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Abstract

Non-deterministic loads and non-dispatchable renewable energy sources such as wind

and photovoltaic are the major sources of random fluctuations and volatility in power

systems. The techniques to account for the effects of random fluctuations on the transient

behaviour of the power system have been developed and well-assessed in the literature.

On the other hand, the analysis of impact of volatility on the power system short-term

dynamic and transient behaviour has not been fully explored so far.

For power system dynamic studies, volatility can be modelled as a fast-varying time-

continuous stochastic process. Stochastic processes are formulated as Stochastic Differential

Equations (SDEs). SDEs are then conveniently introduced into existing power system

dynamic models, i.e., deterministic nonlinear differential algebraic equations. Doing so

produces nonlinear Stochastic Differential Algebraic Equations (SDAEs). SDAEs are

the fundamental tool, utilised in this thesis, to study the dynamic behaviour of the power

system subjected to volatility.

Stochastic processes can be identified through their distinct features, namely, drift,

correlation, and diffusion. While the impact of the latter on the system dynamics has

been studied widely, that is not the case for the other two. The drift term defines the

variability of the process in time. Whereas the correlation is the measure of degree of

similarity between two processes. Thus, the question on what is the impact of drift and

correlation of the stochastic processes on the dynamic behaviour of the power system and

how to quantify it remains unanswered.

This thesis aims at providing systematic and generalized methods based on data

measurements to model correlation on stochastic processes and introduce them into power

system dynamic studies. The thesis also provides a general technique to extract correlation

from stochastic processes from the measurement data. The methods provided in this

thesis are independent of dimensions, time-scales, drifts, and probability distributions of

the processes. This allows for the inclusion of a wide range of sources of volatility into

existing power system dynamic models, and the study of their impact on power system

dynamics without the need for any simplifications or modifications to the original system.

Another topic considered in this thesis is the impact of the drift of the stochastic

processes on the power system dynamic behaviour by means of nonlinear SDAEs through

time- and frequency-domain analyses. The former involves the study of the impact of the
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drift of the stochastic processes on the power system algebraic variables in normal grid

operation. Whereas the latter consists in the study of the dynamic interactions between

the drift of the stochastic processes and the electro-mechanical oscillatory modes of the

power system.

The thesis also presents a direct method to assess the probability that a power system’s

physical limit is violated when modelling stochastic processes in normal grid operation.

The accuracy and computational efficiency of the direct method is demonstrated using the

dynamic model of the bench-mark real-world Irish system. Note that all the available direct

methods rely on simplification, and linearization of the power system around an equilibrium

point. Direct methods can only study the power system dynamic in stationary conditions

and, hence, cannot provide any insights on the course of the individual trajectories

simulated through time domain simulations. The detailed dynamic behaviour of the power

system simulating stochastic processes, controller hard limits, saturations, and system

nonlinearities can only be studied using the nonlinear models, which do not have a closed

form solution. For this reason, the analyses conducted in the entire thesis, except for the

direct method, rely on time domain simulations.

Several case studies utilising the real-world Irish system, are illustrated throughout the

thesis to demonstrate the practical applications of the introduced methods and techniques

to model and study the impact of correlated stochastic processes on the power system

dynamic and transient security. As the modelling techniques presented in the thesis are

general, based on measurement data, and easy to implement in software tools. They

are expected to be readily adopted by the system operators to ensure the security and

stability of the power system in the presence of stochastic processes.
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Chapter 1

Introduction

1.1 Motivation

Modern power systems are subjected to stochastic fluctuations due to the increasing

penetration of converter-based Renewable Energy Sources (RES) such as wind and

photovoltaic. Another significant source of noise are electrical loads, whose uncertainty

and volatility has increased in recent years due to the electrification of transportation and

heating systems. As a consequence, it has become quite challenging to model and study

the dynamic behavior of the power system: in normal operation, to avoid violations of

physical limits and technical constraints; and after a disturbance to avoid instability.

The increase of the penetration of RES is accompanied by a reduction of the

conventional fossil-fuel driven synchronous generator-based power plants. This leads

to the reduction of the total inertia available in the system, as well as the increase of

uncertainty (slow variations) and volatility (fast variations). Moreover, converter-based

RES, unlike conventional generation, is “non-synchronous”, i.e., does not respond to grid

power unbalances by varying its frequency. For this reason, the high penetration of RES

makes frequency control a complex task as fewer synchronous generators are available to

provide the system with inertia and power reserve. Consequently, such systems experience

high frequency deviations [2], which, in turn, can lead to a higher risk of instability.

The analysis of the effect of uncertainty on the dynamic of the power system is

conventionally performed via probabilistic analysis. This has been well established in

literature. On the other hand, the effect of volatility on the dynamic behaviour of the

power system is studied through time-continuous stochastic processes. Stochastic processes
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are modelled using time-continuous Stochastic Differential Equations (SDEs) and are

included into the set of nonlinear deterministic Differential-Algebraic Equations (DAEs)

to formulate a set of nonlinear Stochastic Differential Algebraic Equations (SDAEs)

[17,51,73]. The analysis of power system dynamic modelled as a set of SDAEs has gained

interest in the literature in recent years.

Stochastic processes are identified by the following features: Probability Density

Function (PDF), Autocorrelation Function (ACF), and correlation [25, 28, 31, 63, 82].

Most of the research available on the analyses of the dynamic behaviour of the power system

modelled via nonlinear SDAEs focuses on stationary independent Gaussian distributed

processes [51,59,71,75,80]. While in some cases stochastic processes are in effect local and

independent, there exist processes that are intrinsically correlated. For example, in most

locations, cloudy days tend to be more windy than clear-sky ones. Then the variations of

the active and reactive power consumption of loads are coupled if the loads have a constant

power factor. While the correlation of stochastic processes has been thoroughly discussed

for unit-commitment and long-term power system operation problems, the impact of

correlation among different stochastic processes on the short-term dynamics of power

systems has not been discussed in the literature yet. Moreover, the literature is either

incomplete or silent on the topic of the ACF of stochastic processes as well.

Thus, the existing literature does not provide methods to mathematically formulate

correlated stochastic processes to be included into power system dynamic studies. Neither

does it provide stability assessment tools to study the impact of short-term dynamics, i.e.,

the ACF, of the stochastic processes on the power system dynamic behaviour. This makes

the subject of this thesis particularly relevant as this research is focused on formulating

mathematical models for Gaussian and/or non-Gaussian correlated stochastic processes

based on measurement data to be readily incorporated into existing power system dynamic

models. Furthermore, it provides detailed discussion on the evaluation of the impact of

the ACF of the stochastic processes on the power system dynamic, in normal operation,

and stability, following a contingency.
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1.2 Literature Review

In power system dynamic studies, uncertainty can be thought of as randomness and

consists in continuous variations around a mean value. The short-term dynamics of load

consumption [57, 63], and the faster time-continuous variations in the wind generation

[28, 43] are all examples of volatility. On the other hand, uncertainty is the deviance with

respect to a forecasted value.

A well-assessed technique that allows considering the effect of uncertainty in transient

stability analysis is through a probabilistic analysis. Probabilistic analysis consists in

initializing the set of deterministic DAEs that model the system using a random initial

value, chosen with given PDFs [1,8,12]. In such an analysis the randomness is included at

the initialization step, and the rest of the system is simulated in steady state. This makes

the probabilistic analysis particularly suited to study the sensitivity of the model with

respect to parameter uncertainty. In this thesis, however, only the impact of volatility on

the power system transient is of concern.

In power system transient analysis, volatility is characterized as a time-continuous

stochastic process, which is conveniently modelled as a SDE. A SDE consists of two terms:

the drift and the diffusion. The diffusion term defines the amplitude of the stochastic

process, i.e., its standard deviation in stationary conditions. The dynamic interaction

between the drift and the diffusion terms defines the ACF of the process, i.e., how the

process evolves in the long term. The impact of a stochastic process on the power system

transient can be studied through SDEs, as well.

A fair number of works are available that study the impact of the diffusion term on

the stability of power systems, e.g., [32, 48, 78]. These works utilise SDEs to study

the impact of stochastic processes on the power system dynamics. The advantage

of SDE modelling is that analytical solutions are formulated based on the theory of

stability of SDEs. The drawback of these analytical solutions is that they require strong

linearization [48, 78] and/or high simplification [32, 72] of the power system dynamic

models. The stability assessment techniques presented in the works, in this paragraph,

focus on stationary conditions, i.e., consider the probability distribution and standard

deviation of the variables.

A technique that allows studying the dynamic behaviour of a power system subject

to stochastic processes without the need of linearization or simplification of the models
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is through the set of nonlinear SDAEs. Nonlinear SDAEs are created when SDEs are

incorporated into the deterministic DAEs [17,51,73]. A considerable amount of literature

has been dedicated to the evaluation of the probability distribution of transient stability

of power system modelled as a set of SDAEs [59,71,75,80]. These references focus on the

diffusion term, i.e., PDF of stochastic processes. However, the ACF of the stochastic

disturbance and its impact on short-term dynamics of the power system is not considered.

An exception is [30], where the authors exploit the property of the ACF to initialize the

set of SDAEs that model the system.

The power system dynamic modelled as a set of SDAEs in the aforementioned studies

considers independent stochastic processes. Some of these processes may be local and

independent, while others are intrinsically correlated. For example, geographically close

wind sites show similar variations in the wind speeds [24]. Consequently, the power

production of the WPPs also shows a degree of correlation that depends on their location

and proximity to each other. Similarly, the correlation in the behavior of the consumers is

reflected on the energy consumption at consumer’s end.

The correlation on the wind speeds, and load power consumption should be carefully

considered when modelling such processes in power system dynamic studies [31,65,66].

It is well known, for example, that inaccurate estimations of the power production of

aggregated WPPs highly affect the results of the unit-commitment and, in turn, the

market clearing price [15]. On the other hand, the correlation on load active and reactive

power consumption modelled as SDEs worsens the impact of contingencies [31].

The use of correlation in probabilistic analysis has gained increasing interest in recent

years. For example, the effect of spatio-temporal correlation between wind speeds; and

between power generation and load power consumption, on the system limits; and the

security-constrained unit commitment problem is evaluated in [39, 42, 56]. In [68] the

authors exploit the property of correlated load consumption to improve load forecast

accuracy. Despite the availability of abundant literature on the topic of correlation in

power system uncertainty analysis, the question of what is the impact of correlation of

stochastic processes on the short-dynamic behaviour and stability analysis of the power

system still remains unanswered. Reference [31], which is an exception to this rule, outlines

the formulation of correlation on two-dimensional stochastic processes only. Hence, the
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question of how to formulate correlation on multi-dimensional stochastic processes remains

unanswered.

The aforementioned studies rely on numerical integration schemes because SDAEs

are nonlinear and have high dimensions for large power systems. The use of numerical

schemes for their integration is thus unavoidable. The stochastic terms require a significant

extra computational burden to solve the integration [76]. Moreover, SDAEs must be

studied with a Monte Carlo Method (MC). The MC requires the system of SDAEs

to be simulated several hundreds or even thousands of times, to properly estimate the

statistical properties, such as probability distribution and variance, of the system variables.

Consequently, the MC poses a large computational burden for the simulation of SDAE,

which is directly proportional to the size of the system.

The MC is the best available technique when studying the short-term dynamics of

power systems modelled as SDAEs. However, it is often required to study the impact

of stochastic processes on the estimation of the probability that physical limits such as

voltage insulation ratings of a substation, the thermal limits of the lines/transformers,

are violated in normal operation. Several techniques are available in the literature that

provide the statistical properties, in stationary conditions, of the state variables, e.g., [72]

and [30]. These methods are based on the properties of the Fokker-Planck equation

and the solution of the Lyapunov equation. Other relevant works that provide direct

methods to estimate the stability probability of the power systems subject to stochastic

disturbances are [32, 48, 78]. However, direct methods that allow the evaluation of the

variances of power system algebraic variables are unavailable.

This thesis focuses on filling the gaps mentioned in this section. With this aim, the

thesis provides techniques to: (i) formulate correlated stochastic processes based on

measurement data; (ii) incorporate such processes into existing power system dynamic

models and study their impact; (iii) study the impact of ACF of the noise on the power

system dynamics; and (iv) evaluate the variances of the power system algebraic variables.
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1.3 Thesis Overview

1.3.1 Contributions

The focus in this thesis is on the modelling and incorporation of correlated stochastic

processes into existing power system dynamic models for the study of the power system

dynamic performance. The main contributions of the thesis are expressed as follows:

• A general data-driven method to set up correlated processes with arbitrary: time-

scales; ACFs; PDFs; and dimensions using multi-dimensional correlated SDEs.

• A systematic and generalized approach to include various sources of correlated

processes in power system dynamic models for the dynamic security and transient

stability assessment of power systems.

• The analysis on the impact ofACF and correlation of the processes on the short-term

dynamic behavior and transient stability of the power systems.

• A direct method to evaluate the variances of the power system algebraic variables.

The models presented in this thesis enable Transmission System Operators (TSOs) to

quantify the effect of correlation among stochastic disturbances on the dynamic security

and transient stability of the power system. It is important to note that the proposed

models allow TSOs to setup correlated stochastic processes based on measurement data

with arbitrary ACFs, PDFs and time-scales. These models can be applied to systems of

any order and complexity without the need for any simplifications or assumptions in the

original model.

* * *

The simulation results illustrated in this thesis are obtained using the Python-based

power system analysis software tool Dome [50]. These include TDSs, and results obtained

via the direct method. In addition, the methods and models presented in this thesis are

implemented in Dome, during the course of this thesis.

1.3.2 Organization

The remainder of the thesis is organized as follows.
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Chapter 2 provides a detailed discussion on the modelling of correlated stochastic

processes for power system dynamic studies. With this regard, the statistical properties

of the stochastic processes required for their modelling are presented in Section 2.2. The

stationary stochastic processes are modelled as independent SDEs in Section 2.3. Section

2.4 provides a discussion on the modelling of the relevant features of SDEs, i.e., ACF

and PDF. A set of multi-dimensional correlated SDEs to model correlated processes

with arbitrary: time-scales; ACFs; and PDFs are introduced in Section 2.5.1. Section

2.5.2 describes a generalized procedure to calculate correlation from multi-dimensional

correlated stochastic processes. Section 2.6 provides details on setting up SDEs based on

measurement data. Section 2.7 presents methods to formulate and simulate Gaussian and

non-Gaussian correlated stochastic processes of arbitrary dimensions. Finally, Section 2.8

provides relevant remarks and conclusions.

In Chapter 3, power system dynamic models are introduced. Chapter 3 utilises the

methods introduced in Chapter 2 to model the sources of stochastic disturbances in the

power system. With this aim, at first, the power system modelled as a set of deterministic

DAEs is introduced in Section 3.2. Then, a non-deterministic dynamic model of power

system modelled as independent SDAEs is presented in Section 3.3. A systematic and

general approach to model the dynamic behaviour of the power system in the presence of

correlated stochastic disturbances is then introduced in Section 3.4. Moreover, the sources

of stochastic disturbances such as non-deterministic load consumption, and stochastic

wind speeds are modelled via correlated SDAEs in Section 3.5. A technique to formulate

aggregated wind speed process using correlated winds is provided in Section 3.6. Finally,

Section 4.6 provides a summary of the models presented in Chapter 3.

Chapter 4 illustrates the calculations of the variations of the algebraic variables of

power systems modelled as a set of nonlinear SDAEs. With this regard, a linearized

method (Linear Estimation) based on the solution of Lyaponov equation is also presented.

At first, the impact of the conventional MC on the computational complexity and burden

is discussed in Section 4.2. Then, the impact of setting up correlated SDAEs with different

PDFs based on measurement data on the dynamic behaviour of the power system is

discussed in Section 4.3. Then, in Section 4.4, the Linear Estimation (LE) is introduced.

The case study, by utilising the dynamic model of the real-world 1479-bus All-Island

Irish Transmission System (AIITS), demonstrates that the LE has high accuracy, and
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significantly reduced computational time as compared to the MC. Finally, conclusions

are drawn in Section 4.6.

Chapter 5 analyses the interactions between the most relevant feature of the stochastic

process, i.e., ACF, and the dynamic behaviour of the power system. This is done by

analysing the impact of ACF of the stochastic processes on power system dynamics in

both time- and frequency-domain, in Sections 5.2 and 5.3, respectively. The impact of

ACF on the short-term dynamics of the stochastic process itself in time- and frequency-

domain is studied in Sections 5.2.1 and 5.3.1, respectively. Section 5.2.2 studies the impact

of the ACF of the stochastic processes on the variances of the relevant power system

quantities in normal grid operation, and the transient stability of the power system after a

contingency. While, the dynamic interaction between the ACF of the stochastic processes

and the electro-mechanical oscillatory modes of the power systems is discussed in Section

5.3.2. The case studies presented in Chapter 5 utilise the well-known two-area system and

the dynamic model of the real-world 1479-bus AIITS. Finally, Section 5.4 draws relevant

conclusions.

In Chapter 6, the impact of correlation of stochastic disturbances on the dynamic

behaviour and transient stability of the power system is analysed. The models of sources

of stochastic disturbances presented in Chapter 3 are utilised throughout the case studies

presented in Chapter 6. First, the chapter illustrates the construction of correlation matrix

based on measurement data in Section 6.2, using the procedures provided in Chapter 2.

Correlation scenarios for the dynamic simulations are defined in Section 6.3. The impact

of correlation modelled on stochastic active and reactive power consumption, and wind

speeds on the variances of power system algebraic variables is illustrated in Sections 6.4

and 6.5, respectively. In Section 6.6, a case study is presented, where several power system

dynamic models are utilised to study the impact of correlated stochastic disturbances on

the stability of the power system modelled as a set of SDAEs. In particular, the impact of

correlated stochastic loads on the voltage and rotor angle stability of the two-area system

is studied in Section 6.6.1. Whereas, the impact of correlated wind speeds on the voltage

stability of the two-area system is analysed in Section 6.6.2. In Section 6.6.3, the dynamic

model of the real-world 1479-bus AIITS modelled as correlated SDAEs including all

sources of disturbances, introduced in Chapter 3, is studied. Finaly, conclusions are drawn

in Section 6.7.
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Finally, Chapter 7 summarizes the most relevant conclusions and suggests directions

for future work.
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Chapter 2

Stationary Stochastic Processes

2.1 Introduction

Stochastic processes occur in power systems due to several reasons. For example, physical

phenomena occurring in nature such as wind speeds, which affect the power production of

wind power plants, and solar irradiation, which affect the power output of photo-voltaic.

Moreover, load power consumption is also not fully deterministic and can be characterized

as a stochastic process [63]. The aforementioned sources cause stochastic disturbances in

the power system variables, which have a non-negligible effect on the dynamics of the power

system. These disturbances are modelled as Stochastic Differential Equations (SDEs).

A number of works are available in the literature on power systems that deal with

the modelling of stochastic processes in power system dynamic studies through SDEs

[17,32,48,51,73,78]. The models presented in these studies can formulate independent

stochastic processes only. However, as mentioned in Chapter 1 stochastic processes do

exhibit correlation. The correlation on the stochastic processes can modify power system’s

transient behaviour [3, 29].

The correlation among the stochastic processes can be conveniently modelled using

correlated SDEs. Correlated SDEs, in power systems, were first introduced in [29]. The

model in [29] can only formulate two-dimensional stochastic processes. Whereas, in this

chapter the main goal is to present a method to formulate multi-dimensional correlated

SDEs. This is one of the main contributions of the thesis as well.

The remainder of the chapter is organized as follows. Section 2.2 provides a brief

overview of the stationary stochastic processes. Stochastic processes are modelled as
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a set of independent SDEs in Section 2.3. Section 2.4 outlines the features of SDEs.

Correlated stochastic processes are modelled as a set of correlated SDEs in Section 2.5. A

data driven technique to set up correlation matrix is presented in Section 2.5.2. A method

based on measurement data to set up SDEs is discussed in Section 2.6. A few examples

of Gaussian and non-Gaussian correlated stationary stochastic processes generated using

correlated SDEs are illustrated in Section 2.7. Finally, conclusions are drawn in Section

2.8.

2.2 Stationary Stochastic Process

A continuous-time real-valued random process {X(t), t ∈ R} is wide sense stationary

if its statistical properties are independent of time. In other words, the mean, and the

variance of X(t) do not vary over time. Let us assume that X(t1) and X(t2) are instances

of X(t) at t1 and t2, respectively, where t1 ̸= t2,∀t1, t2 ∈ R, the mean and variance of

X(t1) and X(t2) are:

E[X(t1)] = E[X(t2)] ,

E
[(
X(t1)− E[X(t1)]

)2]
= E

[(
X(t2)− E[X(t2)]

)2]
,

where E is the expectation operator. The definitions above imply that the mean of X(t),

∀t ∈ R is a constant:

E[X(t)] = µX ,

and the variance of X(t), ∀t ∈ R is finite:

E
[(
X(t)− E[X(t)]

)2]
= ϵX <∞ ,

Another relevant property of the stationary stochastic process is that its Autocorrelation

Function (ACF) is not a function of time rather a function of the time difference, i.e.,:

Cov[X(t1), X(t2)] = RX(t1, t2) = RX(t2 − t1, 0) = RX(τ) , (2.1)

where τ = t2 − t1 is the time difference. This is discussed in detail later in Section 2.4.1

in this Chapter.
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Stationary stochastic processes can be identified by their Probability Density Functions

(PDFs). The distribution of all possibilities and likelihoods for all outcomes of a discrete

random variable, say Y (discrete means Y has finite number of outcomes), can be defined

using the PDF. The PDF of the outcome y (∀y ∈ Ω) of Y is an integrable function f(y)

with the following properties:

1. f(y) is positive in the entire space Ω, i.e., f(y) ≥ 0, ∀y ∈ Ω.

2. f(y) ≤ 1, ∀y ∈ Ω, i.e., a probability cannot be greater than 1.

3. The integral of f(y) over entire space Ω is:

∫
Ω

f(y)dy = 1 , (2.2)

4. Probability that y ∈ [a, b], is calculated by integrating f(y) over [a, b]:

P[a ≤ y ≤ b] =

∫ b

a

f(y)dy , (2.3)

Property (2.3) is useful for time-continuous random variables. Since uncountably

infinite values can be assigned to a time-continuous random variable X(t), P[X(t) = x]

cannot be defined. Instead, the probability that x is contained in a very small interval of

length ϵ around x, say A = [x − ϵ/2, x + ϵ/2], i.e., P[X(t) = x,∀x ∈ A] can be defined

using Cumulative Distribution Function (CDF), where CDF (FX(x)) is written as:

F (x) = P[X(t) = x, ∀x ∈ A] =

∫
A

f(x)dx , (2.4)

The PDF (f(x)) for a time-continuous random variable can be calculated by differentiating

the CDF (F (X)), using fundamental theorem of calculus, as:

f(x) =
dF (x)

dx
, (2.5)

A commonly used PDF type to define physical processes is the Normal or Gaussian

PDF. A random variable X is said to be normally distributed, if its PDF is written as:

fN(x) =
1

σ
√
2π

exp

(
− 1

2

(x− µ

σ

)2)
, (2.6)
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where µ and σ are the mean and standard deviation, respectively. A random variable

X following Gaussian PDF is often referred to as X ∼ N(µ, σ). Gaussian PDF has a

bell-shaped curve with all the outcomes normally distributed around its mean. Figure

2.1 shows an example of PDF and CDF of a Gaussian variable with zero mean and unit

standard deviation.

