity of
the system.

Note that the analytical methods available in the literature model the power system
subject to stochastic disturbances in stationary conditions only. Such methods are
incapable of defining the dynamic behavior of power systems subject to stochastic
disturbances in such detail as defined in this thesis. Hence, the only choice available is
to use numerical methods to understand the effect of the stochastic disturbances on the
dynamic behavior of power systems.

Indeed, the main recommendation that can be drawn from this thesis is that the
TSOs should perform TDSs through the MC for power systems subject to stochastic
disturbances using the actual values of the parameters obtained through measurement data.
Using correct values can prevent overlooking some potential instabilities that may arise
due to fast-varying stochastic processes. The results presented in this thesis indicate that
with the increasing penetration of flexible loads and RES in power systems, instabilities
originated by stochastic processes are going to be progressively likely in the future.

At the time of authoring this thesis, however, it is exceedingly difficult to obtain
measurement data that can be actually utilised to calculate the correlation matrix for
a real-world system. The data made available by the T'SOs, in fact, are either detailed
but spanning short periods, i.e., considering only specific events (and thus not allowing
calculating correlation matrix) or large time series but consisting of values averaged over
several minutes, e.g., 15 minutes (and thus inadequate for short-term dynamic analysis).
It is our understanding that T'SOs have access to such detailed data through Supervisory
Control And Data Acquisition systems, as mentioned in the websites, but is not being
stored in such a detail because it requires large amount of storage and till date it was not
required by a modelling scheme such as the ones introduced in this thesis. Once, T'SOs
realise the importance of modelling correlated stochastic processes in power systems, the
TSOs will make data available in such detail. So that it can be used for the evaluation of
statistical properties that can then be utilised to model accurately correlated processes
for dynamic analysis.

In conclusion, this thesis provides with the systematic and generalised methods to set
up correlated stochastic processes. These models are based on measurement data and can

be conveniently included into the existing power system dynamic equations for dynamic
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and transient security assessment. Thus, the the modelling techniques presented in this
thesis can (and hopefully will) be adopted by the T'SOs to study the stability of the power
systems in the scenarios with high penetration of stochastic loads and non-synchronous

renewable energy sources.

7.3 Future Work

The work presented in this thesis can be extended in various directions. For example, the
methods to model correlated stochastic disturbances on sources of volatility, presented in
this thesis, are systematic and general, and can be conveniently extended to other sources
of volatility such as photovoltaic, tidal generation etc. Furthermore, the power system
dynamic analyses in this thesis considers a spatial correlation due to limited amount of
data available. However, the method presented to correlate the processes is general, and
can be easily extended to temporal correlation, i.e., correlation as a function of time.

The data to account for correlation and the statistical parameters of the processes are
either inadequate or not available. We hope that the results presented in this thesis will
serve as grounds to encourage the T'SOs to store and make available these data in the
sampling rate and length suitable for power system dynamic analysis. This will enable the
researchers to establish more accurate models, and the TSOs to ensure system security
and stability.

The autocorrelation and correlation coefficients of the stochastic processes cause the
standard deviations of power system’s relevant quantities such as power injections of
synchronous generators to increase. This increase in the standard deviations of the power
injections of synchronous generators might cause the generators to reach their limits,
which will affect the generators’ capabilities to provide adequate reserves for frequency
control. Thus, future work will involve studying the impact of autocorrelation and
correlation coefficients of the stochastic processes on the provision of the ancillary services.
Furthermore, the impact of these coefficients on the existing control strategies needs to be
evaluated as well.

One of the main advantages of measurement data is that it can be used to evaluate
the right modelling PDF type for the power system dynamic analyses. Note, however,

that not only data but the dynamic simulations are also required to identify the worst
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performing PDF type. In this thesis the time consuming M C has been utilised to account
for the impact of a particular PDF type. The future work will focus on developing
techniques, e.g., based on frequency analysis, that allow identifying the worst performing
PDF type without resorting to TDSs.