The Gaussian PDF provides a good fit for many physical phenomena occurring in

nature. Other non-Gaussian PDFs are also common in many applications. For example, in

power systems, wind speeds are usually modelled with Weibull PDF. It is an asymmetric

distribution that is heavily skewed on one side and has a long tail. This PDF type fits

wind speed density because lower wind speeds are more common than the higher wind

speeds. The Weibull PDF is given as:

fW(x) =


k

λ

(x
λ

)k−1

exp

[
−
(x
λ

)k]
if x ≥ 0

0 if x < 0

, (2.7)

where k is a shape parameter and λ is a scale parameter. Figure 2.2 shows an example of

the Weibull PDF and CDF.

In power system dynamic analysis, where the effect of uncertainty on the dynamic

behaviour of power system in steady-state is of concern, a technique known as probabilistic

analysis is utilised. This technique requires initializing the power system dynamic equations

randomly using predefined PDFs. This type of analysis cannot capture the effect of

volatility during the Time Domain Simulation (TDS), which is of primary interest in this
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Figure 2.1: PDF and CDF of a Gaussian random variable X ∼ N(0, 1).
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Figure 2.2: PDF and CDF of a random variable that follows Weibull distribution with scale =
5, and shape = 2.

thesis. For this reason, a power system dynamic analysis that includes volatility during

the TDS requires modelling power system dynamic equations using stochastic processes.

Stochastic processes can be modelled using SDEs, which are discussed here below.

2.3 Uncorrelated Stochastic Differential Equations

(SDEs)

SDEs are a mathematical tool to model time-continuous stochastic processes. SDEs find

their applications in economics, finance (stock markets), and physics (motion of particles).

They are widely used in power systems to model physical processes such as wind speeds,

solar irradiation, stochastic load consumption, and much more. A n-dimensional set of

uncorrelated SDEs is written as:

κ̇(t) = a(t,κ(t)) + b(t,κ(t)) ◦ ξ(t) , (2.8)

where κ ∈ Rnκ are uncorrelated stochastic processes; a ∈ Rnκ and b ∈ Rnξ are continuous

functions representing the drift and diffusion terms, respectively; ◦ is the Hadamard

product, i.e. the element-wise product of two vectors; ξ(t) ∈ Rnξ is a vector of uncorrelated

white noise. Modelling the drift and diffusion terms in (2.8) independent of time produces

stationary stochastic processes. Therefore, SDEs defining n uncorrelated stationary
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stochastic processes are written as:

κ̇(t) = a(κ(t)) + b(κ(t)) ◦ ξ(t) , (2.9)

In (2.9) ξ(t) is a random process whose increments follow Gaussian PDF with zero

mean. In mathematical terms, ξ(t) is defined as the time derivative of the Wiener process,

as follows:

ξ(t) dt = dW (t) , (2.10)

where W ∈ Rnw is a vector of standard uncorrelated Wiener processes, whose elements,

say Wi(t), i = 1, . . . , nw, are fully independent and have the following properties:

1. Wi(0) = 0, with probability 1.

2. Wi(t) is a continuous function of t.

3. Wi(t) has unbounded variation in every interval.

4. The increments of Wi(t) follow Gaussian PDF, i.e., ∀t ≥ 0, dWi = Wi(t + h) −
Wi(t) ∼ N (0, h).

5. Wi(t) has independent increments, i.e., ∀0 ≤ s < t, cov[dWi(t), dWi(s)] = 0.

A few examples of realizations of sample paths of Wi(t) are shown in Figure 2.3. The

sample paths of Wi(t) cannot be differentiated in time, i.e., limh→0(Wi(t+ h)−Wi(t))/h

does not exist. Note that this property does not contradict the expression of the white

noise given in (2.10), which is only a formal definition that allows to express SDE in

differential form but has no practical application. The integration of (2.9) only involves

dW and sufficiently small time steps h [34]. In other words, ξ per se is not needed in

the calculations and is not computed explicitly. In fact, substituting (2.10) into (2.9) and

integrating the result one obtains the common integral form of SDEs, which is the one

actually implemented in numerical tools:

κ(t) = κ(0) +

∫
t

a(κ(τ)) dτ +

∫
W

b(κ(τ)) ◦ dκ(τ) , (2.11)

where κ(0) is the initial value of the process at time t = 0. Note that a SDE can

either be initialized deterministically say κ(0) = 0, or randomly where κ(0) can be chosen
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Figure 2.3: Realizations of ten sample paths of Wiener process W (t).

from a given PDF. Note also that even though the Wiener process follows Gaussian PDF

by definition, non-Gaussian PDFs can also be generated through SDEs by using proper

definitions of the drift and diffusion terms.

Equation (2.9) is non-deterministic due to the presence of the integral with respect to

the Wiener process. This integral is termed as stochastic integral and cannot be interpreted

as the conventional Riemann-Stieltjes’ integral due to the unbounded variations of the

Wiener process. Several approaches have been proposed to interpret stochastic integrals,

e.g., Itô and Stratonovich approach. The choice of the stochastic integral approach

depends on the application of the SDE. Widely used interpretation of stochastic integral

in the power systems is the Itô integration approach, which is adopted throughout this

thesis as well.

The solution of (2.9) involves the integration of two terms, namely drift and diffusion.

The integral involving the drift term is a deterministic integral and is solved as a

conventional Riemann-Stieltjes’ integral. Whereas, the integration of the diffusion term

involves stochastic approach, e.g., Itô integral. Most SDEs cannot be solved analytically

due to the complexity of the non-deterministic integral. However, it is possible to obtain

information about the statistical properties, such as mean and variance, of the SDEs

by solving the Fokker-Planck, forward or backward Kolmogorov equations. These are

also generally solved numerically. The numerical methods available to solve SDEs are

as follows. The drift term is integrated using conventional methods such as implicit

trapezoidal method or the backward differentiation formulas [49]. The sample paths

of the Wiener process are created using Euler-Maruyama, Milstein or Runge–Kutta
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method. The Euler-Maruyama method is the most utilised to solve Itô SDEs by time

discretization [35,60].

2.4 Features of SDEs

2.4.1 Autocorrelation Function

Autocorrelation Function (ACF) of a stochastic process is the measure of correlation of

the current values to the past values of the process. In other words, the ACF measures

the linear dependence of the process to the delayed version of the same process over

progressive time delays. The ACF can be expressed as a function of time delay τ , and is

written as follows:

Rκ(τ) =
E[(κ(t)− µκ)(κ(t+ τ)− µκ)]

σ2
κ

, (2.12)

where Rκ is the ACF of the stochastic process κ; and µκ and σ2
κ are the mean and variance

of κ, respectively.

The extensive data analysis of a variety of stochastic processes observed in power

systems has revealed an ACF [9, 11,28,41,44,46,63], where the nearby data points of the

process are closely related, whereas the distant data points show a weak correlation. This

gives rise to an ACF with higher correlation for smaller τ , and this correlation decreases

monotonically as τ advances. The ACF of stationary stochastic process depends only on

τ . Its dependence on τ can be approximated with a exponential function, and written as:

Rκ(τ) = e−ακτ , (2.13)

where ακ is the autocorrelation coefficient of process κ. According to (2.13) the higher

the ακ the faster the decay.

The desired ACF can be enforced in (2.9) through the drift term. The drift term

defines the long term trend of the stationary stochastic process, i.e., the evolution of

process in time. In (2.9), an exponentially decaying ACF can be obtained by defining

the drift term via a first order linear differential equation. The drift term is written as:

a(κ(t)) = −ακ(κ(t)− µκ) , (2.14)
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where ακ and µκ are the autocorrelation coefficient and mean of the process κ, respectively.

2.4.2 Probability Density Function

Stationary stochastic processes are characterized by stationary PDFs. In other words, the

data points of a stationary stochastic process obtained over two equal-length time intervals

follow the PDFs with similar statistical properties. Stationary stochastic processes

with the required ACFs and given PDFs can be created through SDEs using proper

formulations of drift and diffusion terms in (2.9). The expressions for the drift and diffusion

term in (2.9) can be obtained using either of the two methods, namely, Fokker-Planck

equation [13,81,82] or memory less transformation [9, 28,46,83].

Both methods require that either the drift or diffusion term is defined first and then

the expression for the other term to satisfy the required conditions is determined. The

diffusion term through its dynamic interaction with the drift term is responsible for defining

the PDF of the stationary stochastic process. Since, in this thesis we are interested in

autocorrelated stationary stochastic processes, the expression for the drift term in (2.14)

is used throughout the thesis. Based on the definition of the drift term in (2.14) the

expression for the diffusion term to impose required PDF can be calculated using one of

the two methods, mentioned above in this section.

Note that the procedure to evaluate the autocorrelation coefficient and the fitting

PDF from measurement data is provided in detail later in Section 2.6. A few examples of

stationary stochastic processes constructed using SDEs along with the expressions for

drift and diffusion terms are illustrated later in Section 2.7.

2.5 Correlated SDEs

2.5.1 SDEs with Correlated Wiener Processes

This section presents a procedure to construct correlated SDEs from uncorrelated SDEs.

This method was proposed in [3] and is one of the main contributions of the thesis. To

construct correlated SDEs from uncorrelated SDEs, let us again consider (2.9). Defining

W as a vector of independent Wiener processes makes (2.9) a set of uncorrelated SDEs.

W is a vector of independent Wiener processes only if the cross-correlation between
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the elements of W is zero. In this case the elements of the variance-covariance matrix

P ∈ Rn×n of the increments dW are defined as follows:

Pi,j = cov[dWi, dWj] =

 σ2
i , if i = j ,

0, if i ̸= j ,
(2.15)

where dWi (dWj) represents the infinitesimal increment of the i-th (j-th) element of W .

To correlate SDEs in (2.9), it is required to create a vector of correlated Wiener

processes, say V . This can be done by writing V in terms of W using a linear relationship.

This relationship should correlate the Wiener processes without affecting their statistical

properties, i.e., mean and variance. This is to ensure that the information stored in the

form of PDFs of the individual processes remains unaltered.

The correlation between the elements of V can be assigned using the correlation matrix

R ∈ Rn×n defined as:

R =



1 r1,2 r1,3 . . . r1,n

r2,1 1 r2,3 . . . r2,n

r3,1 r3,2 1 . . . r3,n
...

...
...

. . .
...

rn,1 rn,2 rn,3 · · · 1


,

where ri,j represents the correlation between dVi and dVj, whose value can be calculated

using Pearon’s correlation coefficient provided in Appendix B.2.1. The element ri,j

considers both spatial and temporal correlations. The value of ri,j can either be a constant,

i.e., in case of spatial correlation (since the distance between any two points remains

fixed) or a function of time, i.e., temporal correlation. In case of temporal correlation ri,j

becomes a time-continuous process.

The elements ri,j can be defined through a stochastic process, as follows:

ṙi,j = a(ri,j) + b(ri,j)ξ , (2.16)

Note that in the case of temporal correlation, the value of ri,j is updated in R at every

time step of the TDS. This makes R a scalar matrix, i.e., R, whose elements are updated

at every time step.
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The procedure to calculate the correlation between dVi and dVj through measurement

data is thoroughly explained in the next subsection. The diagonal elements of R are

always 1 since the correlation of a process with itself is 1 by definition. The elements of

variance-covariance matrix P ∈ Rn×n of dV are written as:

Pi,j = cov[dVi, dVj] =

 σ2
i , if i = j ,

ri,jσiσj, if i ̸= j ,
(2.17)

The procedure to write dV in terms of dW is involved and is thoroughly explained

in [16]. Here, we simply provide the final expression:

dV = C dW , (2.18)

where C ∈ Rn×n is chosen such that:

R = CCT , (2.19)

A family of C matrices satisfies (2.19) but the best choice of C is a lower triangular

matrix as it reduces memory requirements and the computational burden of numerical

implementations. A lower triangular matrix is obtained by performing Cholesky-

decomposition of R. Cholesky-decomposition requires that the input matrix is positive

semi-definite. This condition is generally satisfied for stochastic processes of power

systems [3]. Note that correlating the elements of dW using (2.18) does not affect the

individual PDFs of the elements of dW . Note also that R = I makes dV = dW , where

I is the identity matrix. In other words, V becomes a vector of fully independent Wiener

processes.

By substituting the definition of correlated Wiener processes in (2.9), correlated SDEs

can be modelled as:

η̇(t) = a(η(t)) + b(η(t)) ◦ ζ(t) ,

ζ(t) = C ξ(t) ,
(2.20)

where a, b and ξ have the same meaning as in (2.8) and (2.9); C satisfies (2.19); η ∈ Rnη

is the vector of correlated stochastic processes; and ζ ∈ Rnζ is the vector of correlated

white noises.
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Remarks

Even though the set of n-dimensional correlated SDEs in (2.20) is constructed utilising

correlated Wiener processes, the PDFs of the processes resulting from the correlated

SDEs do not change. Since, the PDF depends only on the drift a, and the diffusion

b, see Sections 2.4 and 2.7. These terms a and b are not modified by the correlation of

Wiener process. Note that (2.20) is valid for stochastic processes with different ACFs

and PDFs, i.e., for ai(ηi) ̸= aj(ηj) and bi(ηi) ̸= bj(ηj). Also note that (2.20) can be

used for arbitrary time-scales and arbitrary dimensions. This makes (2.20) able to model

correlated stochastic processes with arbitrary ACFs, PDFs, time-scales, and dimensions.

The numerical algorithms available to generate random numbers only generate

independent Wiener processes. Thus ζ can be obtained only indirectly, i.e., through the

calculation of C ξ. Note that C = I for R = I, where I is the Identity matrix, causes (2.20)

to generate uncorrelated stochastic processes. Since (2.20) can generate both uncorrelated

and correlated stochastic processes, (2.20) will be used throughout the thesis to represent

SDEs.

2.5.2 Setting Up Correlation Matrix

The correlation matrix R is the core mathematical object that allows defining the

correlation between stochastic processes in (2.20). The elements ri,j of R are defined

based on measurement data. The value of ri,j is obtained by calculating the correlation

between the infinitesimal increments of the two stochastic processes. These increments are

termed as noise elements. This section aims at the calculation of the correlation matrix

through the calculation of the noise elements of a stochastic process from measurement

data. This method was originally proposed in [6], and is one of the main contributions of

the thesis.

Let us consider, an individual exponentially decaying autocorrelated stochastic process.

This process is obtained by substituting the value of drift term a from (2.14) into (2.9),

and is written as:

κ̇i = −αi(κi − µi) + bi(κi)ξi , i = 1, . . . , n, (2.21)

where αi and µi have the same meaning as in (2.14), and all remaining parameters and

variables have the same meaning as in(2.9).
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To extract the noise elements of the processes with arbitrary PDFs the analytical

solution of (2.21) is considered. The solution of (2.21) can be established by multiplying

it by eαt, and re-arranging as:

ακ(t)eαtdt+ eαtdκ(t) = eαt
[
µα + b (κ(t)) dW (t)

]
. (2.22)

Note that

d
(
eαt κ(t)

)
= ακ(t)eαtdt+ eαtdW (t) , (2.23)

Substituting (2.23) into (2.22) and integrating, one obtains:

κ(t) = κ(0)e−αt +

∫ t

0

µαeα(s−t)ds+

∫ t

0

b (κ(s)) eα(s−t)dW (s) , (2.24)

where κ(0) is the initial value of the process at t = 0. The first integral is the conventional

Riemann-Stieltjes’ integral, and integrates to µ (1−e−αt). The second integral is expressed

as an Itô integral. Using Itô isometry [26,54], the second integral integrates to a normal

random variable with mean zero and variance given as:

E

[∫ t

0

b (κ(s)) eα(s−t)dW (s)

]2
=
b2 (κ(t))

2α

(
1− e−2αt

)
, (2.25)

Note that according to the definition given in (2.9), b(κ) does not explicitly depend on t.

Thus, the analytical solution of (2.21) is written as:

κ(t) = κ(0) e−αt + µ (1− e−αt) +b
(
κ(t)

)
ψκ(t)

√
1− e−2αt

2α
, (2.26)

where ψκ(t) is the random variable, which is distributed normally with zero mean and

unit variance. ψκ(t) can be extracted from (2.26) and written as:

ψκ(t) =
κ(t)− κ(0) e−αt − µ (1− e−αt)

b
(
κ(t)

)√
1−e−2αt

2α

, (2.27)

Equation (2.27) is employed to estimate the noise element ψκ(t) from the empirical data,

provided the underlying process can be defined using (2.21).

The solution provided in (2.26) is valid for an arbitrary time interval [0, t] and any

initial condition. It can also be applied to an arbitrarily chosen time step ∆t beginning
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at ti−1 and ending at ti. Let us assume equidistantly spaced time steps such that

∀i ∈ Z+, ti − ti−1 = ∆t > 0. To calculate the increment in the stochastic process at an

arbitrarily chosen step size of ∆t, we assume that the value of the process at the previous

time step ti−1 serves as the initial condition for time step ti. Therefore, the increment in

the stochastic process for the step size ∆t is calculated using (2.26) as:

dκ(ti) =κ(ti−1) e
−α∆t + µ (1− e−α∆t) +b

(
κ(ti−1)

)
ψκ(ti)

√
1− e−2α∆t

2α
, (2.28)

Similarly, the increment of ψ(ti) for the time step ∆t is written as:

dψκ(ti) =
κ(ti)− κ(ti−1) e

−α∆t − µ (1− e−α∆t)

b
(
κ(ti−1)

)√
1−e−2α∆t

2α

, (2.29)

Note that since the term b is not modified in (2.29), and also that (2.29) was created

using an autocorrelated ACF. This makes (2.29) valid for stochastic processes with

arbitrary time-scales, dimensions, PDFs, and ACFs, i.e., autocorrelation coefficient. The

application of (2.29) to extract dψ from stochastic processes with various time-scales,

dimensions, PDFs, and ACFs, and the construction of correlation matrix based on

measurement data is illustrated in Chapter 6.

2.5.3 Special Case of 2-dimensional Correlated SDEs

This section discusses a relevant special case of (2.20), namely a two-dimensional correlated

stochastic process, which is helpful, for example, to model correlated active and reactive

load power consumption. Assuming a correlation r between the infinitesimal increments

of the two processes the correlation matrix R is written as:

R =

1 r

r 1

 ,
Using (2.19) and Cholesky-decomposition, C is calculated as:

C =

1 0

r
√
1− r2

 ,
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A 2-dimensional correlated SDE is constructed by inputting C in (2.20), and is written

as:

η̇1(t) = a1(η1(t)) + b1(η1(t)) ξ1(t) , (2.30)

η̇2(t) = a2(η2(t)) + b2(η2(t))
(
r ξ1(t) +

√
1− r2 ξ2(t)

)
,

where r is the correlation between the two processes; and all the remaining parameters

and variables have same meaning as in (2.9).

2.6 Setting Up SDEs

This section provides details on the set up of the SDE defined through either (2.9) or

(2.20). As explained in Section 2.4 that a SDE in (2.9) or (2.20) contains two terms,

namely the drift a and the diffusion b, that are responsible to model the behaviour of a

process. This section deals with the evaluation of these terms based on the measurement

data. Note that the procedure presented in this section is independent of the drift, i.e.,

ACF, and the diffusion, i.e., PDF, of the stochastic process. Hence, the procedure

described in this section is general and can be applied to stationary stochastic processes

with arbitrary ACFs, PDFs, and time-scales.

The first step is to set up the drift a of the SDE. This is done by calculating the ACF

of the stochastic process using (2.12). As explained in Section 2.4.1, the ACFs of the

stationary stochastic processes follow exponential functions with negative coefficient. This

coefficient is calculated by fitting a exponentially decaying function to the ACF obtained

from the measurement data. The coefficient obtained is the autocorrelation coefficient α,

which is the fundamental element to set up the drift a of the SDE [28, 83].

The next step is to set up the diffusion b of the SDE. The diffusion term in interaction

with the drift term is responsible for defining the PDF of the SDE. For this reason, it

is necessary to identify the PDF that best fits the measurement data. The parameters

of the best fitting PDF must be calculated based on measurement data as well. There

are various statistical tests available that reveal the best fitting PDF. In this thesis, the

Kolmogorov-Smirnov (KS) test is utilized. The KS test is a non-parametric test that

measures the closeness of the probability distribution of the sampled measurement data

to a given PDF. Whereas the parameters of the fitting PDF are obtained through the
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Maximum Likelihood Estimation method. Once the fitting PDF and its parameters are

known, the diffusion term can be set up using any of the methods introduced in Section

2.4.2. The methods described in this section have been utilized in various power system

dynamic studies [6, 28].

2.7 Example Stochastic Processes

The SDE in (2.20) can be utilised to generate correlated stationary stochastic processes,

which will follow any required ACF and PDF, through the proper implementation of the

drift a and diffusion b terms. In this section, a few examples of Gaussian and non-Gaussian

correlated stationary stochastic processes are discussed. These processes are utilised in

power system dynamic simulations throughout the thesis. Examples of various PDF types

are considered in this section. It is important to note that processes with any other PDFs

can be utilised. All PDF types, in fact, can be created through the proper definition of a

and b using the methods mentioned in Section 2.4.

2.7.1 Gaussian Processes

Modelling the diffusion term in (2.9) and/or (2.20) as a constant, creates a stochastic

process that follows Gaussian PDF, and is known as OU process. The OU process

is a continuous process with mean-reversion. That is, it drifts towards its mean with

an exponential rate. This causes it to have a bounded variance unlike the Wiener

process. These features make the OU process adequate to model the volatility of bounded

physical quantities such as stochastic load dynamics [57, 58, 70] and short-term wind

fluctuations [9, 11, 28, 44, 55]. The OU process is discussed in further details in Chapter 5.

Correlated Ornstein-Uhlenbeck Process

Correlated OU processs can be generated using (2.20) with the drift and diffusion terms

given as:

a(η(t)) = −α(η(t)− µ) ,

b(η(t)) =
√
2ασ ,

(2.31)
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where α is the autocorrelation coefficient of the process, and µ and σ are the mean and

standard deviation of the process at the stationary condition, respectively.

Figure 2.4 illustrates the realizations of two-dimensional correlated OU processes for

different values of r while keeping α, µ and σ constant. The PDFs of the OU processes

in Figure 2.4 are shown in Figure 2.5. From Figure 2.5 it is evident that the processes η1

and η2 follow Gaussian PDFs, despite being generated for different values of r between

them.
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Figure 2.4: Realization of two-dimensional correlated OU process, η1 and η2, for different values
of correlation r, and for α1 = α2 = 1s−1, µ1 = µ2 = 4, and σ1 = σ2 = 0.1.
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Figure 2.5: PDF of correlated OU processes in Figure 2.4.
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2.7.2 Non-Gaussian Processes

Non-Gaussian processes occur in power systems in many forms. For example, in [63] the

authors, through measurement data, show that the load consumption follows a Normal-

Inverse Gaussian PDF with heavy tails. Non-Gaussian PDFs such as two-parameter

Weibull PDF are used in the literature to model wind speeds. The fitting PDFs and

their parameters depend upon the time-scale and location of the wind speeds [28]. In

this subsection, a variety of correlated stochastic processes following different PDFs are

presented.

2.7.2.1 Correlated Weibull Distributed Processes

N -dimensional correlated Weibull distributed processes that follow the PDF in (2.7) are

generated using (2.20) [82] with the drift term as:

a(η) = −α
(
η − λΓ

(
1 + a−1

))
, (2.32)

and the diffusion term as:

b(η) =
√
b1(η)b2(η) , (2.33)

with

b1(η) = 2α η c1
λ

a
(c2)

−a , (2.34)

and

b2(η) = a exp ((c2)
a) Γ (1 + c1, (c2)

a)− Γ (c1) , (2.35)

where c1 = 1/a and c2 = η/λ; α is the autocorrelation coefficient; a is a shape parameter;

λ is a scale parameter; Γ(·) is the Gamma function; and Γ(·, ·) is the Incomplete Gamma

function.

Figure 2.6 illustrates the realizations of two-dimensional correlated Weibull distributed

processes for different values of r while keeping shape and scale constant. The PDFs of

the Weibull distributed processes presented in Figure 2.6 are shown in Figure 2.7. This

figure shows that the processes η1 and η2 follow, in effect, a Weibull PDF and can be

correlated with each other while preserving their PDFs and other statistical properties.
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Figure 2.6: Realization of two-dimensional correlated Weibull distributed process, η1 and η2,
for different values of the correlation r, and for α1 = α2 = 0.5s−1; shape1 = shape2 = 2; and
scale1 = scale2 = 8.
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Figure 2.7: PDF of correlated Weibull distributed processes in Figure 2.6.

2.7.2.2 Correlated Three-parameter Beta Distributed Processes

The PDF of the three-parameter Beta distribution (fB(η)) is

fB(η) =


1

λB [a, b]

(η
λ

)a−1
(
λ− η

λ

)b−1

if η > 0

0 if η ≤ 0

,
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where B[·, ·] is the Beta function, a and b are shape parameters, and λ is a noncentrality

parameter.

A multidimensional correlated three-parameter Beta distributed process can be created

using (2.20) [82] with the drift and diffusion terms as follows:

a(η) = −α
(
η − a λ

a+ b

)
,

b(η) =

√
2α (λ− η) η

a+ b
,

(2.36)

Two-dimensional correlated Beta distributed processes and their PDFs are shown in

Figures 2.8 and 2.9, respectively. These Figures show that the correlation modelled on

the stochastic processes does not modify their PDFs.

2.7.2.3 Correlated Two-parameter Gamma Distributed Processes

The PDF of the two-parameter Gamma distribution (fG(η)) is

fG(η) =


1

λa Γ [a]
ηa−1 exp

[
−η
λ

]
if x > 0

0 if x ≤ 0

,

where Γ[·] is the Gamma function, a is a shape parameter, and λ is a scale parameter.

The drift and diffusion terms to generate correlated stochastic processes using (2.20)

that follow two-parameter Gamma distribution are written as follows:

a(η) = −α (η − a λ) ,

b(η) =
√
2αλ η .

(2.37)

Figure 2.10 illustrates the realizations of two-parameter Gamma distributed processes

for different correlations while keeping shape and scale constant. The PDFs of the

correlated stochastic processes, illustrated in Figure 2.10, are shown in Figure 2.11. Again

the processes are correlated without their PDFs being modified.
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Figure 2.8: Realization of two-dimensional correlated Beta distributed process, η1 and η2, for
different values of the correlation r, and for α1 = α2 = 0.1s−1; a1 = a2 = 2; b1 = b2 = 8; and
scale1 = scale2 = 30.
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Figure 2.9: PDF of correlated Beta distributed processes in Figure 2.8.

2.8 Conclusions

This chapter introduces the stochastic processes modelled through SDEs. The relevant

features, namely, drift and diffusion, of the stochastic processes are also discussed. A

data-driven method to formulate correlated stochastic processes is presented as well.

With this aim, two novel methods to: (i) model correlated stochastic processes using

multidimensional SDEs; and (ii) construct correlation matrix, which is the fundamental
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Figure 2.10: Realization of two-dimensional correlated Gamma distributed process, η1 and η2,
for different values of the correlation r, and for α1 = α2 = 0.1s−1; shape1 = shape2 = 2.5; and
scale1 = scale2 = 3.5.
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Figure 2.11: PDF of correlated Gamma distributed processes in Figure 2.10.

tool to set up correlated SDEs, based on measurement data are provided. The chapter

also provides a discussion on the methods to set up SDEs based on the measurement

data. Note that the methods provided in this chapter are independent of time-scales,

PDFs, ACFs, and dimensions of the stochastic processes being modelled. Finally, a few

examples to generate Gaussian and non-Gaussian correlated stochastic processes are also

illustrated.
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Chapter 3

Modelling Power Systems with

Stochastic Processes

3.1 Introduction

The impact of stochastic disturbances on the dynamic response of power systems can be

conveniently studied using Stochastic Differential Algebraic Equations (SDAEs). This

has been thoroughly discussed in [17, 51, 73]. Reference [51] also presents a general

approach to incorporate stochastic disturbances in power systems using SDAEs. A

common assumption of the literature available on SDAE models for power systems is that

stochastic disturbances are fully uncorrelated. However, this is not always the case, as

introduced in Chapter 1, stochastic disturbances exhibit correlation, which has a worsening

impact on the power system’s dynamic. This is discussed later in detail in Chapter 6.

The correlation on the stochastic disturbances can be formulated as correlated

Stochastic Differential Equations (SDEs) introduced in Chapter 2. Correlated SDEs

can be incorporated into power system dynamic modelled as a set of DAEs. This gives

rise to correlated SDAEs, which can be utilised to study the impact of the correlated

stochastic disturbances on the dynamic behaviour of power systems. The main goal of

this chapter is to provide a systematic and generalised approach to include correlated

disturbances in existing power system dynamical models using correlated SDAEs. With

this regard, this chapter also provides procedures to set up correlated disturbances on

various sources of volatility, such as stochastic load power consumption, stochastic power

flows, and penetration of Renewable Energy Sources (RES), i.e., production of Wind
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Power Plants (WPPs), for the dynamic security and transient stability assessment of

power systems.

Due to the granularity of wind sites, WPPs are typically connected to the grid in a

tree-like topology as shown in Figure 3.1. This hierarchical structure leads to several levels

at which wind production can be aggregated. It is crucial, however, that independently

from the level at which WPPs are aggregated, the statistical properties of the power

injected into the grid by the aggregated WPPs are similar to the ones obtained by

simulating the detailed network. This chapter aims at providing a SDE-based model to

properly set up an aggregated wind speed considering correlated wind speed fluctuations.

The aggregated wind speed process is formulated such that when a aggregated WPP is

driven by this process, the aggregated WPP reproduces accurately the statistical and

dynamic behaviour of the original network, i.e., detailed representation of the network.

The models presented in this chapter enable the system operators to quantify the

effect of correlation among stochastic disturbances on the dynamic security and transient

stability of the power system. The proposed models can also be applied to systems of

any order and complexity without the need for any simplifications or assumptions in the

original model.

The remainder of the chapter is organised as follows. Section 3.2 provides a brief

introduction to existing power system dynamic models. An overview of uncorrelated

SDAEs is provided in Section 3.3. Whereas, correlated SDAEs are presented in Section

3.4. The methods to include correlated disturbances in the sources of volatility are
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Figure 3.1: Typical tree of a power grid with inclusion of wind power generation.
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provided in Section 3.5. Section 3.6 provides the model for aggregating correlated wind

speeds. Finally, Section 3.7 draws conclusions.

3.2 Differential-Algebraic Equations

The transient behaviour of the power system is conventionally modelled using the following

set of DAEs:

ẋ(t) = f(x(t),y(t),u(t)) ,

0 = g(x(t),y(t),u(t)) ,
(3.1)

where vectors f : Rnx+ny+nu 7→ Rnx and g : Rnx+ny+nu 7→ Rny are the differential and

algebraic equations, respectively; x ∈ Rnx represents the state variables, e.g., generator

rotor angles; y ∈ Rny are the algebraic variables, e.g., line flows; and u ∈ Rnu are the

inputs, e.g., dispatch of generators.

Set of DAEs in (3.1) are deterministic equations but highly nonlinear. They can be

used to study sensitivity of the model with respect to parameter through probabilistic

analysis. However, they cannot consider the dynamic behaviour of a stochastic process

during the Time Domain Simulation (TDS), which is the core interest of this thesis.

Stochastic disturbances can be included in power system dynamic equations, i.e., DAEs,

through SDAEs. This is discussed in the next section.

3.3 Uncorrelated Stochastic Differential Algebraic

Equations

Stochastic disturbances are considered as perturbations on power system variables while

modelling the transient behaviour of the power system. These stochastic perturbations can

be modelled as SDEs, as in (2.9). SDEs are then incorporated into DAEs to formulate

SDAEs. The dynamic behaviour of power systems subjected to stochastic disturbances

is, thus, conveniently modelled as a set of nonlinear SDAEs, as follows [51]:

ẋ(t) = f(x(t),y(t),κ(t),u(t)) ,

0 = g(x(t),y(t),κ(t),u(t)) ,

κ̇(t) = a(κ(t)) + b(κ(t)) ◦ ξ(t) .

(3.2)
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where κ ∈ Rnκ are the uncorrelated stochastic processes; a ∈ Rnκ and b ∈ Rnξ are the

drift and diffusion terms, respectively; and ξ ∈ Rnξ is the vector of independent white

noises. All remaining variables have the same meaning as in (3.1). The functions f and g

are modified to include κ(t).

SDAEs in (3.2) model uncorrelated stochastic disturbances. Thus, they cannot study

the impact of correlated stochastic disturbances on the power system’s dynamic behaviour.

This can be done by modelling stochastic disturbances in the set of SDAEs in (3.2) via a

set of correlated SDEs. This creates correlated SDAEs, which are proposed in the next

section.

3.4 Correlated Stochastic Differential Algebraic Equa-

tions

A set of multi-dimensional correlated SDAEs is formulated as follows:

ẋ(t) = f(x(t),y(t),η(t),u(t)) ,

0 = g(x(t),y(t),η(t),u(t)) ,

η̇(t) = a(η(t)) + b(η(t)) ◦ ζ(t) .

(3.3)

where η ∈ Rnη are the correlated stochastic processes; a ∈ Rnη and b ∈ Rnζ are the drift

and diffusion terms, respectively; and ζ ∈ Rnζ is the vector of correlated white noises.

The rest of the variables and functions have the same meaning as in (3.2). Note that the

model in (3.3) was originally proposed in [3].

Remarks

SDAEs in (3.2) and (3.3) are highly nonlinear and non-deterministic. Such equations

cannot be solved in closed form. Thus, numerical methods are employed for their

integration. The functions f , g and a in (3.2) and (3.3) are deterministic and are

integrated using usual integration schemes. In this thesis, implicit trapezoidal integration

scheme has been adopted for the integration of these functions. Whereas, integration of b

in (3.2) and (3.3) is associated to the non-deterministic integral with respect to Wiener
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process, as explained in Chapter 2. This integral is solved using Euler-Maruyama, in this

thesis, as introduced in Chapter 2.

Equation (3.3) is a general way of modelling correlated stochastic disturbances

into power system dynamics because in (3.3) the drift a and the diffusion b of the

stochastic processes are not modified, and (3.3) also does not require any simplifications

or modifications to the original system while modelling the detailed dynamic behaviour.

The latter property allows for modelling of nonlinearities, controller hard limits and

saturations.

Dynamic Analysis

Due to the complexity involved, and non-availability of the analytical solutions of nonlinear

SDAEs, the impact of the stochastic processes on the dynamic behaviour of the power

systems can only be assessed through TDSs. The TDS employs numerical integration

schemes to simulate the trajectories of the power system variables. The trajectories of the

power system variables are then analysed to assess any instabilities in the system. This

allows for assessing the stability of the system for one particular scenario. However, in

the case of stochastic processes multiple scenarios can be simulated.

To get a realistic estimate on the probability of instability, the system of SDAEs should

be simulated multiple times to include all possible scenarios. This procedure is termed as

the Monte Carlo Method (MC). The total number of trajectories simulated using the MC

depends on the stationary conditions of the stochastic processes being simulated. This

is discussed in detail later in Chapter 4. Each trajectory of the power system variables

obtained through the MC is then analysed to account for any instabilities such as voltage

collapse, loss of synchronism, etc. The probability of instability is calculated based on

the number of unstable trajectories against the total simulated trajectories. In the entire

thesis, the MC are simulated exploiting parallelism on an 80 core Intel(R) Xeon(R) CPU

@ 2.20GHz.
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3.5 Sources of Volatility

This section introduces the methods to model correlated disturbances on the sources of

volatility for power system dynamic studies. These models were originally proposed in [3],

and are presented here in the following Subsections.

3.5.1 Load Power Consumption

Stochastic load models are well-established in the literature [53]. The stochastic load

model introduced in [51] considers the well-known voltage dependent load model and uses

uncorrelated Ornstein-Uhlenbeck (OU) processes to define stochastic perturbations on

active and reactive load power consumption. This is the starting point of the models

presented in this thesis.

3.5.1.1 Correlation on Active and Reactive Power Consumption

Two-dimensional correlated SDEs in (2.30) are utilized to model correlated stochastic

perturbations on active and reactive power consumption of stochastic loads. The proposed

model is as follows:

pL(t) = (pL0 + ηp(t))(v(t)/v0)
γ ,

qL(t) = (qL0 + ηq(t))(v(t)/v0)
γ ,

η̇p(t) = ap(ηp(t)) + bp(ηp(t)) ξp(t) ,

η̇q(t) = aq(ηq(t)) + bq(ηq(t))(rp,q ξp(t) +
√

1− r2p,q ξq(t)) ,

(3.4)

where pL0 and qL0 are the nominal values of active and reactive power consumption,

respectively; v(t) represents the magnitude of the bus voltage at the load bus; v0 is the

initial value of this voltage magnitude at time t = 0; and γ defines the voltage dependency

of the load, i.e., γ = 0 is used for constant power load, and for constant impedance loads

γ = 2 is used.

In (3.4) a, b, and ξ have the same meaning as in (2.30). Whereas rp,q is the linear

correlation between the two stochastic processes associated with active and reactive load

power consumption, i.e., ηp and ηq, respectively. Note that the correlation between the

active and reactive power load consumption can be easily removed using rp,q = 0.
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3.5.1.2 Correlated Load Consumption

In practice, some level of spatial and temporal correlation exists between load power

consumption at different load buses. This is true because consumer behaviour is correlated.

The correlation between the load consumption at multiple load buses can be conveniently

modelled using multidimensional correlated SDEs. Modifying (3.4) to include correlated

stochastic disturbances on load consumption of nl buses, gives:

pL(t) = (pL0
+ ηp(t)) ◦ vp(t) ,

qL(t) = (qL0
+ ηq(t)) ◦ vq(t) ,

η̇p(t) = ap(ηp(t)) + bp(ηp(t)) ◦ ζp(t) ,

η̇q(t) = aq(ηq(t)) + bq(ηq(t)) ◦ ζq(t) ,

(3.5)

where vectors pL ∈ Rnl and qL ∈ Rnl represent the active and reactive power consumption

at load buses, respectively; pL0
∈ Rnl and qL0

∈ Rnl are the initial active and reactive

power consumption at load buses at time t = 0, respectively; and vp ∈ Rnl and vq ∈ Rnl

are vectors, whose elements are calculated as:

vp,i(t) = vq,i(t) = (vi(t)/v0,i)
γi , i = 1, . . . , nl ,

where parameter γ has the same meaning as in (3.4).

In (3.5) ap, aq, bp and bq are all nl-dimensional vectors with same meanings as in

(2.20); and ζp ∈ Rnl and ζq ∈ Rnl are the vectors of correlated white noises associated to

the stochastic processes, i.e., ηp and ηq, on load active and reactive power consumption,

respectively, and are obtained using (2.18), as follows:

ζp(t)

ζq(t)

 = C ξ(t) ,

where ξ ∈ R2nl are the independent white noises; C is a lower-triangular matrix of

dimensions 2nl × 2nl, and is obtained as the Cholesky decomposition of the correlation
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matrix R with the following structure:

R =

Rp,p Rp,q

Rq,p Rq,q

 , (3.6)

where Rq,p = RT
p,q and:

Rp,p =


1 rp1,p2 . . . rp1,pnl

rp2,p1 1 . . . rp2,pnl

...
...

. . .
...

rpnl
,p1 rpnl

,p2 . . . 1

 ,

Rp,q =


rp1,q1 rp1,q2 . . . rp1,qnl

rp2,q1 rp2,q2 . . . rp2,qnl

...
...

. . .
...

rpnl
,q1 rpnl

,q2 . . . rpnl
,qnl

 ,

Rq,q =


1 rq1,q2 . . . rq1,qnl

rq2,q1 1 . . . rq2,qnl

...
...

. . .
...

rqnl
,q1 rqnl

,q2 . . . 1

 ,

3.5.2 Stochastic Power Flow Equations

To ensure a secure operation of the grid, it is required that generation and demand are

balanced at all times. The power balance at i-th bus is given by the well-known power

flow equations, which in polar form are written as:

0 = pG,i(t)− pL,i(t)

− v̂i(t)

nB∑
j=1

[v̂j(t)Bij sin(θ̂i(t)− θ̂j(t))

+ v̂i(t)Gij cos(θ̂i(t)− θ̂j(t))] , i = 1, . . . , nB ,

0 = qG,i(t)− qL,i(t)

− v̂i(t)

nB∑
j=1

[v̂jGij sin(θ̂i(t)− θ̂j(t))

− v̂j(t)Bij cos(θ̂i(t)− θ̂j(t))] , i = 1, . . . , nB ,

(3.7)
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where pG,i and qG,i represent the sum of the active power generations, and the sum of

reactive power generations at the i-th bus, respectively. Similarly, pL,i and qL,i is the sum

of the active power consumption, and the sum of the reactive power consumption at the

i-th bus, respectively. nB is the total number of buses of the grid. Gij and Bij , respectively,

are the real and imaginary part of the (i, j) element of the system admittance matrix.

In [51], stochastic disturbances are included in the bus voltage phasors to account

for effects of random phenomena not modelled in the set of DAEs for transient stability

analysis, e.g., the effects of harmonics, nonlinearities, load unbalances, and electromagnetic

transients, etc. In the same vein, the stochastic disturbances in (3.7) are included through

the variables v̂i and θ̂i, which are the bus voltage magnitude and the voltage phase angle,

respectively, and are obtained as nB-dimensional correlated SDE as follows:

v̂(t) = v(t)− ηv(t) ,

θ̂(t) = θ(t)− ηθ(t) ,

η̇v(t) = av(ηv(t)) + bv(ηv(t)) ◦ ζv(t) ,

η̇θ(t) = aθ(ηθ(t)) + bθ(ηθ(t)) ◦ ζθ(t) ,

(3.8)

where nB is the number of buses in the network; v ∈ RnB is the vector of the noise-free

components of the bus voltage magnitudes; θ ∈ RnB represents the noise-free components

of the bus voltage phase angles, at network buses; av, aθ, bv and bθ are all nB-dimensional

vectors with same meanings as in (2.20); and ζv ∈ RnB and ζθ ∈ RnB are the vectors

of correlated white noises associated to the stochastic processes, i.e., ηv and ηθ, on bus

voltage magnitudes and phase angles, respectively. The vectors ζv and ζθ are calculated

from the vector of independent white noises ξ ∈ R2nB using (2.18):

ζv(t)

ζθ(t)

 = C ξ(t) , (3.9)

C ∈ R2nB×2nB in (3.9) is calculated from the correlation matrix R ∈ R2nB×2nB , using

(2.19). R contains the correlation values between the elements of v and θ. The structure
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of R is similar to that of (3.6), namely:

R =

Rv,v Rv,θ

Rθ,v Rθ,θ

 , (3.10)

where Rθ,v = RT
v,θ and:

Rv,v =


1 rv1,v2 . . . rv1,vnB

rv2,v1 1 . . . rv2,vnB

...
...

. . .
...

rvnB
,v1 rvnB

,v2 . . . 1

 ,

Rv,θ =


rv1,θ1 rv1,θ2 . . . rv1,θnB

rv2,θ1 rv2,θ2 . . . rv2,θnB

...
...

. . .
...

rvnB
,θ1 rvnB

,θ2 . . . rvnB
,θnB

 ,

Rθ,θ =


1 rθ1,θ2 . . . rθ1,θnB

rθ2,θ1 1 . . . rθ2,θnB

...
...

. . .
...

rθnB
,θ1 rθnB

,θ2 . . . 1

 ,

3.5.3 Stochastic Wind Speeds

The electrical power generated from WPPs is a function of the wind speed, which is

highly affected by weather conditions. In the time-scale of transient stability analysis,

wind speed can be conveniently modelled as a stochastic process. This introduces volatility

in the power system dynamic model. Due to the stochastic nature of the wind speed, it

becomes incredibly important to study its effects on power system dynamics to ensure

a secure and reliable operation. The uncorrelated volatility model of wind speed is the

following:

w(t) = w0 + ηw(t) ,

η̇w(t) = aw(ηw(t)) + bw(ηw(t)) ξw(t) ,
(3.11)

where w0 is the average wind speed in a given period; and aw, bw, and ξw have the same

meaning as in (2.9).
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The spatial and temporal correlation between different wind turbines within a WPP,

as well as among WPPs can be modelled as a set of correlated wind speeds. The model

to correlate wind speeds through correlated SDEs is as follows:

w(t) = w0 + ηw(t) ,

η̇w(t) = aw(ηw(t)) + bw(ηw(t)) ◦ ζw(t) ,
(3.12)

where w0 ∈ RnW is the vector of uncorrelated wind speeds; and other variables and

parameters have same meanings as in (2.20).

3.6 Aggregation of Correlated Wind Speeds

In recent years, the modelling of aggregated WPPs has become an important field of

research [7,14,38,40,64,69,77,79]. These works propose various techniques to model an

aggregated WPP that reproduces the behaviour of the detailed network, i.e., generates

similar amount of active power at a given wind speed as in the case of the detailed network.

Some of the works cited above, e.g., [79] and [77], propose a way to calculate an equivalent

wind speed that can be applied to the aggregated WPP to obtain the behaviour of the

active power similar to that generated by the WPPs of the original network. However,

these works model power system dynamics through deterministic DAEs. The drawback

of this approach is that the randomness in wind speeds is included into the set of DAEs

only in the initialization step. Then the wind speed is assumed to remain constant during

the simulation. This approach does not allow the modelling of volatility on wind speeds.

This section presents a formula to calculate an equivalent wind speed process that is

then applied to the aggregated WPP to generate the desired behaviour of the wind power

production at the point of aggregation. This new wind speed process is hereinafter referred

to as “aggregated wind speed process”. The cluster of WPPs of a given region in a grid

can be aggregated by using any of the methods presented in [7, 14, 38, 40, 64, 69, 77, 79].