Another important aspect that can be deduced from data is whether the correlation
among processes is constant or variable with time. This can lead to various scenarios.
Finally, we anticipate that the correlation of stochastic processes depends on the time-scale
considered, e.g., short- or long-term dynamics. This appears to be another relevant topic

to further investigate.
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Appendix A

Data

A.1 Frequency Data

Transmission System Operators (TSOs) generally keep a record of the power generation
along the years but very rarely frequency measurements obtained with Phasor Measurement
Units or other instrumentation are stored for a long time. Typically, only major events
that lead to high frequency deviations are recorded. For this reason, the Advanced
Modelling for Power System Analysis and Simulation (AMPSAS) project, carried out at
University College Dublin has recorded the frequency within the university campus in
Belfield for a period of four years, from 2014 to 2017. The measurements were obtained
with a Frequency Disturbance Recorder (FDR) that has been lent to the last author by
the Power system Group led by Prof. Yilu Liu, University of Tennessee, Knoxville [74].

The FDR is a FNET/GridEye device, developed at Virginia Tech, that measures the
frequency, phase angle and voltage of the power signal found at ordinary electrical outlets.
The main goal of the FNET project is to register and analyze frequency variations following
large disturbances [37,84]. One of the goals of the AMPSAS project, on the contrary,
is to explore the statistical properties of the frequency over a long period. Preliminary
results of these studies have been presented in [52] and [47].

The data for frequency have been collected at the AMPSAS project Laboratory using
a FDR. The measured frequency data has been stored as time series records. Each
measured value represents grid frequency every 0.1 second. The data are available starting

from July 2014 to November 2017.
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A.2 Wind Generation Data

The data utilized for penetration of wind in the AIITS, in this thesis, were provided to
the authors by EirGrid Group, the Irish TSO, for the period of four years (2014-2017).
The dataset acquired consists of instantaneous power in MW for wind production, system
demand and total generation in 15-minute time series records. These values have been
averaged using minutely measurements over a period of 15 minutes from the Supervisory

Control And Data Acquisition system of the AIITS.

A.3 Wind Speed Measurement Data

The wind speed measurement data for power system dynamic simulations, utilized in
this thesis, has been acquired from various open-source platforms. The data used in
Chapters 4 and 6, are provided in Table A.1. Table A.1 shows wind speed measurement
data obtained for various time-scales and locations. The references for data in Table A.1

can be found in [28].

Table A.1: Sampling rates and PDF types of measurement data

Data Set | Sampling Rate | PDF Type

1 1 hour 1-parameter Rayleig
2 10 minutes 3-parameter Gamma
3 1 minute 3-parameter Gamma
4 1 second 3-parameter Beta

The wind speed measurement data utilized in Chapters 4 and 6 are obtained from an
open-source platform the Sustainable Energy Authority of Ireland (SEAI) [67]. Note that
the wind data can be easily acquired from the website of SEAI. These data are obtained
for ten wind sites in the AIITS. These wind sites are modeled in the wind distribution
network presented in Chapter 3.

The wind correlation matrix utilised in the thesis is given in Table A.2.
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Appendix B

Correlation between Variance of

Frequency and Wind Penetration

This chapter studies the impact of wind penetration on the system frequency stability
within the All-Island Irish Transmission System (AIITS). With this regard, a statistical
analysis of frequency measurements as well as wind generation data for four years, namely
from 2014 to 2017 is carried out.

Specific contributions are as follows:

e Quantify with proper statistical indices the correlation between the wind penetration
and frequency fluctuations. These are Pearson’s correlation coefficient and the p-

value.

e Understand whether the increasing penetration of wind generation in the Irish

system in the past four years has led to increase the volatility of the frequency.

B.1 Background on Wind Generation in the AIITS

This section presents a detailed discussion on the wind penetration in the AIITS system.
An important aspect related to the wind penetration in the AIITS is the fact that, in
the ATITS system, wind generation is often not fully dispatched (this operation is called

wind dispatch down) Pwp:

PWD = Pwind,avail - Pwind,gen ) (Bl)
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where Pyind gen 15 the actual wind power injected and Plying avail is the actual available
wind power. If Pyp > 0, there is a wind power reserve and thus the stochastic variations
of the wind do not affect the power unbalance of the network and are consequently not
responsible for the frequency variations.