The aggregated WPP is then driven by the aggregated wind speed process so that it

generates active power at the point of aggregation, which has statistical properties similar

to the one generated by the detailed network. This solution is thus convenient when one

is interested in analysing the dynamic behaviour of the power network in the time scale of
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transients, and in testing the performance of different controllers, and services provided

by the WPPs in the presence of a cluster of WPPs.

The aggregated wind speed process is obtained as the average of the underlying wind

speed processes. This method of averaging the underlying wind speeds has also been

utilised in other works, e.g., [79] and [77]. However, these references consider neither wind

speed dynamics nor correlated wind speeds. In this thesis, on the other hand, we are

interested in the aggregation of the correlated wind speed processes modelled through

correlated stochastic processes in the time scale of transients. The aggregated wind speed

process is thus modelled as a stochastic process that is an average of the underlying

individual wind speed processes in (3.12). The proposed aggregated wind speed model is

built using (3.12) and (2.26), as follows:

wagg(t) =
1

n

n∑
i=1

[
µwi

+ e−αwi t
(
wi(0)− µwi

)
+ψwi

n∑
j=1

(
σwj

cj,i
) ]

. (3.13)

where ci,j is the i, j element of matrix C, and σwj
is the standard deviation of the j-th

wind speed process from (2.25).

3.7 Conclusions

This chapter provides discussion on the modelling of power system dynamic behaviour

through deterministic DAEs. Then, modelling of stochastic disturbances into power

system dynamic equations through SDAEs is introduced. A general approach to model

power systems as a set of correlated SDAEs is, then, presented. A few examples to model

correlated stochastic disturbances on sources of volatility are discussed. Finally, a model

to aggregate correlated wind speeds is presented.
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Chapter 4

Variances of Power System Algebraic

Variables

4.1 Introduction

This chapter deals with the calculation of the variances of algebraic variables of power

systems modelled as a set of Stochastic Differential Algebraic Equations (SDAEs). The

variances of the algebraic variables are required to ensure that none of the system physical

limits are violated in normal grid operation. With this aim, two methods namely, the

conventional Monte Carlo Method (MC) and a direct method are utilised.

The conventional method, i.e., MC requires that the system of equations is simulated

multiple times. With this regard, the chapter discusses the complexities involved and the

computational burden of the MC. The chapter also illustrates the impact of setting up

the stochastic processes with different Probability Density Functions (PDFs) fitting the

measurement data on the variances of the algebraic variables of the power system with

the help of the MC.

One of the byproducts of the MC is that the variances of the power system variables,

in stationary conditions, are readily available. A relevant aspect of modeling power

system as a set of SDAEs is that system nonlinearities and controller hard limits can be

defined. Whereas this is not the case for the direct methods as they rely on linearization

of the system. Available direct methods can only describe the system linearized around

an equilibrium point and at stationary conditions, and, hence, cannot account for the
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time-continuous variations, i.e., the drift term, of the stochastic processes, any system

nonlinearities or hard limits.

As explained in Chapter 1, available direct methods provide statistical properties

only of the state variables of the power system at stationary conditions. While, in this

chapter the evaluation of the variances of the algebraic variables is the primary goal. The

method presented in this chapter utilises the solution of a Lyapunov equation and requires

the calculation of the state matrix of the system. This method is termed as the Linear

Estimation (LE). The accuracy and the computational efficiency of the LE compared to

the conventional MC has also been demonstrated.

The remainder of the chapter is organized as follows. Section 4.2 presents a discussion

on the computational burden of the MC. Then, the impact of modelling stochastic

processes with various PDFs on the variances of the power system variables and the

probability of violation of system limits in case of a transient are discussed in Section 4.3.

The LE is presented in Section 4.4. The case study presented in Section 4.5 utilises two

power systems of different sizes to demonstrate the accuracy and computational efficiency

of the LE. Finally, conclusions are drawn in Section 4.6.

4.2 Monte Carlo Method

The computational burden of the MC is proportional to the following: the complexity

and size of the power system; the total simulated time; the time-step used for integration;

and the number of trajectories simulated. The latter three aspects are discussed in this

section.

The dynamic behaviour of the set of SDAEs is best studied through Time Domain

Simulations (TDSs). A single trajectory of a stochastic process modeled as Stochastic

Differential Equation (SDE) and simulated using TDS needs to be simulated for at

least tf = 2/α s, where α is the autocorrelation coefficient, to become stationary, i.e.,

reach a constant standard deviation (σ(t) = σ). This is demonstrated later in Chapter 5,

where the processes with different α are simulated to show that they reach stationarity

at different tf . Hence, the smaller the value of α the higher the computational time of

the MC. Similarly, the time-step utilised to integrate the SDAEs has a direct impact on

the computational time of the MC. Note, however, that the integration step-size cannot
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be increased too much because the integration of the Wiener process requires sufficiently

small time steps, as explained in Chapter 2.

Another relevant aspect of the MC that has a greater impact on the computational

time of the MC is the number of trajectories being simulated. The rationale behind this

is explained as follows. Let us consider N to be the number of trajectories simulated in

the MC. N is chosen based on a hit and trial method. The hit and trial method contains

two steps. Step 1 simulates the process using the MC for a small N , and calculates σ(N).

The second step increases N by a small quantity and repeats step 1. Note that the hit and

trial method relies on the fact that for an increase in N an increase in σ(N) is observed.

The steps are repeated until σ(N) converges, i.e., σ(N) = σ, with a given tolerance.

To illustrate the hit and trial method, the 9-bus (Western Systems Coordinating

Council) system is chosen. The 9-bus system contains 3 synchronous generators, 3 load

devices, and is shown in Figure 4.1. The stochastic disturbances are introduced into

load active and reactive power through (3.5). The stochastic processes are modeled

through independent Ornstein-Uhlenbeck (OU) processes with the following parameters:

1
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3

45
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GG

Figure 4.1: Single-line diagram of the 9-bus system.
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the autocorrelation coefficients of ηp and ηq are αp = αq = 0.1 s−1, respectively; and

the standard deviations of ηp and ηq are σ(ηp) = 0.5% of pL0 and σ(ηq) = 0.5% of qL0 ,

respectively. The final simulation time for each realization is tf = 2/α = 20 s. The

integration of the deterministic part of SDAEs is performed with a time step ∆t = 0.01 s.

The OU processes are integrated using a step size h = 0.01 s. Figures 4.2 to 4.5 show the

profile of σ(N) plotted against N obtained for various power system variables in the 9-bus

system. These figures illustrate that σ(N) converges for N → 1000. Note that N = 1000

is used throughout the thesis for the MC.

So far in the thesis the stochastic processes η were initialized such that ηi(t0) = 0. As

explained in Chapter 2, ηi can be initialized to a random value chosen from the probability

density function of the process. Doing so removes the need to simulate the process, when

using MC, till tf = 2/α s, as the process displays stationarity at t0 = 0. Note that even

though the process reaches stationarity at t0, the dynamics of the SDAEs do not allow

the power system variables to reach stationarity at t0. This is demonstrated as follows.
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Figure 4.2: Standard deviation of load active ηp and reactive ηq power consumption in the 9-bus
system.
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Figure 4.3: Standard deviation of bus voltage magnitudes v in the 9-bus system.
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Figure 4.4: Standard deviation of rotor angle δ and rotor speed ω of the synchronous machines
in the 9-bus system.

49



0.003

0.004

0.005

pfrLine 9−8

pfrLine 5−4

pfrLine 6−4

100 200 300 400 500 600 700 800 900 1000

0.001

0.0015

0.002 qfrLine 9−8

qfrLine 5−4

qfrLine 6−4

0.0 0.2 0.4 0.6 0.8 1.0
Number of Trajectories

0.00050.00100.00150.00200.0025

S
ta

n
d

ar
d

D
ev

ia
ti

on

Figure 4.5: Standard deviation of active pfr and reactive qfr power injections at the sending-end
buses in the 9-bus system.

The stochastic disturbances are introduced in the 9-bus system at load consumption

at bus 5 through the OU process. The values of autocorrelation coefficient of the process

is chosen as αp = αq = 0.1 s−1. Whereas the values of σ are chosen from the following

scenarios. Scenario S1 considers σ(ηp) = 0.1% of pL0 and σ(ηq) = 0.1% of qL0 ; scenario

S2 considers σ(ηp) = 0.4% of pL0 and σ(ηq) = 0.4% of qL0 ; and scenario S3 considers

σ(ηp) = 0.8% of pL0 and σ(ηq) = 0.8% of qL0 . The OU process is initialized such that

η(t0) ∼ N (µ, σ). The 1,000 trajectories of the stochastic process at load consumption at

bus 5 of the 9-bus system are shown in Figure 4.6. This Figure illustrates that the OU

process reaches stationarity at the start of the simulation, i.e., t = 0. However, this is

not the case for the power system variables. The 1,000 trajectories of rotor speed ω of

the synchronous machine G1 in the 9-bus system is illustrated in Figure 4.7. This Figure

shows that the power system variables do not reach stationarity until tf = 2/α s, even

though the stochastic processes show stationarity at t0.
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Figure 4.6: 1,000 trajectories of load active ηp and reactive ηq power consumption at bus 5 in
the 9-bus system.

Figure 4.7: 1,000 trajectories of rotor speed ω of the synchronous machine G1 in the 9-bus
system.

4.3 Probability Distributions of Stochastic Processes

The study presented in this section originates from the observation that when setting

up stochastic processes based on the measurement data, it is often possible that various

PDFs fit to the same data. Based on this observation the question such as what is the

impact of the different PDFs on the variances of the quantities of the power system

modelled as SDAEs, naturally arises. This section aims to provide an answer to this

question.
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With the help of the case study utilising the distribution network, this section

demonstrates that setting up stochastic processes based on the actual PDF type and the

parameters of the modelling PDF calculated from the measurement data leads to a more

realistic estimate on the variances of the power system quantities and the probability of

instability of the power system modelled as a set of SDAEs.

The procedures applied in this section are as follows. In Section 4.3.1, various PDFs

and their respective parameters based on the measurement data required to set up SDAEs

are calculated. Whereas the impact of setting up stochastic processes through different

PDFs on the power system transient behaviour is quantified in Section 4.3.2.

4.3.1 Fitting Probability Density Functions

This section provides details on fitting different PDFs to a given measurement data. In

this case study, wind generation is considered to be the only source of volatility. Note,

however, that the procedures utilised in this study are equally applicable to the other

sources of volatility as well. The wind measurement data in the time-scale of power

system TDSs utilised in this case study are presented in Appendix A.3. The Real-World

Cumulative Density Function (RCDF) of the wind speed measurement data is shown in

Figure 4.8. The next step is to set up stochastic wind speeds using SDE in (3.12). This

is done by employing the procedures described in Section 2.6.
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Figure 4.8: RCDF of measurement data and CDF of four PDF fits.
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The impact of different PDFs on the overall dynamic response of the system is of

interest in this study. With this aim, four PDFs fitting the data of Figure 4.8, namely

Gaussian, Weibull, Beta and Gamma are considered. The parameters of the four PDFs

are determined through the Maximum Likelihood Estimation method, as mentioned in

Section 2.6. The Cumulative Distribution Functions (CDFs) of the fitting PDFs under

consideration are illustrated in Figure 4.8, along with the relative error between the CDFs

of the PDFs and the RCDF of the wind speed measurement data. Figure 4.8 shows that

there are minimal differences between the CDFs and the RCDF. At a first glance, thus,

the four PDFs fit reasonably well the data.

4.3.2 Dynamic Simulations

This section studies the impact of different PDF types of correlated stochastic wind speeds

on the power system dynamic behavior. The power system considered in this section is

the two-area system. The two-area system shown in Figure 4.9 and originally defined

in [36], consists of 11 buses, 12 lines/transformers, and four synchronous generators,

which are modelled via a 6th-order model and are equipped with IEEE Type-I Automatic

Voltage Regulators (AVRs), Turbine Governors (TGs), and an Automatic Generation

Control (AGC) that coordinates the four synchronous generators. In this section, the

original system is modified to include wind generation. With this aim, the wind generation

network is modelled as in Figure 3.1. Then Substation A is connected to bus 9 of the

two-area system.

G1

Area1 Area2

25km 10km 10km 25km
110km110km

2 4

G2 G4

G3
7 8 9 10 11 31 5 6

L1 L2

Figure 4.9: Single-line diagram of the two area system.
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The detailed dynamic behaviour of the two-area system with inclusion of wind

generation is simulated using correlated SDAEs, presented in Section 3.4. The WPPs

are modelled through variable-speed doubly-fed induction generators. The correlated

stochastic processes are introduced into the wind speeds using the model described in

Section 3.5.3. Where the stochastic processes are modelled through all the four PDF

types discussed in section 4.3.1. The correlation matrix R of wind speeds is set up using

data given in Table A.2. The power system dynamic simulations are performed using the

MC.

The impact of correlated stochastic wind speeds, simulated through different PDF

types, on the statistical properties of relevant quantities of the power system at the

stationary conditions is analysed first. The only difference in the simulations is the

diffusion term in (3.12), which, as mentioned in Section 2.4, defines the PDF of the

stochastic processes, in this case, wind speeds.

The drift term, which defines the Autocorrelation Function (ACF), on the other hand,

is assumed to be constant and same for all the PDF types. In fact, the ACF of the total

wind active power pwind injected at Substation A into the power system is illustrated in

Figure 4.10. This figure shows that the ACF of pwind for all the scenarios are similar.

This means that the drift terms of the wind speeds remain unaltered while simulating all

the scenarios.

The impact of correlated stochastic wind speeds with different PDF types on the

relevant power system quantities is quantified in Table 4.1. This table shows the standard
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Figure 4.10: Average ACF of thousand trajectories of total wind active power injected into the
two-area system with inclusion of wind generation.
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deviation of: the bus voltage magnitudes σ(v); and the active power injections σ(pg) of the

synchronous machines. The results indicate that σ(v) and σ(pg) increase from Gaussian

to Gamma PDF in both scenarios.

The results in Table 4.1 are noteworthy because the only parameter that varies is the

PDF of the wind speed. The changes in the statistical properties of the power system

quantities based solely on PDF types of wind speeds are counter intuitive. One would

expect to see no differences in the statistical properties of any of the power system quantity

based on different PDF types of wind speeds. Especially when the differences between

CDFs of the fitting PDF types and the RCDF of data are small.

Further insights on the effect of the PDFs on the dynamic response of the system

can be obtained with a frequency domain analysis. Frequency domain analysis is carried

out using the procedures, which are described later in Chapter 5. With this regard, the

amplitude of the oscillations induced in the inter-area electro-mechanical oscillatory mode

of the power system are analysed. The inter-area mode of the two-area system with

inclusion of wind generation is first calculated as, eigenvalue −0.075167± 3.540781, and

frequency 0.563 [Hz]. Then, the frequency spectrum of pwind for the four PDF types,

which is illustrated in Figure 4.11, is evaluated. Results show that the amplitude of

the frequencies in pwind is dependent on the PDF types of the underlying wind speeds.

The amplitudes of frequencies in case of Gaussian PDF are the lowest whereas Gamma

PDF shows the highest amplitudes. On the other hand, the amplitudes of frequencies for

Weibull and Beta PDF are remarkably similar in the whole frequency spectrum.

The amplitude of oscillations induced in the inter-area oscillatory mode is shown in

Figure 4.12, which illustrates the frequency spectrum of voltage magnitude at Bus 8

vBus 08. Figure 4.12 shows highest amplitude of oscillations in the inter-area oscillatory

Table 4.1: Standard deviations (Std.) of power system quantities of the two-area system with
inclusion of wind generation reached at stationary conditions.

Std. [pu] Gaussian Weibull Inc. Beta Inc. Gamma Inc.
σ(vBus 08) 0.0087 0.0091 4.6 0.0092 5.75 0.0095 9.2
σ(vBus 09) 0.0058 0.0061 5.17 0.0062 6.9 0.0064 10.34
σ(pgG1

) 0.0136 0.0136 4.08 0.0138 5.97 0.0148 13.1
σ(pgG2

) 0.0135 0.0135 4.07 0.0138 5.96 0.0147 13.08
σ(pgG3

) 0.0134 0.0134 4 0.0137 5.89 0.0146 13.32
σ(pgG4

) 0.0133 0.0133 3.98 0.0136 5.87 0.0145 13.27
Inc.: Normalised increment calculated in % with Gaussian PDF as base.
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Figure 4.11: Average of frequency spectrum of thousand trajectories of total wind active power
injected into the two-area system with inclusion of wind generation.

mode for Gamma PDF with the lowest being the Gaussian PDF. These variations in the

amplitudes of the oscillations for different PDF types lead to variations in the statistical

properties of the quantities of the power system as seen in Table 4.1.

Next, the impact of the PDF types on the behavior of the system after the occurrence

of a contingency is evaluated. This consists in the trip of the line connecting buses 8 and

9 at time t = 30 s. The mean trajectories of vBus 08 obtained for all the PDF types are

shown in Figure 4.13. This figure also illustrates the deterministic trajectory of vBus 08

obtained by simulating the modified two-area system through deterministic DAEs. Figure

4.13 shows that the mean trajectories of vBus 08 obtained for all the PDF types coincide

with the deterministic trajectory of vBus 08.
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Figure 4.12: Average frequency spectrum of thousand trajectories of voltage magnitude at bus 8
of the two-area system with inclusion of wind generation.
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Figure 4.13: Average of thousand trajectories of voltage magnitude at bus 8 of the two-area
system with inclusion of wind generation for different PDF types.

Finally, the trajectories of vBus 08 obtained as a result of simulating correlated wind

speeds, through different PDF types, are illustrated in Figure 4.14. While Table 4.1

shows the values of σ(vBus 08) before the contingency. The standard deviation of vBus 08 is

the lowest for the Gaussian and the highest for the Gamma PDF. Figure 4.14 shows that

a considerable number of trajectories of vBus 08 violate the minimum voltage limit. The

number of trajectories of vBus 08 that go below the minimum voltage limit at least once in

the period of 30 s < t < 35 s is shown in Table 4.2.

The results shown in Figure 4.14 and Table 4.2 agree with the discussion presented

above in this section, i.e., the Gamma PDF leads to the worst dynamic behavior whereas

the Gaussian PDF to the best. The Weibull and Beta PDF remain close to each other,

which must be expected as the differences in the CDFs of Weibull and Beta PDF vs

RCDF as well as in their frequency spectrum are negligible. These results, while being

non-intuitive, can be understood by analysing the oscillations induced in the power system

by the wind speeds following different PDF types.

Note that the conclusions that can be drawn in this case study do not allow to conclude

that the Gamma PDF always leads to the worst dynamic response, nor that processes

with different PDFs always cause different dynamic impacts. The effect of the PDF

depends on the ACF of the stochastic processes, their locations in the network and on

the oscillatory modes of the system.
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Figure 4.14: Trajectories of voltage magnitude at bus 8 of the two-area system with inclusion of
wind generation for different PDF types.

Table 4.2: Trajectories with under-voltages at bus 8 of the two-area system with inclusion of
wind generation.

PDF Trajectories with under-voltages
Gaussian 42 (4.2 %)
Weibull 56 (5.6 %)
Beta 59 (5.9 %)

Gamma 70 (7.0 %)

4.4 Linear Estimation Method

This section presents a direct method to calculate the variances of the power system

algebraic variables. The SDAE model introduced in Section 3.4 is the starting point of

the power system dynamic model considered in this section. This section models the

dynamic behaviour of the power system in the presence of stochastic disturbances as a set

of index-1 SDAEs:

x = f(x,y,η) , (4.1)

0m,1 = g(x,y,η) , (4.2)

η = a(η) + b(η) ◦ ζ , (4.3)
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where all the variables and parameters have the same meaning as in (3.3).

To calculate the variances of the power system algebraic variables y, the set of SDAEs

are linearized at an equilibrium point (xo,yo,ηo) as per Method I described in [30]. Where

(xo,yo,ηo) is a point for which (4.2) are satisfied such that ẋ = 0n,1 and a(ηo) = 0p,1.

The linearization of (4.1)-(4.3) gives:


x̂

0m,1

η̂

 =


fx fy fη

gx gy gη

0p,n 0p,m aη



x̂

ŷ

η̂

+


0n,q

0m,q

B(ηo)

 ξ , (4.4)

where fx, fy, fη, gx, gy, gη, aη are the Jacobian matrices of the system calculated at

(xo,yo,ηo). x̂ and η̂ represent the deterministic and the stochastic states of the linearized

system. Eliminating the algebraic variables from (4.4) and defining ẑ = [x̂, η̂]T leads to a

set of linear SDEs, as follows:x̂
η̂

 =

fx − fyg
−1
y gx fη − fyg

−1
y gη

0p,n aη ,

x̂
η̂

+

 0n,q

b(ηo)

 ξ

= Ao ẑ +Bo ξ , (4.5)

Based on the Fokker-Planck equation, the probability distribution ϖ(ẑ) of all state

variables in stationary condition satisfies [72]:

ϖ(ẑ) = (det | 2πD |)−1/2 · exp
(
− 1

2
ẑTD−1ẑ

)
, (4.6)

where D is the variance-covariance matrix of the state variables in (4.5). Matrix D is

symmetric and satisfies the Lyapunov equation:

AoD+DAT
o = −BoB

T
o , (4.7)

which is a special case of the Riccati equation. The diagonal elements of D are the

steady-state variances of the components of the state variables ẑ. In particular, if the

stochastic processes η are not correlated, the last p diagonal elements of D can be written
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as:

σ2
k =

b2k
2ak

, k = 1, . . . , p ,

where ak and bk are k-th diagonal elements of aη and Bo, respectively, and σ
2
k are the

variances of the p stochastic processes η̂.

From (4.5), it is observed that x̂ can be written as a linear combination of the entries

of ẑ. Hence, also the elements of x̂ are Gaussian processes. Furthermore, the covariance

matrix K of the small-signal algebraic variables can be written as [61]:

K = GoDGT
o , (4.8)

where

Go = −g−1
y

[
gx gη

]
. (4.9)

The diagonal elements of K are the sought variances of the algebraic variables ŷ.

Note that if p ≪ n, i.e., the number of sources of stochastic disturbances is much

smaller than the number of state variables, the covariance matrices D and, hence, K

might not be full rank. A zero element in the k-th position of the diagonal of D (K)

indicates that the associated x̃k (ỹk) are not affected by stochastic disturbances. In this

case, the vector of stochastic processes ẑ is said to be degenerate [27].

4.5 Case Study

This section illustrates the accuracy and numerical efficiency of the LE to calculate the

variances of algebraic variables of the power system. All results are compared to the ones

obtained through the MC. The power systems utilised in this case study are the IEEE

14-bus system and the All-Island Irish Transmission System (AIITS). Equation (4.7) is

solved using the open-source library SLICOT [10].

In both power systems, the sources of stochastic disturbances are modeled as

independent OU processes and included in the loads and, for the AIITS, also in the wind

speeds. Where the stochastic load consumption model described in Section 3.5.1 is used

to model load consumption, and the wind speeds are modeled through the stochastic wind

speed model in Section 3.5.3.
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The accuracy of the LE is measured by calculating the closeness of the values of

standard deviation of the power system variables obtained through the MC with those

obtained through the LE. With this aim, a measure of closeness index, ϵσ, is defined as

follows:

ϵσ (%) =
σMC − σLE

σMC

100 . (4.10)

where σMC, and σLE are the standard deviations of the variables obtained through the

MC and the LE, respectively. Note that the choice of σMC as base for ϵσ is arbitrary.

Also note that ϵσ is calculated for a large number of power system algebraic variables. A

detailed description of the variables utilised is provided in Table 4.3.

Table 4.3: List and description of power system variables.

Variable Description

ηp Stochastic disturbance on load active power consumption

ηq Stochastic disturbance on load reactive power consumption

δ Rotor angle of the synchronous machine

ω Rotor speed of the synchronous machine

pg Active power injection of the synchronous machine

qg Reactive power injection of the synchronous machine

Id d-axis current of the synchronous machine

Iq q-axis current of the synchronous machine

vd d-axis voltage of the synchronous machine

vq q-axis voltage of the synchronous machine

v Bus voltage magnitude

θ Bus voltage angle

pfr Active power injections at the sending-end bus

pto Active power injections at the receiving-end bus

qfr Reactive power injections at the sending-end bus

qto Reactive power injections at the receiving-end bus

4.5.1 IEEE 14 Bus System

The IEEE 14-bus system, shown in Figure 4.15, contains 14 buses with 11 loads, 20

lines/transformers, and 5 synchronous machines. The synchronous generators are described

by a sixth-order model, and are equipped with TGs and IEEE Type-I AVRs. An AGC

is also included in the model [49].
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Figure 4.15: Single line diagram of the IEEE 14-bus system.

The stochastic load consumption is modeled through (3.5) with the following

parameters: the autocorrelation coefficients of ηp and ηq are αp = αq = 0.01 s−1,

respectively; and the standard deviation of ηp and ηq are σ(ηp) = 5% of pL0 and σ(ηq) = 5%

of qL0 , respectively. The simulation time tf for each realization is chosen as tf = 2/α = 200

s. The integration of the deterministic part of SDAEs is performed with with a time step

∆t = 0.01 s. The OU processes are integrated using a step size h = 0.01 s.

Figure 4.16 shows the box plot of the values of ϵσ obtained in the case of the IEEE

14-bus system through the MC and the LE. Results indicate that LE yields σLE that

are very close to σMC. Note that the box plot is drawn such that the thick horizontal

grey lines show the median of the data, the top and bottom notches contain 5% to 95%

percentile of the data, and the black circles show the outliers.

Note that as ηp and ηq are modeled through the OU process, which is linear and has

a constant diffusion term, the LE yields the variances of ηp and ηq, which are exactly the

same to those obtained from the MC. This is confirmed by the results shown in Figure

4.16, which shows a very close match between the LE and the MC for the stochastic

processes ηp and ηq. Also note that, to test the accuracy of the LE against the nonlinearity

of the SDAEs, a wide range of standard deviation of the process, σ(ηp) = σ(ηq), ranging
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from 1% to 10% of the initial load consumption is considered. The variations in the values

of ϵσ for all the variables were found to be in the same range as in Figure 4.16. In fact,

the standard deviation σ(ϵσ) and mean µ(ϵσ) of the measure of closeness index for a few

variables are illustrated in Figure 4.17. It is fair to conclude, thus, that the LE works with

ηp ηq δ ω pg qg Id Iq vd vq v θ pfr pto qfr qto

Variable

−3

−1.5

0

1.5

3

M
ea

su
re

of
C

lo
se

n
es

s
(%

)

Figure 4.16: Box plot of measure of closeness index for the IEEE 14-bus system.
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an exceptionally good accuracy for a wide range of standard deviation of the stochastic

processes.

4.5.2 All-Island Irish Transmission System

This section demonstrates the robustness and light computational burden of the LE when

applied to the real-world complex systems. For this reason, a dynamic model of the All-

Island Irish Transmission System (AIITS) is considered. The schematic map of theAIITS

is shown in Figure 4.18. The AIITS consists of 1479 buses, 1851 lines/transformers, and 22

synchronous generators that are modeled through a VI-order model and are equipped with

IEEE ST1a AVRs, and TGs to ensure a secure operation of the grid. Six conventional

power plants also include a Power System Stabilizer. The AIITS includes 246 load devices.

The AIITS has two 500 MW high-voltage direct-current interconnections with Scotland

and Wales. The AIITS also includes 176 wind power plants, 34 of which are equipped

with constant-speed and 142 with doubly-fed induction generators.

The MC, which is comprised of 1000 TDSs, is employed first to calculate σMC. The

stochastic disturbances are introduced on load consumption through the load model in

(3.5), using independent OU processes. The parameters of η in (3.5) are chosen such

that αp = αq = 0.01s−1; σ(ηp) = 5% of pL0 ; and σ(ηq) = 5% of qL0 . The wind speed is

modeled as a OU process through (3.11) with a standard deviation 5 % of the average

wind speed. The final simulated time for the AIITS is calculated as tf = 2/α = 200 s.

Each realization of the MC is simulated with a time step of 0.01 s.

The box plot of ϵσ for the AIITS is shown in Figure 4.19. The following remarks are

relevant. The measure of closeness index, ϵσ, indicates that the LE deviates more with

respect to the MC for the AIITS than for the IEEE 14-bus system. The values of the

ϵσ of the algebraic variables are larger for the AIITS than for the IEEE 14-bus system.

These deviations, however, are not due to numerical inaccuracies but to the fact that ϵσ

is a relative measure. Larger ϵσ refer to very small values of the standard deviation of the

algebraic variables.

On the other hand, the LE shows a clear advantage with respect to the MC, at least

for large power system models. That is, the LE is characterized by significantly smaller

computational times than the MC. In the case of the AIITS, the total CPU time required
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by the MC was 14763 s, i.e., more than 4 hours, whereas the LE took 54 s, i.e., less than

a minute.
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Figure 4.18: The schematic map of the All-Island Irish Transmission System [18].
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Figure 4.19: Box plot of measure of closeness index for the AIITS.

4.6 Conclusions

This chapter presents methods to calculate the variances of the algebraic variables of power

system modeled as SDAEs. With this regard, the conventional MC and a newly proposed

method, named the LE, are used. The chapter also discuses the impact of modelling

stochastic processes with various PDFs on the variances of the algebraic variables and

the dynamic behaviour of the power system.

The MC is illustrated with the help of case study utilising a 9-bus system. The

case study demonstrates that the computational burden of the MC is dependent on the

autocorrelation coefficient of the stochastic processes; the time-step of the integration

scheme; the number of realizations of the processes; and complexity and size of the power

system.

The impact of modelling stochastic processes with various PDF types on power system

dynamic is demonstrated by simulating a distribution network. It is shown that some

PDF types, despite having similar statistical properties, might have severe impact on

the variances of the power system quantities and as a result the probability that system

physical limits are violated after a contingency is affected. This result is counter intuitive

and cannot be known without actually simulating the system. Note that in this case study
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the results were obtained using the MC. These results cannot be obtained through a

direct method because direct methods can study the system only at stationary conditions.

The proposed direct method, i.e., LE, is based on the solution of the Lyapunov

equation and a linearized method. The LE finds its usage in providing a realistic estimate

of variances of the algebraic variables at stationary conditions, which is crucial to ensure

that none of the system physical limits are violated in normal grid operation. Simulation

results show that the proposed technique has a high accuracy for a wide range of standard

deviation of stochastic processes, and significantly reduced computational time as compared

to the conventional MC.

It is relevant to note that the LE, despite a high accuracy and a clear advantage over

the MC in terms of computational efficiency, is not suitable for the dynamic analyses of

the power systems. The dynamic analyses consist of monitoring the individual trajectories

of the MC for violations of the system limits such as bus voltage limits, or any instabilities

such as loss of synchronism. Such analyses cannot be conducted through a direct method.

Furthermore, the LE is valid only if linearization is valid and cannot consider the

nonlinearities, the hard limits, saturations etc.
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Chapter 5

Autocorrelation

5.1 Introduction

The impact of autocorrelation of the stochastic disturbances on the power system’s

dynamic behavior is the objective of this chapter. For this reason, modelling the power

system as a set of nonlinear Stochastic Differential Algebraic Equations (SDAEs) is

the best formulation choice available [41, 51, 73]. The SDAE models power system’s

dynamic behaviour independent of its size or complexity. Therefore, no simplification

or linearization is required. A byproduct of this modelling approach, however, is that

no analytical solutions, of the resulting SDAEs that describe the power system model,

are available. For this reason, numerical methods mentioned in Chapter 3 are utilised to

integrate the nonlinear SDAEs.

The goal in this chapter is twofold. To study the impact of autocorrelation of stochastic

disturbances on the stability of the power system; and to study the dynamic coupling

between the drift of stochastic disturbances and the electro-mechanical modes of the

power system. With this regard, two techniques, namely, time- and frequency-domain

analysis are utilised. For simplicity but without loss of generality, this chapter focuses

on the stochastic disturbances introduced into the power system in load consumption.

Stochastic disturbances are modelled using stochastic load model in (3.5).

The discussion presented in this chapter models net load at distribution level. Where

the net load is obtained by subtracting the power injections of non-synchronous Renewable

Energy Sources (RES) from actual load demand. In the remainder of this chapter,

stochastic disturbances are modelled as independent processes, i.e., R = I and are
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described by Ornstein-Uhlenbeck (OU) processes. This assumption allows simplifying the

discussion of the case studies but does not impact on the generality of the conclusions.

The remainder of the chapter is organized as follows. Section 5.2 analyses the transient

behaviour of power system subjected to stochastic disturbances in time-domain. With this

regard, Subsection 5.2.1 presents a detailed discussion on the impact of atutocorrelation of a

stochastic process on its dynamic response. Whereas Subsection 5.2.2 discusses the impact

of autocorrelation of the stochastic disturbances on the dynamic behaviour of the power

system. Section 5.3 focuses on another relevant feature of the autocorrelation, i.e., the

dynamic coupling between the drift of stochastic disturbances and the electro-mechanical

modes of the systems. Finally, conclusions are drawn in Section 5.4.

5.2 Time Domain Analysis

This section studies the impact of autocorrelation of stochastic disturbances on the

transient behaviour of power system in time-domain. With this aim, at first, the impact of

autocorrelation of a stochastic process on the dynamic behaviour of the stochastic process

itself is analysed in Section 5.2.1. Finally, Section 5.2.2 studies the effect of autocorrelation

of the stochastic disturbances on the dynamic behaviour, and hence, stability of power

system. The discussion in this section was originally presented in [4].

5.2.1 Dynamic Response of Stochastic Process

This section presents a detailed discussion on the dynamic analysis of the stochastic

process in time domain. This analysis considers the autocorrelation, i.e., Autocorrelation

Function (ACF) and standard deviation, i.e., Probability Density Function (PDF) of the

stochastic process. For simplicity but without loss of generality, a OU process is chosen.

Note that the discussion presented in this section is valid for other stochastic processes as

well.

The OU process is a linear implementation of the SDE in (2.9) and/or (2.20). Hence,

both drift and diffusion terms can independently modify the dynamic behavior of a OU

process. As a result, the power system dynamic will behave differently dependent on

the modifications in the two terms. The OU process is mean-reverting, i.e., it tends to

its mean value and shows constant standard deviation in stationary conditions. A OU
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process is defined as:

η̇ = −α(η − µ) + βξ , (5.1)

where α is the autocorrelation coefficient or the speed of the mean reversion; β is the

coefficient of the diffusion term; µ is the mean value; and ξ is the white noise. The

process resulting from (5.1) is a real-valued process that follows a Gaussian PDF given

by N (µ, σ2), and β = σ
√
2α.

The process defined in (5.1) is a linear combination of two terms: drift and diffusion.

This allows for both terms to be adjusted independently. As a result, OU processes

with different values of α and, hence, different dynamic behavior, can have same PDF

in stationary conditions. In fact, the PDF of (5.1) is defined as in (2.6), which does not

depend on α.

Table 5.1 shows a set of parameters of OU processes. Figure 5.1 illustrates the time

series of OU processes generated from the parameters in Table 5.1. It is important to note

that the processes shown in the top panel Figure 5.1 have the same PDF in stationary

conditions. However, their transient behavior is significantly different because of the

different values of α. On the other hand, the bottom panel of Figure 5.1 illustrates OU

processes generated with different values of σ but same values of α. Comparing the upper

and lower panel of Figure 5.1, it is evident that from the dynamic point of view, a process

with high α and low standard deviation has a similar effect as a process with low α and

high standard deviation.

The autocorrelation coefficient of a stationary stochastic process is calculated from the

ACF. As explained in Chapter 2, the ACF of a stationary stochastic process measures

the dependence of present values, of a given time series, on the past values, of the same

time series, as a function of time lag, and is calculated using (2.13). Figure 5.2 illustrates

the ACFs, calculated using (2.13), of the OU processes shown in Figure 5.1. The ACF

is always equal to 1 for τ = 0 by definition. As τ increases the correlation of the OU

processes between current and future values decreases exponentially and decreases the

Table 5.1: Parameters of OU processes.

Parameters η1 η2 η3 η4 η5 η6

α 1 0.1 0.01 0.01 0.01 0.01

σ 0.1 0.1 0.1 0.4 0.3 0.2

70



−0.2

0

0.2

η1

η2

η3

0 5 10 15 20 25 30

−0.2

0

0.2

η4

η5

η6

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

−0.4

−0.2

0.0

0.2

0.4

O
U

p
ro

ce
ss

es

Figure 5.1: Single trajectory of OU processes defined in Table 5.1.
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Figure 5.2: Exponentially decaying ACFs of OU processes defined in Table 5.1.

faster the higher the value of α. In fact, the analytical expression of ACF of a OU process

is given as R(τ) = e−ατ . Note, however, that processes with different σ and same α show

similar time evolution of the ACF (see bottom panel of Figure 5.2).

It is interesting to note that, taken alone, neither the time series of the OU processes,

shown in Figure 5.1, nor the dynamic behavior of the ACF, shown in Figure 5.2, allow to

distinguish between the OU processes. A more effective way to visualize the behavior

of stochastic processes is through the MC. With this aim, 1,000 trajectories of each

process of Table 5.1, with initial condition ηi(0) = 0 and a time step h = 0.01 s for the

increments of the Wiener process, are simulated. The spread of the 1,000 trajectories of

the OU processes can be visualized in Figure 5.3. Top panel of Figure 5.3 shows that the
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OU processes reach same standard deviation at stationary conditions, i.e., σ(t) = σ, at

separate times depending on α. Whereas the OU processes with same α but different σ

reach different standard deviation at the stationary conditions all at the same time.

For the proof of concept, the standard deviation of all the trajectories for each process

is calculated at every time step and plotted against time in Figure 5.4. The results shown

in Figure 5.4 indicate that the time at which a stochastic process becomes stationary

depends only on α of the process. In fact, the expression for a stochastic process to

reach stationarity is given by tf = 2/α, which is not dependent on σ. On the other hand,

the spread of the trajectories in stationary conditions depends only on the value of the

standard deviation.

Figure 5.3: 1,000 trajectories of OU processes defined in Table 5.1.
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Figure 5.4: Standard deviations of 1,000 trajectories of OU processes defined in Table 5.1.
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So far, independent OU processes have been considered. In the SDAE model in (3.3),

however, the OU processes are dynamically coupled with the rest of the system. Common

sense would suggest that ACFs of the OU processes affect exclusively the transient, while

the standard deviation affects only the stationary conditions. However, since the variables

η appear in the nonlinear differential-algebraic equations, this intuition is not always

correct. The next subsection of this section shows that the ACF of the OU processes

also impact on the stationary conditions of the system.

5.2.2 Dynamic Response of Power Systems

This section analyses the impact of the autocorrelation of stochastic disturbances on

the dynamic behavior of the power system in time domain. This analysis is performed

considering the evolution in time of the standard deviation of relevant variables of the

system. With this aim, the MC is employed to extract meaningful statistical properties,

such as the standard deviation and the autocorrelation of the trajectories of relevant

variables, and also to assess the stability of the power system subject to stochastic

disturbances. The MC utilises the dynamic model of two power systems, namely the

well-known Kundur’s two-area system and the dynamic model of the real-world All-Island

Irish Transmission System (AIITS).

With the aim of studying the impact of autocorrelation coeficient α, six scenarios with

various combinations of α and σ of the OU processes that describe the loads are defined

in Table 5.2. The MC simulates 1, 000 trajectories for each scenario in Table 5.2. The

numerical integration schemes utilise a time step of h = 0.01 s to integrate the Wiener

Table 5.2: Autocorrelation α and standard deviation σ of stochastic load consumption for
different cases.

Scenarios α [s−1] σ(ηp) [% of pL0] σ(ηq) [% of qL0]

S1a 0.01 0.4 0.4

S1b 0.1 0.4 0.4

S1c 1 0.4 0.4

S2a 0.01 0.6 0.6

S2b 0.1 0.6 0.6

S2c 1 0.6 0.6
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process in the non-linear SDAEs, while the deterministic part is integrated with a step

size of ∆t = 0.01 s. The total simulated time for each trajectory is t = 200 s.

5.2.2.1 Two-Area System

The original two-area system introduced in Section 4.3.2 and shown in Figure 4.9 is used

in this case study. The impact of standard deviations of the stochastic disturbances on

the power system algebraic variables is considered first. For this reason, the values of

standard deviation of bus voltage magnitude σ(v); and of active σ(pg) and reactive σ(qg)

power generation of the synchronous generators calculated for scenarios S1a, S2a, S1b,

and S2b are shown in Table 5.3. The values of σ(v), σ(pg) and σ(qg) reported in Table

5.3 show an increase of 50% from scenario S1a to S2a and scenario S1b to S2b. Note that

in the scenarios compared in Table 5.3, α of stochastic processes remains constant while

σ is increased by 50% from the base scenario. The results indicate that in stationary

conditions, the variations in σ of stochastic processes while keeping α constant lead to

variations in σ of the power system variables in the same proportion. This behaviour is

expected from a power system in stationary conditions.

Table 5.3: Standard deviation (Std.) of power system algebraic variables of the two-area system
with stochastic loads for scenarios S1a, S2a, S1b, and S2b.

Std. S1a S2a % increase S1b S2b % increase

vBus 1 0.0008 0.0012 50 0.0023 0.0034 47.83

vBus 2 0.001 0.0016 60 0.0029 0.0044 51.72

vBus 3 0.0008 0.0012 50 0.0021 0.0032 52.38

vBus 4 0.001 0.0016 60 0.0028 0.0042 50

vBus 7 0.0021 0.0032 52.38 0.0046 0.007 52.17

vBus 9 0.0023 0.0035 52.17 0.0046 0.007 52.17

pgG1
0.0224 0.0333 48.66 0.0267 0.0394 47.57

pgG2
0.0222 0.033 48.65 0.0252 0.0371 47.22

pgG3
0.0223 0.033 47.98 0.0248 0.0366 47.58

pgG4
0.0223 0.033 47.98 0.025 0.0368 47.20

qgG1
0.0306 0.0463 51.31 0.0531 0.079 48.78

qgG2
0.0479 0.0725 51.36 0.0711 0.1056 48.52

qgG3
0.0321 0.0487 51.71 0.05 0.0745 49

qgG4
0.0526 0.0796 51.33 0.0708 0.1051 48.45
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Next, the impact of α of stochastic processes on the statistical properties, i.e., mean

and variance, of power system variables in stationary conditions is considered. With this

regard, the time evolution of σ(v) at load buses 7 and 9 are shown in Figures 5.5 and 5.6,

respectively. By observing the Figures 5.5 and 5.6, it is obvious that α of the underlying

stochastic processes has a significant impact on σ(v) in stationary conditions. The actual

values of σ(v) at generator and load buses for base scenario, which is α = 0.01s−1, and

their % increase calculated from the base scenarios are shown in Tables 5.4 and 5.5. Note
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Figure 5.5: Standard deviation of voltage magnitude at load bus 7 of the two-area system with
stochastic loads.
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Figure 5.6: Standard deviation of voltage magnitude at load bus 9 of the two-area system with
stochastic loads.
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that the results presented in Tables 5.4 and 5.5 indicate that σ(v) varies from 100% to

775% for a variation in α from 0.01 to 1s−1. These variations in σ(v) are dependent only

on α of the underlying stochastic processes and are independent of σ of the stochastic

processes.

Finally, the variations in σ(pg) and σ(qg) for variations in α of stochastic processes are

observed. Figures 5.7 and 5.8 illustrate the time evolution of σ(pg) of generators G1 and

G3, respectively. Whereas the time evolution of σ(qg) of generators G2 and G4 are shown

in Figures 5.9 and 5.10, respectively. These figures show an increase in σ for an increase in

α. The actual values of σ(pg) and σ(qg) along with their % increase are shown in Tables

5.4 and 5.5. The results in both tables indicate that the σ(pg) and σ(qg) increase from

85% to 330%, as α is increased from 0.01 to 1s−1.

It is also interesting to note that 197 simulations were found to be unstable for scenario

S2c. For illustration, a selection of the unstable trajectories from scenario S2c are shown

in Figures 5.11 to 5.13. These figures indicate that the loss of stability in scenario S2c are

Table 5.4: Standard deviation of power system algebraic variables of the two-area system with
stochastic loads for scenarios S1a, S1b and S1c.

Standard S1a S1b S1c

deviation absolute [pu] % increase1 % increase1

vBus 1 0.0008 187.5 712.5

vBus 2 0.001 190 740

vBus 3 0.0008 162.5 637.5

vBus 4 0.001 180 680

vBus 7 0.0021 119.05 504.76

vBus 9 0.0023 100 434.78

pgG1
0.0224 19.2 120.09

pgG2
0.0222 13.51 87.39

pgG3
0.0223 11.21 82.96

pgG4
0.0223 12.11 87.89

qgG1
0.0306 73.53 336.27

qgG2
0.0479 48.43 244.05

qgG3
0.0321 55.76 260.44

qgG4
0.0526 34.6 181.37

1 Note: % increase is calculated based on S1a.
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Table 5.5: Standard deviation of power system algebraic variables of the two-area system with
stochastic loads for scenarios S2a, S2b, and S2c.

Standard S2a S2b S2c

deviation absolute [pu] % increase2 % increase2

vBus 1 0.0012 183.33 775

vBus 2 0.0016 175 743.75

vBus 3 0.0012 166.67 708.33

vBus 4 0.0016 162.5 700

vBus 7 0.0032 118.75 543.75

vBus 9 0.0035 100 471.43

pgG1
0.0333 18.32 133.33

pgG2
0.033 12.42 97.88

pgG3
0.033 10.91 94.24

pgG4
0.033 11.52 95.45

qgG1
0.0463 70.63 364.36

qgG2
0.0725 45.66 265.93

qgG3
0.0487 52.98 286.86

qgG4
0.0796 32.04 202.01

2Note: % increase is calculated based on S2a.
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Figure 5.7: Standard deviation of active power injection of synchronous generator G1 of the
two-area system with stochastic loads calculated against time for all the cases.
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due to shortage of reactive power that leads to voltage collapse. On the other hand, no

instability occurs for scenarios S2a and S2b. These results indicate that α of stochastic

processes, not σ and PDFs alone, are crucial parameters for the stability analysis of

power systems. In fact, high σ might not be dangerous for the system if α is sufficiently

low. On the other hand, if α of the stochastic processes are sufficiently high, even if their

σ are low, instability can occur.
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Figure 5.8: Standard deviation of active power injection of synchronous generator G3 of the
two-area system with stochastic loads calculated against time for all the cases.
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Figure 5.9: Standard deviation of reactive power injection of synchronous generator G2 of the
two-area system with stochastic loads calculated against time for all the cases.