Finally, to properly decide the correlation between wind generation forecast and
frequency deviations, some precautions have to be taken into account. In particular, the
periods during which the load demand varies significantly (known as demand ramping)
must be excluded from the analysis. The variation of the load, in fact, leads to generator
rescheduling that causes fast variations of the frequency. These variations are clearly
independent from wind generation.

The remainder of this section outlines the wind dispatch-down procedure and demand

ramping up and down as defined in the network codes of the AIITS.

B.1.1 Wind Dispatch-Down

Wind dispatch-down refers to the available wind energy that is not allowed in the grid.
This dispatch-down of wind is affected by both local network constraints and system-wide
security issues and is necessary to ensure the safe and secure operation of the grid. Wind
farms receive dispatch-down instructions from EirGrid [21]. This instructed dispatch is
subject to curtailments and constraints [21]. To determine the dispatch-down volume
required by the wind farms, EirGrid solves the power flow problem with all required
constraints in place one hour before the dispatch instructions with the updated forecast
of the available wind energy. Table B.1 shows the volume of monthly wind dispatch-down
as percentage of the total available wind energy per year under study [19]. The technical

procedures and constraints implemented by EirGrid are outlined below.

B.1.1.1 Curtailments

Curtailments refers to the dispatch-down of wind due to the limits imposed by the power

system [19].
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Table B.1: Wind dispatch-down as percentage of total available wind energy per year for the
ATITS system in the period from 2014 to 2017.

()

Year 2014 2015 2016 2017

Jan - 4.3 3.5 -

Feb - 4.2 3.1 1.7
Mar - 8.8 - 3.3
Apr - 2.0 1.3 3.6
May - 4.3 1.2 3.5
Jun - 4.8 - 4.1
Jul 3.4 3.7 - 3.2
Aug 3.6 5.6 - 2.9
Sep 1.8 2.5 - 5.1
Oct - 3.9 1.8 10.6
Nov - - 1.3 2.6

Dec 4.9 6.3 3.3 -

System Non-Synchronous Penetration Limit.  The system non-synchronous

penetration limit (SNSP) is defined as:

Wind Gen + HVDC Imports

NSP = .
SN System Demand + HVDC Exports

100 | (B.2)

and is used by EirGrid for ensuring a secure and sustainable operation of the grid
i.e., the grid frequency does not deviate much due to SNSP penetration [22]. The
SNSP is calculated for each trading period using (B.2) [22]. The HVDC imports
and exports of electricity in (B.2) come from Moyle and East-West HVDC inter-
connector with the Great British grid. There has been an increment of 5% per year
in the SNSP limit starting from 50% in 2014 to 65% by the end of 2017 [20]. SNSP
limit is imposed by system demand. This means the AIITS can accommodate more
wind if demand levels are high as it happens during the day from 10:00 to 20:00
when demand is generally high. Wind curtailment will be higher in the case of low

demand with high wind production.

Rate of Change of Frequency (RoCoF)/Inertia. The system frequency is an indirect
measurement of the balance between supply and demand. If a contingency involving

the outage of a generator or the loss of load occurs, the frequency deviates from
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the reference frequency under balanced operation, e.g., 50 Hz in Europe. The rate
with which the frequency deviates away from the mean is known as the rate of
change of frequency (RoCoF) [19]. An event causing high RoCoF rates can drive the
system towards instability. EirGrid must ensure a minimum number of synchronous
generators to be online in different locations of the power system to provide inertia to
avoid higher RoCoF and hence, maintain system stability. For this reason, EirGrid
may ask the wind farms to dispatch down in order to maintain the power system
balanced and provide inertia to avoid high RoCoF rates. Note, however, that only a
negligible volume of available wind energy was curtailed, during the period under

study in this thesis, due to RoCoF /inertia [19].