78



0

0.1

0.2
S2c

S2b

S2a

0 25 50 75 100 125 150 175 200
0

0.1

0.2
S1c

S1b

S1a

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

0.0

0.1

0.2

0.3

S
ta

n
d

ar
d

D
ev

ia
ti

on
[p

u
(M

V
A

r)
]

Figure 5.10: Standard deviation of reactive power injection of synchronous generator G4 of the
two-area system with stochastic loads calculated against time for all the cases.

6.75

7

7.25 G1

6.75

7

7.25 G2

6.75

7

7.25 G3

0 20 40 60 80 100 120 140 160

6.75

7

7.25 G4

0.0 0.2 0.4 0.6 0.8 1.0

Time [s]

6.50
6.75
7.00
7.25
7.50

A
ct

iv
e

P
ow

er
G

en
er

at
io

n
[p

u
(M

W
)]

Figure 5.11: Few unstable trajectories of the active power generation of all synchronous machines
of the two-area system with stochastic loads from scenario S2c.
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Figure 5.12: Few unstable trajectories of the reactive power generation of all synchronous
machines of the two-area system with stochastic loads from scenario S2c.
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Figure 5.13: Few unstable trajectories of the voltage magnitude at bus 8 of the two-area system
with stochastic loads from scenario S2c.

5.2.2.2 All-Island Irish Transmission System

The power system chosen in this section is the AIITS, presented in Section 4.5.2. The

impact of stationary probability distributions of stochastic processes on the power system

algebraic variables is considered first. For this reason, the values of σ(v) at few buses, and

values of σ(pg) and σ(qg) of a few synchronous generators obtained for scenarios S1a, S2a,
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S1b, and S2b are shown in Table 5.6. The % increase in the values of σ(v), σ(pg) and

σ(qg) calculated using scenarios S1a and S2a as base are also reported in Table 5.6. From

Table 5.6, it is evident that σ(v), σ(pg) and σ(qg) show an increase of 50% for an increase

of 50% in σ of the stochastic processes, when α is kept constant. This result substantiates

the results obtained for the two-area system, see Table 5.3.

Next, the impact of the autocorrelation of stochastic processes on the statistical

properties of algebraic variables of the AIITS in stationary conditions is observed. With

this regard, the values of σ(v), σ(pg) and σ(qg) obtained for the six scenarios, in Table

5.2, are presented in Tables 5.7 and 5.8. From the results in Tables 5.7 and 5.8, it can

be seen that σ of power system algebraic variables increases for an increase in α of the

Table 5.6: Standard deviation of power system algebraic variables of the AIITS with stochastic
loads for scenarios S1a, S2a, S1b, and S2b.

Standard S1a S2a S1b S2b

deviation ×10−4 [pu] ×10−4 [pu] % increase ×10−4 [pu] ×10−4 [pu] % increase

vBus 1 0.013 0.0194 49.23 0.0134 0.0201 50

vBus 2 0.01 0.0149 49 0.0106 0.0158 49.06

vBus 13 0.0115 0.0173 50.43 0.0115 0.0173 50.43

vBus 170 0.0101 0.0151 49.5 0.0108 0.0163 50.93

vBus 1000 0.0119 0.0178 49.58 0.0119 0.0178 49.58

vBus 1479 0.024 0.036 50 0.0239 0.0359 50.21

pgG1
5.7601 8.6401 50 5.8416 8.7624 50

pgG2
2.4508 3.6762 50 2.4824 3.7237 50

pgG3
8.5706 12.8559 50 8.7562 13.1343 50

pgG4
4.6096 6.9144 50 4.6019 6.9029 50

pgG5
8.0003 12.0004 50 7.9359 11.9039 50

pgG6
1.9401 2.9101 50 1.975 2.9625 50

pgG7
2.9027 4.354 50 2.8731 4.3097 50

qgG1
0.2049 0.3073 49.98 0.2018 0.3027 50

qgG2
0.4183 0.6275 50.01 0.4343 0.6515 50.01

qgG3
0.2354 0.3531 50 0.2876 0.4313 49.97

qgG4
0.2455 0.3683 50.02 0.2998 0.4497 50

qgG5
1.2566 1.885 50.01 1.2145 1.8217 50

qgG6
1.5121 2.2682 50 1.4179 2.1268 50

qgG7
5.7973 8.6959 50 5.6656 8.4985 50
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stochastic processes regardless the fact that the stationary probability distribution of the

stochastic process remains unaltered.

Note that the results presented in Tables 5.7 and 5.8 show that σ(v), σ(pg) and σ(qg)

in the AIITS increase by a small percentage as compared to the two-areas system in

Section 5.2.2.1. This slight increase in σ(v), σ(pg) and σ(qg) in the AIITS is because loads

are well distributed throughout the system, and the eigenvalues are very well damped.

Whereas this is not the case in the two-area system where the loads are concentrated in

large amount only on the two buses, and the eigenvalues of the system are poorly damped.

The eigenvalues of the critical modes are shown in Section 5.3 later in this chapter.

Table 5.7: Standard deviation of power system algebraic variables of the AIITS with stochastic
loads for scenarios S1a, S1b and S1c.

Standard S1a S1b S1c

deviation absolute ×10−4 [pu] % increase3 % increase3

vBus 400 0.0403 71.22 203.72

vBus 450 0.0551 57.17 171.87

vBus 500 0.187 29.52 169.63

vBus 550 0.187 29.52 169.63

vBus 600 0.0408 51.96 142.89

vBus 650 0.1542 22.96 139.75

pgG4
3.6837 1.62 37.71

pgG5
1.5446 3.16 37.14

pgG6
1.9401 1.8 36.47

pgG7
8.5706 2.17 35.54

pgG8
2.4508 1.29 34.92

pgG9
5.7601 1.41 18.33

qgG4
0.2354 22.18 21.11

qgG5
0.244 22.99 20.25

qgG6
0.2455 22.12 19.47

qgG7
0.1625 12.86 16.55

qgG8
0.5555 16.11 16.11

qgG9
0.8684 4.17 15.63

3 Note: % increase is calculated based on S1a.
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Table 5.8: Standard deviation of power system algebraic variables of the AIITS with stochastic
loads for scenarios S2a, S2b, and S2c.

Standard S2a S2b S2c

deviation absolute ×10−4 [pu] % increase4 % increase4

vBus 400 0.0827 57.19 171.7

vBus 450 0.2805 29.48 169.63

vBus 500 0.0612 52.12 142.97

vBus 550 0.2312 22.97 139.84

vBus 600 0.1832 18.45 117.74

vBus 650 0.1323 15.04 103.33

pgG4
4.0811 11.46 114.52

pgG5
5.5255 1.63 37.72

pgG6
2.3168 3.16 37.15

pgG7
2.9101 1.8 36.48

pgG8
12.8559 2.17 35.54

pgG9
13.6762 1.29 34.92

qgG4
2.2397 16 49.85

qgG5
2.7262 30.82 37.45

qgG6
0.3531 22.15 21.13

qgG7
0.3659 23.04 20.28

qgG8
0.3683 22.1 19.47

qgG9
0.2437 12.88 16.58

4 Note: % increase is calculated based on S2a.

5.2.2.3 Discussion

From the results presented above in this section, it is evident that the standard deviation σ,

while keeping autocorrelation coefficient α constant, of the power system output variables

increases in the same proportion as the σ of the stochastic processes. The standard

deviation of output variables is also directly impacted by α of the stochastic processes.

This occurs despite the fact that the processes have the same probability distribution in

stationary conditions, as shown in Figure 5.4. Note that all the scenarios reach the same

mean value.

It is important to note that the variables v, pg and qg belong to the vector of algebraic

variable y of (3.3), i.e., their stochastic behavior is the result of the inclusion in f and g

of the stochastic variable η. It is observed that high values of the autocorrelation can
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drive the system to instability even if the standard deviation of the stochastic processes

is small, and acceptable in stationary conditions. This non-intuitive result is due to the

dynamic coupling of the autocorrelation of stochastic processes with the nonlinearity of

the SDAEs that define the power system model.

5.3 Frequency Domain Analysis

This section investigates whether stochastic processes can trigger the electro-mechanical

modes of the power system and hence, modify its dynamic response. With this aim, at

first, the electro-mechanical modes are identified by calculating the dominant eigenvalues

and their participation factors. Then, the frequency spectrums of relevant variables of the

system are analysed to quantify the impact of the autocorrelation of stochastic processes

on the overall system dynamic response.

This approach is conceptually similar to the signal probing technique, e.g., [62, 85, 86],

which utilises a Fourier analysis of measurement data to determine the frequency, damping,

and participation factors associated with the inter-area oscillatory modes of the power

system. The results discussed in this section were presented in [5].

5.3.1 Dynamic Response of Stochastic Processes

It is relevant to analyse the effect of α on the dynamic response of stochastic process,

which is modelled as a OU process using (5.1). Top panel of Figure 5.1 shows three

realizations of (5.1), obtained for µ = 0, σ = 0.1 and different values of α.

The three processes shown in top panel of Figure 5.1 have the same PDFs in stationary

condition. However, their dynamic behavior is significantly different because of the different

value of α and, hence, of their autocrrelation. This can be observed in top panel of Figure

5.1: the higher the value of α, the faster the variations in the stochastic process in the

unit of time.

An effective way to differentiate stochastic processes having same PDFs but different

α is offered by the frequency spectrum of the time series obtained by Fourier Transform.

Figure 5.14 illustrates the frequency spectrum of the time series observed in the top panel

of Figure 5.1. Figure 5.14 shows that the higher the value of α, the bigger the amplitudes
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Figure 5.14: Frequency spectrum of realizations of OU processes with µ = 0; σ = 0.1; and
α1 = 0.01 s−1, α2 = 0.1 s−1, and α3 = 1 s−1.

of the frequencies of which a OU process is composed. Thus, the amplitudes of the

frequencies, of which a OU process is composed, is directly proportional to the α.

5.3.2 Dynamic Response of Power Systems

This section studies two power systems, namely, the well-known Kundur’s two-area system

and a dynamic model of the AIITS. Both systems are modelled as a set of nonlinear

SDAEs. In all simulations, the realizations of the Wiener processes are integrated with a

sufficiently small step size of h = 0.01 s, whereas the integration of the deterministic part

utilises a step length ∆t = 0.01 s. Each trajectory simulated for a total simulation time

of 200 s. In this time period, the stochastic processes reach stationarity.

Three scenarios where stochastic processes are characterized by low-, medium- and

high-speed exponentially decaying autocorrelations, respectively, are defined as follows:

• S1: α = 0.01 s−1.

• S2: α = 0.1 s−1.

• S3: α = 1 s−1.

The values above are in the range of real-world stochastic processes that are found in

power systems.
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5.3.2.1 Two-Area System

The two-area system introduced in Section 4.3.2, and shown in Figure 4.9, is simulated

using the SDAE model described in (3.3). Stochastic processes are introduced through

stochastic load model in (3.5). Stochastic processes η in (3.5) are modelled as independent

OU processes using (5.1). Note that (3.5) models net load. The impact of the stochastic

processes on the dynamic response of the system is studied considering each area

independently.

Stochastic Loads only in area 1

The dominant electro-mechanical modes of the system along with the participation factors

of the machines after introducing stochastic processes in area 1 are shown in Table 5.9.

These modes are calculated as a result of including stochastic processes in load power

consumption in area 1 through OU processes. The standard deviation of OU processes

is set to σ = 1% of the mean load value for all scenarios. For each scenario, the OU

processes have the same frequency spectrum as shown in Figure 5.14.

The impact of the autocorrelations of stochastic processes on the bus voltage magnitude

v at load buses is analysed first. With this regard, the time domain profile of v at load

buses 7 and 9 is shown in Figure 5.15. From Figure 5.15, it is evident that v at bus 7

experiences higher variations in time as compared to v at bus 9. While the amplitude of

the variations in v at both buses is dependent on the value of α. This is further confirmed

by analysing the frequency spectrum of the time domain profile of v. Figure 5.16 illustrates

the frequency spectrum of v at buses 7 and 9. This figure shows that the amplitude of the

oscillation of the dominant electro-mechanical mode is dependent on α of the stochastic

process. Note that v on both buses observes oscillations only in the inter-area oscillatory

mode i.e, mode 1 in Table 5.9. Since stochastic processes are modelled only in area 1, v

at bus 7, which is in area 1, experiences higher amplitude oscillations as compared to v at

bus 9, which is in area 2.

Next, the reactive power generation qg of the synchronous generators in the two-area

system is analysed in both time- and frequency-domain. Figure 5.17 illustrates the time

profile of qg of all the synchronous generators. By observing Figure 5.17, it is clear that the

synchronous generators in area 1, i.e., G1 and G2, provide more reactive power support

than those in area 2, i.e., G3 and G4. For the proof of concept, the frequency spectrum
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of qg of all the generators is shown in Figure 5.18. From Figure 5.18, it is evident that

generators in area 1 experience higher amplitude oscillations for higher α as compared to

Table 5.9: Electro-mechanical modes and corresponding participation factors of the two-area
system with stochastic load in area 1.

Mode Eigenvalue Freq. [Hz]
Participation Factors

G1 G2 G3 G4

1 -0.063±j3.866 0.615 19.05 11.01 34.86 21.85

2 -0.300±j7.112 1.132 42.07 52.93 1.63 1.25

3 -0.300±j7.392 1.176 1.02 1.47 37.7 57.52
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Figure 5.15: Time profile of voltage magnitude at load buses 7 and 9 of the two-area system
with stochastic load in area 1.
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Figure 5.16: Frequency spectrum of voltage magnitude at load buses 7 and 9 of the two-area
system with stochastic load in area 1.
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Figure 5.17: Time profile of reactive power injections of all the synchronous generators of the
two-area system with stochastic load in area 1.
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Figure 5.18: Frequency spectrum of reactive power injections of all the synchronous generators
of the two-area system with stochastic load in area 1.
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generators in area 2. Note that qg experiences oscillations only in the inter-area oscillatory

mode, which is the same as with v.

Next, the impact of the autocorrelation of the stochastic processes on the active power

injections pg of the synchronous generators is observed. The time profile of pg of all

the synchronous generators is shown in Figure 5.19. The oscillations of these generators

are higher the higher the value of α of the stochastic processes included in the load

consumption. Figure 5.20 illustrates the frequency spectrum of pg of the synchronous

generators. By comparing the frequencies of the dominant electro-mechanical modes

shown in Table 5.9 with the frequency spectrum shown in Figure 5.20, it is clear that

an increase in α causes an increase in the amplitude of the oscillations in the dominant

electro-mechanical modes. Note also that the frequency spectrum of pg shows well the

coupling of the oscillatory modes of the two-area system with the values of α.

The amplitudes of the oscillations observed in pg also depend on the participation

factors of the machines. This is particularly evident for the inter-area oscillatory mode,

which shows significant participation from all the generators. The amplitude of the inter-

area oscillatory mode observed in all the generators is proportional to their participation

factors. This behavior can be verified by observing the participation factors of generators

in modes 2 and 3. Since mode 2 has significant participation from G1 and G2, and

provided that the disturbance originates in area 1, negligible oscillations are observed in

mode 2 in the generators G3 and G4, located in area 2. Whereas mode 3 has significant

participation from G3 and G4. Hence, negligible oscillations are observed in mode 3 from

all the generators. This is due, again, to the fact that the disturbance is located in area 1.

Finally, the impact of the autocorrelation coefficient on the stability of power system

is analysed with MC. With this aim, 1,000 Time Domain Simulations (TDSs) are carried

out. The results of these simulations are presented in Table 5.10, which indicates that

none of the trajectories were found to be unstable for the three scenarios.
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Figure 5.19: Time profile of active power injections of all the synchronous generators of the
two-area system with stochastic load in area 1.
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Figure 5.20: Frequency spectrum of active power injections of all the synchronous generators of
the two-area system with stochastic load in area 1.
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Table 5.10: Unstable trajectories for the two-area system with stochastic loads.

Stochastic Processes in area 1 Stochastic Processes in area 2
Scenario Unstable trajectories Unstable trajectories

S1 0 0
S2 0 0
S3 0 521 (52.1%)

Stochastic Loads only in area 2

The dominant electro-mechanical modes of the system along with the participation factors

of the machines after introducing stochastic processes in area 2 are shown in Table 5.11.

The parameters of the stochastic loads are the same as those utilised in the example above

except for the standard deviation that is set to σ = 0.5% of the mean load consumption.

The time domain profile and frequency spectrum of v at load buses 7 and 9 are

illustrated in Figures 5.21 and 5.22, respectively. These figures show that higher amplitude

oscillations are observed for higher values of α. These figures also show that the oscillations

are observed only in the inter-area oscillatory mode with similar amplitude in v at buses 7

and 9 in Areas 1 and 2, respectively. Note that this result is different from that obtained

by considering that stochastic processes are modelled only in area 1, as can be seen in

Figures 5.15 and 5.16. The rationale for this difference is as follows.

Figures 5.23 and 5.24 illustrate the time- and frequency-domain profile of qg of all

the synchronous generators, respectively. Note that the generators in both areas observe

oscillations with similar amplitudes. This behaviour of qg coincides with the behaviour

observed in v, seen in Figures 5.21 and 5.22. This happens despite the fact that disturbance

is only in area 2. The reason behind this is that the generators in area 1 are providing

more reactive power support than the generators in area 2. This causes reactive power

being exported from area 1 to area 2, which makes the generators in area 1 experience

oscillations with amplitudes similar to those in area 2.

Next, the time domain profile of pg of all the synchronous generators is illustrated

in Figure 5.25. While Figure 5.26 shows the frequency spectrum of all the synchronous

generators in the two-area system. The results show that generators G3 and G4 in area 2

show higher amplitude oscillations as compared to generators G1 and G2 in area 1. The

rationale of this result is given by the participation of the generators to the inter-area

mode (see Table 5.11). These results are consistent with those discussed in the example
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above, i.e., the higher the α the higher the oscillations observed in the generators of area

2. Note that even though modes 2 and 3 have similar frequency, only the pg of machines

Table 5.11: Electro-mechanical modes and corresponding participation factors of the two-area
system with stochastic load in area 2.

Mode Eigenvalue Freq. [Hz]
Participation Factors

G1 G2 G3 G4

1 -0.139±j2.690 0.428 5.20 7.62 27.07 34.64

2 -0.292±j7.154 1.139 38.67 52.67 2.82 2.62

3 -0.331±j7.214 1.148 2.03 4.16 42.97 46.4
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Figure 5.21: Time profile of voltage magnitude at load buses 7 and 9 of the two-area system
with stochastic load in area 2.
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Figure 5.22: Frequency spectrum of voltage magnitude at load buses 7 and 9 of the two-area
system with stochastic load in area 2.
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Figure 5.23: Time profile of reactive power injections of all the synchronous generators of the
two-area system with stochastic load in area 2.
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Figure 5.24: Frequency spectrum of reactive power injections of all the synchronous generators
of the two-area system with stochastic load in area 2.
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Figure 5.25: Time profile of active power injections of all the synchronous generators of the
two-area system with stochastic load in area 2.
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Figure 5.26: Frequency spectrum of active power injections of all the synchronous generators of
the two-area system with stochastic load in area 2.
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G3 and G4 show a relevant increase in the amplitude of the frequency of mode 3 because

the sources of stochastic disturbances are in area 2.

Finally, the effect on the stability of the two-area system of the autocorrelation of the

stochastic processes included in area 2 is analysed using MC, which comprises of 1,000

simulations. The trajectories of v, pg and qg are observed and the results for unstable

trajectories are presented in Table 5.10. Table 5.10 shows that 52.1% of trajectories are

unstable for scenario S3. For illustration purposes, a few unstable trajectories of the

selected power system variables are shown in Figures 5.27 to 5.29. From the results the

two-area system appears to have run out of reactive power support. It is important to note

that, for all scenarios, the standard distribution of the processes is kept the same while

the autocorrelation coefficient of the processes is varied. This implies that sufficiently high

values of the autocorrelation coefficient of the stochastic processes, which may originate

only in one area of the system, may drive a system to instability, which may lead to a

voltage collapse.
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Figure 5.27: Few unstable trajectories of the active power injections of the synchronous generators
of the two-area system with stochastic load in area 2 for scenario S3.
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Figure 5.28: Few unstable trajectories of the reactive power injections of the synchronous
generators of the two-area system with stochastic load in area 2 for scenario S3.
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Figure 5.29: Few unstable trajectories of the voltage magnitude at bus 8 of the two-area system
with stochastic load in area 2 for scenario S3.

5.3.2.2 All-Island Irish Transmission System

In this section, a dynamic model of the AIITS introduced in Section 4.5.2 is considered.

The AIITS is modelled as a set of non-linear SDAEs in (3.3). Stochastic processes are
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included in the load consumption using the stochastic load model provided in Section

3.5.1.2, with R = I, where stochastic processes are modelled as OU processes.

The dominant electro-mechanical oscillation modes of the AIITS are shown in Table

5.12. Whereas the frequency spectrum of pg of a few synchronous generators of the AIITS

are shown in Figures 5.30 and 5.31. The results show that the amplitude of the oscillations

induced in pg are dependent not only on the participation factors of the generators but

also on the damping of the relevant mode.

Figure 5.30 illustrates that generator G3 shows low amplitude oscillations in the

relevant mode, despite the fact that it has the highest participation factor as compared

to generators G1 and G2. Whereas the generators G1 and G2 show higher amplitude

Table 5.12: Electro-mechanical modes and corresponding participation factors of the AIITS
with stochastic loads.

Mode Eigenvalue Freq. [Hz] Damp. [%]
Participation Factors

G1 G2 G3 G4 G5 G6

1 -0.392±j4.689 0.746 8.33 54.5 29.73 – – – –

2 -0.826±j4.595 0.731 17.7 2.6 14.8 73.9 – – –

3 -1.059±35.948 0.971 17.10 – – – 21.1 73.6 –

4 -1.150±j6.368 1.013 17.78 – – – – – 91.26
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Figure 5.30: Frequency spectrum of active power injections of the synchronous generators G1,
G2 and G3 of the AIITS with stochastic loads.
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Figure 5.31: Frequency spectrum of active power injections of the synchronous generators G4,
G5 and G6 of the AIITS with stochastic loads.

oscillations in their relevant modes despite having low participation as compared to G3.

The rationale behind this result is that the damping of mode related to G3 is exceedingly

high as compared to the damping of mode related to G1 and G2 (see Table 5.12). Similar

behaviour is observed in generators G4 to G6 in Figure 5.31, where the relevant modes have

higher damping. The results shown in Figures 5.30 and 5.31 are similar to those obtained

for the two-area system, i.e., the amplitude of the frequency of the electro-mechanical

oscillation modes is increased by increasing the autocorrelation coefficient α.

5.4 Conclusions

This chapter analyses the impact of the autocorrelation coefficient of the stochastic

disturbances originating in power systems from sources of volatility such as load power

consumption and non-synchronous RES penetration. With this regard, two methods,

namely, time- and frequency-domain analysis, are utilised.

The time-domain analysis focuses on the power system output variables in stationary

conditions. The results show that the standard deviations of the power system variables

depend not only on the stationary distributions of the stochastic disturbances but also on

the autocorrelation coefficient. Whereas the frequency-domain analysis studies the effect
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of time-dependence of the stochastic disturbances on the dynamic response of the power

system in the time-scale of power system transient. This method particularly focuses on

the electro-mechanical oscillations in the power system triggered by these disturbances.

The results of the frequency-domain analysis allow drawing the following relevant remarks.

• The higher the autocorrelation coefficient of the stochastic disturbances, the higher

the amplitude of the frequency of dominant electro-mechanical modes.

• Stochastic disturbances originated in an area propagate to other areas through

inter-area modes or through reactive power transfer from one area to another.

• The presence of stochastic disturbances in an area of the system has a reduced effect

on the local modes of other areas. This is due to the fact that the noise originated

in an area propagates to other areas through inter-area modes.

• Stochastic disturbances included in an area and exhibiting high values of

autocorrelation coefficients may cause instability in the power system than those

included in another area with the same statistical properties. Hence, it is crucial

to know the autocorrelation coefficient of the stochastic processes along with their

stationary distribution.

The case studies indicate that it is important to assess the instability probability of a

power system subjected to stochastic disturbances based not only on the stationary PDF

but also on the autocorrelation coefficient. With this result, the case study highlights

the importance of solving TDSs with the actual values of the autocorrelation coefficients

of all the stochastic processes present in a power system. It can also be observed that

with the increasing penetration of non-synchronous RES and flexible loads, instabilities

originated due to their stochastic nature are going to be increasingly likely in the future.

Note that the results presented in this chapter have been verified with various numerical

integration schemes. This allows concluding that the instabilities observed for some

scenarios are in effect due to the actual behavior of the system and not to numerical

issues.
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Chapter 6

Correlation

6.1 Introduction

This chapter illustrates several case studies based on the set of correlated Stochastic

Differential Algebraic Equations (SDAEs) introduced in Chapter 3, to quantify the

impact of correlated stochastic disturbances on the dynamic behaviour of the power

system. The construction of the correlation matrix, which is the fundamental element

to set up correlated SDAEs, based on measurement data is discussed first. Then the

impact of modelling correlated stochastic processes on load active and reactive power

consumption and wind speed fluctuations is demonstrated. Finally, the chapter presents

several case studies that model correlation on different sources of volatility, i.e., stochastic

load consumption, bus voltage phasors, and renewable energy sources penetrations, i.e.,

wind generation, and study their impact on the power system dynamic behaviour.

The remainder of the chapter is organized as follows. The construction of correlation

matrix based on measurement data is discussed in Section 6.2. The scenarios of correlation

utilised for the case studies are presented in Section 6.3. The impact of correlated active

and reactive power, and correlated wind speeds on the standard deviation of the power

system variables is discussed in Sections 6.4 and 6.5, respectively. Section 6.6 presents a

case study utilising three power systems including the model of the real-world dynamic

All-Island Irish Transmission System (AIITS) to assess the impact of correlated volatility

on the power system dynamic. Conclusions are drawn in Section 6.7.

100



6.2 Correlation Matrix

This section utilises the methods described in Section 2.5.2 to illustrate the construction

of correlation matrix based on measurement data. With this regard, at first, Section 6.2.1

provides details on the measurement data and the calculation of the noise elements from

the data. The noise elements obtained from data are utilised to build the correlation

matrix in Section 6.2.2.

6.2.1 Extraction of Noise Elements from Measurement Data

This section illustrates the procedure presented in Section 2.5.2 to extract the noise

elements dψ from the measurement data. For this purpose, a variety of wind speed

measurement data exhibiting different fitting PDF types and different time scales ranging

from 1 second to 1 hour, presented in Appendix A.3, are utilised. Since the Irish system

has a very high share of wind penetration, the wind speed measurement data was easily

available. Nonetheless, the method utilised in this section is equally applicable to the

measurement data from other sources as well.

For the extraction of dψ from the wind speed measurement data the following elements

are the fundamental requirement: the fitting PDF; the parameters of the fitting PDF; and

the Autocorrelation Function (ACF), i,e., autocorrelation coefficient, of the measurement

data. These are obtained utilising the procedures described in Section 2.6. The dψ are

then extracted from the data by employing the method provided in Section 2.5.2. The

PDFs of dψ obtained from the measurement data, presented in Table A.1, are shown in

Figure 6.1. This figure illustrates that the PDF of dψ is independent of the ACF, PDF

and time-scale of the process; and follows the normal random variable with zero mean

and unit variance, and is in accordance with the discussion in Section 2.5.2.

6.2.2 Construction of the Correlation Matrix

This section demonstrates the construction of the correlation matrix R from the

measurement data. The elements of R represent the spatio-temporal correlation between

the increments of the noise elements, i.e., dψi and dψj. The noise elements are calculated

from the measurement data as illustrated in Section 6.2.1. Once the time series of dψ is
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Figure 6.1: PDFs of dψ obtained from wind data, in Table A.1, using (2.29).

obtained, each element of R, i.e., ri,j = corr[dψi, dψj ] is calculated by employing Pearson’s

correlation coefficient, presented in Appendix B.2.1.

In this section, R is constructed for the ten wind sites of the distribution network

shown in Figure 3.1. The scatter plot of dψ of selected wind sites is illustrated in Figure

6.2. This figure shows that some wind sites show a stronger correlation between them

as compared to the others. This correlation depends on the distance between the sites.

The scatter plot in Figure 6.2 accounts only for the spatial correlation, i.e., correlation

with respect to distance. This correlation between the wind sites remains fixed because

the distance between any two wind sites will always remain the same. To account for the

temporal correlation large amount of data spanning over several years in the time-scale of

power system dynamic will be required. This will help in understanding if the correlation

between any two wind sites is a function of time or not. These data are not available at

this stage.
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Figure 6.2: Scatter plot of dψ obtained from wind data, for the wind sites in the distribution
network in Figure 3.1.

Once the scatter plots are obtained, which are provided for illustration purposes only.

The Pearson’s correlation coefficient is applied to calculate linear correlation between any

two wind sites. These correlations are then populated in R in their respective positions,

i.e., ri,j = corr[dψi, dψj]. The wind correlation matrix for the distribution network of

Figure 3.1 is presented in Table A.2. For illustration purposes the correlation values

obtained from the wind measurement data are plotted against the distance and are shown

in Figure 6.3. Figure 6.3 shows that the correlation between the wind sites depends

exponentially on the distance between them. The trend observed for the wind correlation

in Figure 6.3 is consistent with the results reported in other studies [24,45,65].
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Figure 6.3: Correlation against distance between the wind sites in the distribution network in
Figure 3.1.

6.3 Correlation Scenarios

The correlation matrix R is the fundamental tool required to set up correlated SDAEs.

The entries of R represent the correlation between two given stochastic processes. This

correlation is calculated using the measurement data. As explained in Section 6.2, a

limited amount of data are available to account for correlation in the time-scale of power

system dynamic simulations. This makes it almost impossible to construct R.

In the remainder of this chapter, a sensitivity analysis is performed. Three scenarios

of correlation are defined as follows:

• Scenario 1 (S1) represents the fully uncorrelated SDAE model, i.e., the correlation

between any two stochastic processes i and j is ri,j = 0.

• Scenario 2 (S2) considers a low level of correlation among processes, i.e., the

correlation between any two stochastic processes i and j is set to ri,j = 0.4.

• Scenario 3 (S3) considers a high level of correlation among processes, i.e., the value

of correlation between any two stochastic processes i and j is set to ri,j = 0.8 .
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6.4 Correlated Stochastic Active and Reactive Power

This section studies the impact of modelling correlation on stochastic active pL and

reactive qL power consumption of loads on the statistical properties of power system

relevant quantity, i.e., bus voltage magnitude v at the load buses. For this reason, the

detailed dynamic model of the 9-bus system introduced in Section 4.2 is simulated through

correlated SDAEs in 3.3. Where, the loads are modelled as described in Section 3.5.1.1.

The three scenarios of correlation defined in Section 6.3 are considered. The stochastic

disturbances at load consumption are defined through the correlated Ornstein-Uhlenbeck

(OU) processes introduced in Section 2.7.1. The values of the parameters are chosen as

follows: αp = αq = 1s−1; σ(ηp) = 4% of pL0; and σ(ηq) = 4% of qL0. The MC is chosen to

simulate the 9-bus system.

The stationary PDFs of the stochastic processes are not altered when correlating

processes using (2.20), as explained in Section 2.5. The time domain trajectories and

stationary PDFs of the correlated OU processes are shown in Section 2.7.1. The standard

deviations of correlated pL and qL, obtained through the MC, at load buses are illustrated

in Figures 6.4 and 6.5, respectively. These figures show that the standard deviation of pL

and qL, in stationary conditions, remain the same despite being correlated.

The time profiles of v at load buses are illustrated in Figure 6.6. This figure shows a

slight increase in v for an increase in correlations between pL and qL. An effective way to

differentiate between the time profiles of v shown in Figure 6.6 is through the standard
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Figure 6.4: Standard deviation of active power consumption at load buses of the 9-bus system
with correlated active and reactive power loads.
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Figure 6.5: Standard deviation of reactive power consumption at load buses of the 9-bus system
with correlated active and reactive power loads.

Figure 6.6: Trajectories of voltage magnitude at load buses of the 9-bus system with correlated
active and reactive power loads.

deviation. For this reason, the standard deviation of v at the load buses is calculated

against time and illustrated in Figure 6.7. This figure shows that the standard deviation

of v at load buses is directly proportional to the level of correlation between pL and qL.

The effect of the correlation on pL and qL in stationary conditions as well as during a

transient is discussed in detail in Section 6.6.1.
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Figure 6.7: Standard deviation of voltage magnitude at load buses of the 9-bus system with
correlated active and reactive power loads.

6.5 Correlated Stochastic Wind Speeds

This section studies the impact of correlated wind speeds on the dynamic behaviour of

the active power injections pe of the WPPs in the distribution network. The distribution

network utilised in this section is the one introduced in Section 3.6 and shown in Figure

3.1. The wind speeds of the WPPs connected to bus Trien in the distribution network

are correlated using the model described in Section 3.5.3. The correlated wind speeds

are modelled through Gamma distribution as introduced in Section 2.7.2.2. Note that

it is important to model the wind speeds with the right PDFs obtained through the

measurements, as discussed in Section 4.3.1.

The dynamic behaviour of the processes being correlated depends on the level of

correlation between them, see Figure 2.10. Note that the dynamic behaviour of the

processes is modified without altering the stationary PDFs of the processes, as explained

in Section 2.7.2.3. The effect of correlation between wind speeds is transferred to pe of

the WPPs. Figure 6.8 illustrates the time profile of pe for distinct levels of correlation

modelled on the underlying wind speeds. In Figure 6.8, it can be observed that, as the

level of correlation between the wind speeds is increased, the time profiles of pe come

closer to each other, which modifies the dynamic behavior of pe. However, this does not
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Figure 6.8: Active power injections of the WPPs connected to bus Trien for various levels of
correlation between wind speeds.

modify the statistical properties of pg, as the statistical properties of the wind speeds

remain unaltered.

To show that standard deviation of pe is not affected by the correlation between the

wind speeds, the MC is adopted. The MC simulates 1,000 trajectories of the active power

pe. The standard deviations of pe of the WPPs at bus Trien are calculated against time

and illustrated in Figure 6.9. This figure shows that standard deviation of pe of the WPPs

remains the same at any level of correlation. Conversely, the standard deviation of total pe

injected at bus Trien is dependent on the level of correlation between the underlying wind

speeds. The standard deviation of total pe injected at bus Trien is illustrated in Figure

6.10. The rationale behind this is that pe of each WPP being correlated will show similar

variations in time dependent on the correlation between the underlying wind speeds. This

makes the sum of pe rise or fall dependent on the correlation, which causes pe injected at

the bus to have a higher standard deviation for higher correlation.
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Figure 6.9: Standard deviation of the active power of WPPs connected to bus Trien.
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Figure 6.10: Standard deviation of the active power injected at bus Trien.

6.6 Case Study

This case study aims at evaluating the effect of the correlated stochastic disturbances on

the dynamic behavior of power systems. With this goal, the standard deviations of the

trajectories of system variables such as the active power of synchronous generators and

bus voltage magnitudes considering the cases of correlated and uncorrelated disturbances

are compared. The power systems considered are (i) the two-area system, (ii) the two-area

system with inclusion of wind generation, and (iii) a dynamic model of the All-Island

Irish Transmission System (AIITS).
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The impact of the correlation of disturbances is evaluated by observing the trajectories

of relevant quantities of the system. With this aim, the MC is chosen. Each simulation

requires about 8,000 realizations of the Wiener processes for all wind speeds, bus voltage

phasors, and load active and reactive power consumption.

6.6.1 Two-Area System

The two-area system introduced in Section 4.3.2 is modified as shown in Figure 6.11.

Correlated disturbances in the two-area system are modelled as correlated OU processes

using the procedure described in Section 2.7.1. These are included into the modified

two-area system through stochastic load consumption, and bus voltage phasors, with the

following parameters: αp = αq = αv = αθ = 1s−1; σ(ηp) = 0.6% of pL0; σ(ηq) = 0.6% of

qL0; σ(ηv) = 0.3% of v0; and σ(ηθ) = 0.3% of θ0. The results discussed in this section were

originally presented in [3].

First, the correlated stochastic disturbances are introduced in stochastic load

consumption using the load model (3.5). The correlation matrix R utilised to model

correlation on stochastic load consumption is shown in Table 6.1, where r represents

the correlation between any two given quantities. The value of r is chosen based on the

scenarios described in Section 6.3. The case study considers correlation between the load

devices connected in the same area. Hence, inter-area correlation is not considered.

The trajectories of the voltage profile at bus 8 are observed for the three scenarios

simulated, and the results are presented in Table 6.2. Results indicate that the higher

G1

Area1 Area2

25km 10km 10km 25km
110km110km

2 4

G2 G4

G3
7 8 9 10 11 31 5 6

L2 L4L3L1

Figure 6.11: Single-line diagram of the modified two-area system [3].
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the correlation among processes, the higher the probability that the system becomes

unstable. This result can be explained as follows: the loads will require more/less power

from generators if they all increase/decrease in a coordinated manner. For illustration

purposes, a selection of the unstable trajectories from scenarios S2 and S3, are shown in

Figures 6.12-6.14 and Figures 6.15-6.17, respectively. Simulations indicate that the loss of

stability, in this case, is due to a shortage of reactive power that leads to voltage collapse.

Table 6.1: Correlation matrix of the stochastic loads of the modified two-area system.

p1 p2 p3 p4 q1 q2 q3 q4

p1 1 r 0 0 r r 0 0

p2 r 1 0 0 r r 0 0

p3 0 0 1 r 0 0 r r

p4 0 0 r 1 0 0 r r

q1 r r 0 0 1 r 0 0

q2 r r 0 0 r 1 0 0

q3 0 0 r r 0 0 1 r

q4 0 0 r r 0 0 r 1

Table 6.2: Unstable trajectories of the modified two-area system with correlated stochastic loads.

Scenario Unstable trajectories
Disconnection of load L3:

Unstable trajectories

S1 0 0

S2 68 (6.8%) 19 (1.9%)

S3 369 (36.9%) 68 (6.8%)
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Figure 6.12: Few unstable trajectories of voltage magnitude at bus 8 of the modified two-area
system with correlated stochastic loads for selected unstable trajectories for scenario S2.
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Figure 6.13: Few unstable trajectories of active power injections of the synchronous generators
of the modified two-area system with correlated stochastic loads for scenario S2.
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Figure 6.14: Few unstable trajectories of reactive power injections of the synchronous generators
of the modified two-area system with correlated stochastic loads for scenario S2.
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Figure 6.15: Few unstable trajectories of active power injections of the synchronous generators
of the modified two-area system with correlated stochastic loads for scenario S3.
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Figure 6.16: Few unstable trajectories of reactive power injections of the synchronous generators
of the modified two-area system with correlated stochastic loads for scenario S3.
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Figure 6.17: Few unstable trajectories of voltage magnitude at bus 8 of the modified two-area
system with correlated stochastic loads for selected unstable trajectories for scenario S3.

An effective way to evaluate the effect of correlation between the loads is through

observing the statistical properties of the relevant quantities. The statistical property, and

the quantity chosen in this case study is the standard deviation of the active and reactive

power generation of synchronous generators, namely, σ(pg) and σ(qg), respectively. The

standard deviation of stable trajectories of active pg and reactive qg power generation of

synchronous generators obtained from the simulations presented above in this section is

calculated and presented in Table 6.3. This table indicates that the values of σ(pg) and

Table 6.3: Standard deviation of active and reactive powers of synchronous generators for the
modified two-area system with correlated stochastic loads.

Standard S1 S2 S3

deviation absolute % increase 1 % increase1

pgG1
0.0519 22.73 45.04

pgG2
0.0439 22.34 44.15

pgG3
0.0432 22.76 45.03

pgG4
0.0442 21.94 42.53

qgG1
0.1399 24.37 48.88

qgG2
0.1726 24.37 48.89

qgG3
0.1215 25.22 50.82

qgG4
0.1554 25.13 50.55

1 Note: % increase is calculated based on scenario S1.
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σ(qg) increase by about 25% comparing scenarios S1 to S2 and by about 50% comparing

scenarios S1 and S3.

Next, the impact of correlated stochastic disturbances in bus voltage phasors on σ(pg)

and σ(qg) of the synchronous generators is evaluated by modelling the correlated stochastic

disturbances on the bus voltage phasors through the model introduced in Section 3.5.2.

The correlation matrix is built in such a way that stochastic processes modelled on intra

area buses are considered to be correlated, whereas no correlation is considered between

the inter area buses. In this example, load power consumption does not include stochastic

disturbances. Table 6.4 shows σ(pg) and σ(qg) of synchronous generators calculated for

the three scenarios S1, S2, and S3. It appears that the correlation among the stochastic

bus voltage phasors is inversely proportional to the σ(pg) and σ(qg) of the generators.

Note that none of the trajectories were found to be unstable. This effect is thus the

opposite as the one obtained when varying the correlation of the load power consumption.

Finally, the impact of correlated stochastic disturbances on the transient behaviour

of the power system undergoing a contingency is considered. With this aim, the two-

area system is simulated using correlated stochastic loads with the following parameters:

αp = αq = 1s−1; σ(ηp) = 0.5% of pL0; and σ(ηq) = 0.5% of qL0. The contingency planned

is the disconnection of loads connected to bus 9 at t = 10s. The simulation results for

unstable trajectories for the three scenarios of correlation are shown in Table 6.2. The

Table 6.4: Standard deviation of active and reactive powers of synchronous generators for the
modified two-area system with correlated stochastic voltages.

Standard S1 S2 S3

deviation absolute % increase 1 % increase1

pgG1
0.0495 -20.06 -47.24

pgG2
0.0547 -20.68 -49.20

pgG3
0.0908 -17.51 -39.67

pgG4
0.0909 -18.22 -41.70

qgG1
0.0598 -18.75 -42.93

qgG2
0.0705 -17.63 -40.22

qgG3
0.0420 -21.49 -50.79

qgG4
0.0516 -20.75 -49.49

1 Note: % increase is calculated based on scenario S1.
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results show that the system experiences increased number of unstable trajectories for

higher values of correlation. A section of unstable trajectories of rotor angle δ of all

the synchronous machines for scenario S2 are shown in Figure 6.18, whereas the stable

trajectories of δ obtained for scenario S3 are shown in Figure 6.19.
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Figure 6.18: Few unstable trajectories of rotor angles of all the synchronous machines of the
modified two-area system for scenario S2.

Figure 6.19: Stable trajectories of rotor angles of all the synchronous machines of the modified
two-area system for scenario S3.
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6.6.2 Two-Area System With Wind Generation

The power system utilised in this section is the well-known two-area system with inclusion of

wind generation network, which was presented in Section 4.3.2. The results presented in this

section were originally discussed in [6]. The WPPs are modelled through variable-speed

doubly-fed induction generators. The correlated stochastic disturbances are introduced

into the wind speeds using the model described in Section 3.5.3. As discussed in Section

6.5, the wind speeds are modelled using Gamma distribution. The correlation matrix

R of wind speeds is provided in Table A.2. The power system dynamic simulations are

performed using the MC.

To study the impact of correlated wind speeds on the power system dynamic, a

sensitivity analysis is adopted. With this aim, the following scenarios are considered:

• Scenario 1 (S1) considers no correlation among wind speeds.

• Scenario 2 (S2) considers correlation among all wind speeds.

Firstly, the impact of modelling correlation on the standard deviation of the power

system variables is quantified. The standard deviation of the frequency of the center of

inertia ωCoi for both scenarios is illustrated in Figure 6.20. while the standard deviations of

bus voltage magnitude σ(v), and active power σ(pg) injections of the synchronous machines

are shown in Table 6.5. Figure 6.20 and Table 6.5 show that the standard deviations of the

power system variables are increased with an increase in the level of correlation among the
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Figure 6.20: Standard deviation of the frequency of the center of inertia of the two-area system
with inclusion of correlated wind fluctuations.
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Table 6.5: Standard deviation of bus voltage magnitudes and active power injections of the
synchronous generators in the two-area system with inclusion of correlated wind fluctuations.

Std. [pu] S1 S2 % increase

σ(vBus 08) 0.0049 0.0095 93.88

σ(vBus 09) 0.0033 0.0064 93.94

σ(pG1) 0.0075 0.0148 97.33

σ(pG2) 0.0074 0.0147 98.65

σ(pG3) 0.0075 0.0146 94.67

σ(pG4) 0.0074 0.0145 95.95

wind speeds. This indicates that correlated wind speeds can modifying the distribution of

power system quantities without modifying the distribution of power injections of WPPs.

In this second case, the two-area system modified to include wind generation is

subjected to both correlated wind speeds and a contingency. The contingency consists of

the trip of the line connecting buses 8 and 9 at time t = 30 s. The voltage profile at Bus

8 for the two scenarios of correlation is illustrated in Figures 6.21 and 6.22. These figures

show the trajectories of the bus voltage magnitude v at bus 8 along with the mean of the

trajectories for the system modelled through correlated SDAEs, for the two scenarios.

Figure 6.21: Voltage profile at bus 8 for scenario S1 for the two-area system with inclusion of
correlated wind fluctuations.
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Figure 6.22: Voltage profile at bus 8 for scenario S2 for the two-area system with inclusion of
correlated wind fluctuations.

The trajectory of the bus voltage magnitude at bus 8 for the system modelled through set

of deterministic DAEs using constant wind speeds is also shown in Figures 6.21 and 6.22.

The mean trajectory of v coincides with the deterministic trajectory in both scenarios.

This was to be expected as the level of correlation among wind speeds does not impact on

the wind speed average values. On the other hand, the standard deviation of v increases

as the wind correlation increases. This increase of the standard deviation causes 70 (7.0

%) trajectories of v to violate the minimum voltage limit for at least 5 s for case 2 (see

Figure 6.22).