(c) Operating Reserve Requirements. TSOs must ensure a certain amount of operating
reserve to be available in the power system to provide for the imbalance occurred due
to the greater variations of system demand. This reserve cannot be provided from
non-synchronous wind penetration. Hence wind production has to be dispatched
down to provide room for operating reserve. In the AIITS, wind curtailments are

generally higher overnight, i.e., from 23:00 to 09:00 [19].

B.1.1.2 Constraints

The dispatch-down of wind due to technical constraints imposed by the network are known
as constraints. Firstly, constraints can be understood as localized power carrying capacity
of the network at the region of wind production. Secondly, outages in the network that
may occur due to maintenance, upgrade works or faults. The dispatch-down of wind in the

ATITS remains almost the same throughout the day irrespective of demand levels [19].

B.1.2 Demand Ramps

Figure B.1 shows the load profile of the AIITS during a typical day, for different months.
Conventionally, the period from 10:00 to 16:00 is called day hours and the period from
16:00 to 10:00 night hours. The system demand generally ramps down between 18:00
and 04:00. Then system demand ramps up from 04:00 to 10:00 and from 16:00 to 18:00
hours. Load ramping leads to greater variations of the grid frequency during night hours.

As discussed above, to be able to identify the impact of wind generation on the system,
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Figure B.1: System Demand for a particular day for all the months in 2016, with maximum
demand at 6249.36 MW.

the effect of load ramping has to be separated as much as possible from the frequency

deviations. In the case study, thus, only day hours are considered.

B.2 Correlation Indices

Two statistical indices to evaluate the correlation between wind generation and frequency

deviations, namely, the Pearson’s correlation coefficient and the p-value are considered.

B.2.1 Pearson’s correlation coefficient

The Pearson’s correlation coefficient is a measurement of the linear correlation between
two variables [33], as follows:
S (X - X) (Y -Y)

"= (N - 1)O'Xa'y ’ (BB)
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where IV is the number of observations; X; and Y; are the values of the two time series,
with length NN, whose correlation is to be calculated; X and Y are the mean values of
the time series X; and Y;, respectively; and ox and oy are the standard deviations of the
time series X; and Y}, respectively.

The Pearson’s correlation coefficient can take any value between —1 and 1. » =1 and
r = —1 indicate perfect linear relation between the variables, whereas » = 0 indicates a
non-linear relation. In particular, » > 0 indicates that if X increases also Y increases.

Only positive correlation coefficients are observed in the case study discussed in this thesis.

B.2.2 p-value

The Pearson’s correlation coefficient reflects the degree of correlation between two variables
but does not provide any information weather such a correlation is significant or not. The
index used to express the statistical significance of a correlation is known as p-value [23].
Given the t-distribution:
rv N —2

== (B.4)

the p-value is defined as:

p-value = 2Pr(T > t) | (B.5)

where T follows a t distribution with N — 2 degrees of freedom. Hence the p-value is twice
the probability (for double tail events) to obtain the current value of r if the correlation
were actually zero (null hypothesis). The null hypothesis for this study is defined as the
lack of correlation between wind generation and the hourly standard deviation of the
frequency.

Being a probability, the p-value range is [0, 1]. A small p-value implies the rejection of
the null hypothesis and imposes that the correlation r is significant. The conventional
threshold p = 0.05 is chosen in the case study to validate statistical significance of a
correlation between the variables [23]. So, if p < 0.05, the frequency fluctuations are
assumed to be statistically correlated with the penetration of wind generation in the

system.
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B.3 Case Study

Two sets of data are considered in this case study. The Pearson’s correlation coefficients
and p-values are calculated taking X = Pyinq%, i-€., the instantaneous value (15-minute
values averaged over 1 hour) of wind energy produced in an hour as percentage share of

system demand:

Hourly Averaged Wind Production

Pyinan = 100, (B.6)

Hourly Averaged System Demand .

and Y = oy, i.e., the standard deviation of the system frequency over the same period for
which Pyinqy is calculated.

Table B.2 shows the correlation of Pyinq% with of per month in the period from 2014 to
2017. Note that frequency data were not available for some months. The wind penetration
and frequency fluctuation show a relatively large correlation (r > 0.4) in most of the
months.

Table B.3 shows the p-values for the same months considered in Table B.2. All
the values are well below 0.01 except for three months (January 2015, April 2016 and
June 2017), which, consistently, are the same months that show the lowest values of the

Pearson’s correlation coefficients. Interestingly, these three months are all in different

Table B.2: Pearson’s coefficients for Py;,q0, and or for the AIITS system in the period from
2014 to 2017.

Year 2014 2015 2016 2017

Jan - 0.2400 0.4939 -

Feb - 0.5919 0.4233 0.4595
Mar - 0.3923 - 0.3599
Apr - 0.4756 0.2075 0.4971
May - 0.5009 0.4127 0.5374
Jun - 0.4198 - 0.1424
Jul 0.3692 0.5791 - 0.3987
Aug 0.5033 0.5514 - 0.4029
Sep  0.4513 0.3615 - 0.3063
Oct - 0.5759 0.5793 0.3580
Nov - - 0.5997 0.4053

Dec  0.4619 0.3660 0.3374 -
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Table B.3: p-values for Py;,q% and of for the AII'TS system in the period from 2014 to 2017.

Year 2014 2015 2016 2017
Jan - 1.51-1072 < 10°°¢ -

Feb - <107¢  6.80-107¢ <1076
Mar - 1.21-1077 - 5.84-107°
Apr - <1076 1.92-1072 <1076
May - <107 584-107° <107
Jun - <1076 - 9.55-1072
Jul 9.82-107° <107 - 3.44-1076
Aug <1076 <1076 — <1076
Sep 4.15-1077 1.33-107° - 1.31-1074
Oct - <1076 <107%  3.36-10°°¢
Nov - - <1076 7.71-107°

Dec <107  6.97-107% 4.65-107° -

years. The least correlated month is June 2017, while the maximum correlated month
is November 2016. Figures B.2 and B.3 present the scatter plot where z-axis represents
Pyinaw and y-axis is o¢ for the months of June 2017 and November 2016, respectively. In
June 2017, the wind penetration has been greater than 50% for a significant number of
hours, whereas, in November 2016, the wind penetration remained below 50% all time.
Still wind penetration and frequency fluctuations are more correlated in November 2016
than in June 2017. Moreover, in June 2017, there are several hours with a high standard
deviation of the frequency but these hours are mostly characterized by low value of Pyinay.
In November 2016, the hours with higher oy are mostly characterized by high Pyinq%.

These apparently mixed results can be explained by comparing the values of wind
dispatch down, i.e., Pwp in different periods. Figure B.4 shows the histogram of Pyp for
four relevant months, where z-axis represents Pwp and y-axis shows the number of hours
for which the wind dispatch-down happened. Comparing the histograms and looking
at the values in Table B.2, it is evident that the month with greater number of hours
during which Pwp is high shows a relatively low correlation between wind generation and
frequency variations. This supports the argument made in Section B.1 that the higher
the amount of wind rejected, the lower the correlation in a given month.

April 2016 is an exception to this rule. This month shows a low correlation between wind

and frequency variations despite having a lower Pywp and fewer hours of wind curtailment,
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Figure B.2: Scatter plot of of vs Pyinqy for the month of June 2017.
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Figure B.3: Scatter plot of or vs Pyinqy for the month of November 2016.

compared to January 2015. However, note that, in 2016, the AII'TS faced a significant
number of the transmission outages, mainly due to maintenance and refurbishment of the
transmission system [19]. These outages led to significant changes in the transmission
network topology, which could be the cause for such a low correlation in the month of

April 2016.
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Figure B.4: Histogram of Pwp for the months of January 2015, April 2016, November 2016 and
June 2017.
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