The results presented in this section were obtained by simulating the wind generation

network in detail as in Figure 3.1. The wind generation network of WPPs in Figure 3.1

is formed in a hierarchical manner. In such a network the WPPs can be aggregated at

different hierarchical levels of the network, i.e., bus, distribution, and transmission. The

aggregated WPPs can then be driven by an aggregated wind speed process, presented in

Section 3.6. This new network, when driven by the aggregated wind speed should produce

results similar to those obtained above in this section.

The accuracy of the wind speed aggregation model, in Section 3.6, is measured by

comparing the standard deviation of the trajectories of active power σ(pe) generated

at various levels of the grid by simulating the entire network to σ(pe) generated by the
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aggregated WPP driven by the aggregated wind speed process. The wind aggregation

model is considered to work with high accuracy if σ(pe) of wind generation obtained

through aggregating WPPs in different regions of the grid is close to σ(pe) obtained by

individually modelling WPPs in the network. The values of σ(pe) calculated for detailed

and aggregated WPPs along with the errors are presented in Table 6.6. The low values

of the errors shown in Table 6.6 is an evidence of the accuracy of the proposed aggregated

wind speed model.

Table 6.6: Standard deviation of active power generation of aggregated WPP.

Aggregation
Location

SPM
Error

Level Detailed Aggregated

Bus

Tralee 57.73 60.71 2.78

Garrow 61.8 63.72 3.1

Trien 62.31 64.4 3.35

Distribution
Substation B 44.21 45.53 2.88

Substation C 51.66 52.59 1.8

Transmission Substation A 46.64 47.36 1.53

SPM: Standard deviation of pg expressed in percent of the mean value.
Error: Absolute normalised error in % between detailed and aggregated.

6.6.3 All-Island Irish Transmission System

In this section, the AIITS introduced in Section 4.5.2 is considered. Correlated stochastic

disturbances are introduced in stochastic load consumption, and power flow equations.

The wind speeds driving the WPPs are modelled using correlated wind speeds explained

in Section 3.5.3. The results discussed in this section were originally presented in [3].

Stochastic disturbances are modelled as correlated OU processes. The parameters for

stochastic load consumption, stochastic bus voltage phasors, and stochastic wind speeds

are as follows: αp = αq = αv = αθ = αw = 1s−1; σ(ηp) = 0.5% of pL0; σ(ηq) = 0.5% of

qL0; σ(ηw) = 0.5% of w0; σ(ηv) = 0.3% of v0; and σ(ηθ) = 0.3% of θ0. Note that the

correlation matrix in the case study in this section is constructed in such a way that

stochastic disturbances on every device connected in same area are correlated whereas no

correlation is considered among the devices connected in different areas.
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The impact of correlated load consumption on σ(pg) and σ(qg) of the synchronous

generators is discussed first. In this example, wind, and bus voltage phasors do not

include stochastic disturbances. Table 6.7 shows σ(pg) and σ(qg) of selected synchronous

generators calculated for the three scenarios S1, S2, and S3. The correlation among the

stochastic loads has a direct impact on σ(pg) and σ(qg) of the generators. The values of

σ(pg) and σ(qg) almost double when the correlation among stochastic loads is doubled.

This is a noteworthy result as the standard deviation of the loads remains the same in

all three scenarios. This result also substantiates the results obtained for the two-area

system.

Next, the impact of correlated stochastic disturbances modelled on bus voltage phasors,

using the procedure described in Section 3.5.2, on σ(pg) and σ(qg) of the synchronous

generators is considered. In this example, wind, and load power consumption do not

include stochastic disturbances. Table 6.8 shows σ(pg) and σ(qg) of selected synchronous

generators calculated for the three scenarios S1, S2, and S3. These results corroborate the

results obtained in Table 6.4. Henceforth, modelling correlation on stochastic bus voltage

phasors leads to reduction in the values of σ(pg) and σ(qg) of the generators. This effect

is thus the opposite as the one obtained when varying the correlation of the load power

consumption.

Table 6.7: Standard deviation of active and reactive powers of synchronous generators in the
AIITS simulated with correlated stochastic loads.

Standard S1 S2 S3

deviation absolute % increase 1 % increase1

σ(pgG1
) 0.0025 44 76

σ(pgG2
) 0.0037 56.76 94.59

σ(pgG3
) 0.0013 53.85 92.31

σ(pgG4
) 0.0012 58.33 100

σ(pgG5
) 0.002 55 90

σ(qgG1
) 0.0004 25 50

σ(qgG2
) 0.001 50 80

σ(qgG3
) 0.0003 33.33 66.67

σ(qgG4
) 0.0004 50 75

σ(qgG5
) 0.0006 50 83.33

1 Note: % increase is calculated based on scenario S1.
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Table 6.8: Standard deviation of active and reactive powers of synchronous generators in the
AIITS simulated with correlated stochastic bus voltage phasors.

Standard S1 S2 S3

deviation absolute % increase 1 % increase1

σ(pgG1
) 0.0193 -22.8 -42.49

σ(pgG2
) 0.0234 -18.8 -32.48

σ(pgG3
) 0.01 -20 -41

σ(pgG4
) 0.0099 -20.2 -40.4

σ(pgG5
) 0.0127 -18.11 -34.65

σ(qgG1
) 0.0176 -19.89 -50.57

σ(qgG2
) 0.0298 -18.79 -48.32

σ(qgG3
) 0.0159 -22.64 -49.06

σ(qgG4
) 0.0148 -20.27 -41.89

σ(qgG5
) 0.0188 -16.49 -40.43

1 Note: % increase is calculated based on scenario S1.

In the following example, the AIITS incorporating the correlated stochastic

disturbances, i.e., correlated stochastic loads, and correlated wind speeds, using the

parameter values presented above in this section is considered. The effect of correlation

between different stochastic disturbances on the system dynamics is studied by considering

the sum of the trajectories of the relevant quantities such as active power consumption

and generation of all the devices connected in the same area. Figure 6.23 illustrates the

sum of the active powers pload consumed by all loads; the sum of the active powers pwind

generated by all wind power plants; and the sum of the active powers psyn generated by

all synchronous generators for the three scenarios of correlation, i.e., S1, S2, and S3. Even

though the standard deviation of the individual stochastic processes remains the same

regardless of the level of correlation being used, Figure 6.23 shows that the spread, in

terms of standard deviation, of the sum of the quantities above increases as the correlation

between the stochastic process is increased.

Finally, a model of the AIITS that incorporates all stochastic disturbances, i.e.,

correlated stochastic loads, correlated stochastic bus voltage phasors, and correlated wind

speeds, using the parameter values presented above in this section is considered. In

addition to the stochastic disturbances, the AIITS undergoes a disconnection of a load

connected to the interconnector between Ireland and Wales at t = 10 s.
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Figure 6.23: Total active power consumed by loads; total active power generated by WPPs;
total active power generated by synchronous generators in the AIITS simulating correlated
stochastic processes for the three scenarios of correlation, i.e., S1, S2 and S3.

Figure 6.24 shows the time domain profile of voltage magnitude at bus Woodland,

for the 1,000 simulations, for S1, i.e., for the fully uncorrelated SDAE model. The

black solid line shows the mean value of the 1,000 trajectories, which reflects the voltage

profile of a deterministic solution, since all Wiener processes have zero average. This

is evident from Figure 6.24 that the mean trajectory coincides with the deterministic

trajectory. The deterministic trajectory is obtained for simulating the AIITS for same

fault conditions using deterministic DAEs. Figure 6.24 indicates that the voltage profile

for the deterministic solution is below the maximum voltage limit, which is shown by a

dashed line. It is also relevant to note that 24.4% of the trajectories exceed the maximum

voltage limit at least once in the period 10 s < t < 30 s.

Figures 6.25 and 6.26 illustrate the 1,000 trajectories of voltage magnitude at bus

Woodland, for scenarios S2 and S3, respectively. Results indicate that the higher the

correlation among the processes the lower the standard deviation of the trajectories. For

scenario S3, i.e., for the maximum correlation considered in this case study, no trajectory

crosses the maximum voltage limit. These results are summarized in Table 6.9. In this
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example, the uncorrelated stochastic model shows more conservative results than the

scenarios that take into account correlation.

Figure 6.24: Bus voltage magnitude at bus Woodland in the AIITS simulating correlated
stochastic processes for scenario S1.

Figure 6.25: Bus voltage magnitude at bus Woodland in the AIITS simulating correlated
stochastic processes for scenario S2.

124



Figure 6.26: Bus voltage magnitude at bus Woodland in the AIITS simulating correlated
stochastic processes for scenario S3.

Table 6.9: Trajectories with over-voltages at bus Woodland in the AIITS simulating correlated
stochastic processes.

Scenarios Trajectories with over-voltages

S1 244 (24.4%)

S2 70 (7%)

S3 0

6.7 Conclusions

This chapter discusses the impact of correlated stochastic disturbances on the dynamic

behaviour of the power system. With this regard the construction of the correlation matrix

required to set up correlated SDAEs is discussed first. Then, the effect of correlated active

and reactive power consumption, and correlated wind speeds on the dynamic behaviour

of the power system is studied. Finally, the case study models correlation on a variety

of sources of correlated stochastic disturbances such as load consumption, bus voltage

phasors and wind generation and studies their impact on the power system dynamic

through a sensitivity analysis. The case study in this chapter utilises three different power

systems including the real-world model of the AIITS to perform power system dynamic

simulations.
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The examples discussed in the case study lead to conclude that the correlation among

stochastic disturbances has a significant impact on the dynamic response of the system

and that such an impact is not known a priori as, in some cases, considering correlation

leads to more conservative results and in others to less conservative results than assuming

fully uncorrelated processes. For example, modelling correlation on load consumption and

wind speeds increases the standard deviation of the power system quantities and amplifies

the effect of contingencies. Whereas modelling correlation on bus voltage phasors causes

a reduction in the standard deviation of power system quantities and alleviates the effect

of the contingencies. Correlation has thus to be modelled correctly to properly estimate

the standard deviation of variables and the instability probability of the system.

Note that the case studies in this chapter perform a sensitivity analysis to quantify the

impact of the correlated stochastic disturbances on the dynamic behaviour of the power

system. Due to the lack of measurement data, this is only possible to study at this stage.

Even though wind speed measurement data is utilised to demonstrate the construction of

the correlation matrix. The available wind speed data is limited to a few wind sites and,

hence, cannot be utilised to construct the correlation matrix for the higher order system

such as the AIITS.
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Chapter 7

Conclusions and Future Work

7.1 Summary

This thesis provides generalised data-driven methods to model the sources of stochastic

disturbances in power system dynamic studies. Correlated Stochastic Differential

Equations (SDEs) are utilised to model correlated stochastic disturbances independent of

their statistical properties and time-scales.

A generalised method to construct the correlation matrix, which is the fundamental

tool to set up correlated SDEs, from measurement data is discussed. The proposed

correlated SDE models are general in the sense that they can model correlation on

stochastic processes with arbitrary Autocorrelation Functions (ACFs), Probability

Density Functions (PDFs), time-scales, and dimensions. The correlated SDEs are

then included into the power system dynamic modelled through a deterministic set

of differential-algebraic equations to generate non-deterministic correlated Stochastic

Differential Algebraic Equations (SDAEs). Correlated SDAEs are systematic and general

and can be used to model any source of volatility such as load consumption or Renewable

Energy Sources (RES) generations. Correlated SDAEs are utilised throughout the thesis

to study the impact of stochastic disturbances on the short-term dynamic of power system.

A direct method based on the solution of Lyaponov equation to evaluate the standard

deviation of the power system algebraic variables in the presence of stochastic disturbances

in stationary conditions is also presented. This method is useful when the assessment

of the probability of the violation of any system physical limit is of interest. Using the

real-world Irish system as a bench mark the thesis shows that the direct method works
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with much higher accuracy for a wide range of stationary distributions of the stochastic

disturbances. Another advantage of the direct method is the considerable reduction in

computational time for systems of large order such as the Irish system.

The impact of ACF of stochastic disturbances on power system dynamic is illustrated

in time- and frequency-domain. Results show that for normal operation an increase in the

value of autocorrelation coefficient of the stochastic disturbances causes an increase in

the standard deviation of the system variables. The results also illustrate that the higher

value of autocorrelation coefficient can drive the system to instability even if the standard

deviation of the stochastic process is acceptable in stationary conditions.

A case study in this thesis illustrates the method to build the correlation matrix based

on measurement data.The thesis demonstrates that the stochastic processes constructed

using different types of PDFs have different impact on the standard deviation of the

power system quantities and, consequently, the probability that a bus voltage magnitude

violates the system limits after a contingency. The thesis also validates the accuracy of

the presented model to set up aggregated wind speeds using correlated SDAEs against

the detailed model.

The impact of correlation of stochastic disturbances on the power system dynamic is

analysed. The results illustrate that correlated stochastic disturbances when modelled

on stochastic loads, and wind speeds tend to increase the standard deviation of power

system variables in stationary conditions. Such disturbances also pose a worsening effect

on the contingencies. On the contrary, the correlation modelled on bus voltage phasors

reduces the standard deviation of the power system variables in stationary conditions and

alleviates the effect of contingencies.

The results above cannot be obtained without simulating the detailed dynamic model

of the system because of the non-linearity of the power system, control hard limits,

saturations, etc. The novel contribution of the presented case studies is the identification

that the autocorrelation and correlation coefficients of the stochastic disturbances play a

significant role in the dynamic behavior of the system and are thus crucial parameters

as much as the standard deviation. The fact that the identification of the effect of the

autocorrelation and correlation coefficients can be obtained with well- assesssed techniques

makes the illustrated approach general and, hopefully, easy to adopt by TSOs.
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7.2 Conclusions and Recommendations

The main take-aways from the thesis are as follows.

An increase in either of the value of autocorrelation or correlation coefficient of the

stochastic disturbances causes an increase in the standard deviation of the system variables

in stationary conditions. This means that the TSOs will have to consider this increase in

the standard deviation of the concerned variables such as bus voltage magnitudes, and

line current flows, in the normal operation of the grid to make sure that none of the

limits are violated by this simple increase in the standard deviation of the concerned

variables during usual operation of the grid. Moreover, a higher value of autocorrelation

and/or correlation coefficient coupled with a lower value of standard deviation, which

might be acceptable in stationary conditions, may lead the system towards instability

after a contingency. Due to non-linearity, this result cannot be known without actually

simulating the system based on actual parameter values.

Another relevant aspect that has been illustrated in this thesis is that it is important

to not only know the statistical parameters of the stochastic disturbances in the time-scale

of power system transient in stationary condition but also which PDF type should be used

to model such data. The thesis shows that certain PDFs may lead to more conservative

results than others. Thus, it is essential to model the stochastic disturbances with the

right PDF type based on measurement data and power system dynamic analysis.

Assessing the effect of a specific PDF type on the dynamic behavior of the system is

not a straightforward task to solve as both system equations and the diffusion terms of the

processes are nonlinear. In this thesis, Time Domain Simulations (TDSs) are performed

utilising the cumbersome Monte Carlo Method (MC). These are computationally

expensive, as the scenarios for each PDF type should be simulated separately. The

thesis shows that the analysis of the spectra of random processes characterized by different

although remarkably similar PDF types is a promising alternative approach. Even if the

PDFs are similar, in fact, the spectra are different and so might be their impact on the

dynamic of the system. How to exactly quantify this impact is currently an open question.

An analytical method to assess the probability that the system variables violate the

system physical limits when power systems are subjected to stochastic disturbances is

presented in the thesis. This method works with high accuracy for a wide range of
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standard deviation of stochastic disturbances independent of the size and complexity of

the system.

Note that the analytical methods available in the literature model the power system

subject to stochastic disturbances in stationary conditions only. Such methods are

incapable of defining the dynamic behavior of power systems subject to stochastic

disturbances in such detail as defined in this thesis. Hence, the only choice available is

to use numerical methods to understand the effect of the stochastic disturbances on the

dynamic behavior of power systems.

Indeed, the main recommendation that can be drawn from this thesis is that the

TSOs should perform TDSs through the MC for power systems subject to stochastic

disturbances using the actual values of the parameters obtained through measurement data.

Using correct values can prevent overlooking some potential instabilities that may arise

due to fast-varying stochastic processes. The results presented in this thesis indicate that

with the increasing penetration of flexible loads and RES in power systems, instabilities

originated by stochastic processes are going to be progressively likely in the future.

At the time of authoring this thesis, however, it is exceedingly difficult to obtain

measurement data that can be actually utilised to calculate the correlation matrix for

a real-world system. The data made available by the TSOs, in fact, are either detailed

but spanning short periods, i.e., considering only specific events (and thus not allowing

calculating correlation matrix) or large time series but consisting of values averaged over

several minutes, e.g., 15 minutes (and thus inadequate for short-term dynamic analysis).

It is our understanding that TSOs have access to such detailed data through Supervisory

Control And Data Acquisition systems, as mentioned in the websites, but is not being

stored in such a detail because it requires large amount of storage and till date it was not

required by a modelling scheme such as the ones introduced in this thesis. Once, TSOs

realise the importance of modelling correlated stochastic processes in power systems, the

TSOs will make data available in such detail. So that it can be used for the evaluation of

statistical properties that can then be utilised to model accurately correlated processes

for dynamic analysis.

In conclusion, this thesis provides with the systematic and generalised methods to set

up correlated stochastic processes. These models are based on measurement data and can

be conveniently included into the existing power system dynamic equations for dynamic
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and transient security assessment. Thus, the the modelling techniques presented in this

thesis can (and hopefully will) be adopted by the TSOs to study the stability of the power

systems in the scenarios with high penetration of stochastic loads and non-synchronous

renewable energy sources.

7.3 Future Work

The work presented in this thesis can be extended in various directions. For example, the

methods to model correlated stochastic disturbances on sources of volatility, presented in

this thesis, are systematic and general, and can be conveniently extended to other sources

of volatility such as photovoltaic, tidal generation etc. Furthermore, the power system

dynamic analyses in this thesis considers a spatial correlation due to limited amount of

data available. However, the method presented to correlate the processes is general, and

can be easily extended to temporal correlation, i.e., correlation as a function of time.

The data to account for correlation and the statistical parameters of the processes are

either inadequate or not available. We hope that the results presented in this thesis will

serve as grounds to encourage the TSOs to store and make available these data in the

sampling rate and length suitable for power system dynamic analysis. This will enable the

researchers to establish more accurate models, and the TSOs to ensure system security

and stability.

The autocorrelation and correlation coefficients of the stochastic processes cause the

standard deviations of power system’s relevant quantities such as power injections of

synchronous generators to increase. This increase in the standard deviations of the power

injections of synchronous generators might cause the generators to reach their limits,

which will affect the generators’ capabilities to provide adequate reserves for frequency

control. Thus, future work will involve studying the impact of autocorrelation and

correlation coefficients of the stochastic processes on the provision of the ancillary services.

Furthermore, the impact of these coefficients on the existing control strategies needs to be

evaluated as well.

One of the main advantages of measurement data is that it can be used to evaluate

the right modelling PDF type for the power system dynamic analyses. Note, however,

that not only data but the dynamic simulations are also required to identify the worst
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performing PDF type. In this thesis the time consuming MC has been utilised to account

for the impact of a particular PDF type. The future work will focus on developing

techniques, e.g., based on frequency analysis, that allow identifying the worst performing

PDF type without resorting to TDSs.

Another important aspect that can be deduced from data is whether the correlation

among processes is constant or variable with time. This can lead to various scenarios.

Finally, we anticipate that the correlation of stochastic processes depends on the time-scale

considered, e.g., short- or long-term dynamics. This appears to be another relevant topic

to further investigate.
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Appendix A

Data

A.1 Frequency Data

Transmission System Operators (TSOs) generally keep a record of the power generation

along the years but very rarely frequency measurements obtained with Phasor Measurement

Units or other instrumentation are stored for a long time. Typically, only major events

that lead to high frequency deviations are recorded. For this reason, the Advanced

Modelling for Power System Analysis and Simulation (AMPSAS) project, carried out at

University College Dublin has recorded the frequency within the university campus in

Belfield for a period of four years, from 2014 to 2017. The measurements were obtained

with a Frequency Disturbance Recorder (FDR) that has been lent to the last author by

the Power system Group led by Prof. Yilu Liu, University of Tennessee, Knoxville [74].

The FDR is a FNET/GridEye device, developed at Virginia Tech, that measures the

frequency, phase angle and voltage of the power signal found at ordinary electrical outlets.

The main goal of the FNET project is to register and analyze frequency variations following

large disturbances [37, 84]. One of the goals of the AMPSAS project, on the contrary,

is to explore the statistical properties of the frequency over a long period. Preliminary

results of these studies have been presented in [52] and [47].

The data for frequency have been collected at the AMPSAS project Laboratory using

a FDR. The measured frequency data has been stored as time series records. Each

measured value represents grid frequency every 0.1 second. The data are available starting

from July 2014 to November 2017.
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A.2 Wind Generation Data

The data utilized for penetration of wind in the AIITS, in this thesis, were provided to

the authors by EirGrid Group, the Irish TSO, for the period of four years (2014-2017).

The dataset acquired consists of instantaneous power in MW for wind production, system

demand and total generation in 15-minute time series records. These values have been

averaged using minutely measurements over a period of 15 minutes from the Supervisory

Control And Data Acquisition system of the AIITS.

A.3 Wind Speed Measurement Data

The wind speed measurement data for power system dynamic simulations, utilized in

this thesis, has been acquired from various open-source platforms. The data used in

Chapters 4 and 6, are provided in Table A.1. Table A.1 shows wind speed measurement

data obtained for various time-scales and locations. The references for data in Table A.1

can be found in [28].

Table A.1: Sampling rates and PDF types of measurement data

Data Set Sampling Rate PDF Type

1 1 hour 1-parameter Rayleig

2 10 minutes 3-parameter Gamma

3 1 minute 3-parameter Gamma

4 1 second 3-parameter Beta

The wind speed measurement data utilized in Chapters 4 and 6 are obtained from an

open-source platform the Sustainable Energy Authority of Ireland (SEAI) [67]. Note that

the wind data can be easily acquired from the website of SEAI. These data are obtained

for ten wind sites in the AIITS. These wind sites are modeled in the wind distribution

network presented in Chapter 3.

The wind correlation matrix utilised in the thesis is given in Table A.2.
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Appendix B

Correlation between Variance of

Frequency and Wind Penetration

This chapter studies the impact of wind penetration on the system frequency stability

within the All-Island Irish Transmission System (AIITS). With this regard, a statistical

analysis of frequency measurements as well as wind generation data for four years, namely

from 2014 to 2017 is carried out.

Specific contributions are as follows:

• Quantify with proper statistical indices the correlation between the wind penetration

and frequency fluctuations. These are Pearson’s correlation coefficient and the p-

value.

• Understand whether the increasing penetration of wind generation in the Irish

system in the past four years has led to increase the volatility of the frequency.

B.1 Background on Wind Generation in the AIITS

This section presents a detailed discussion on the wind penetration in the AIITS system.

An important aspect related to the wind penetration in the AIITS is the fact that, in

the AIITS system, wind generation is often not fully dispatched (this operation is called

wind dispatch down) PWD:

PWD = Pwind avail − Pwind gen , (B.1)
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where Pwind gen is the actual wind power injected and Pwind avail is the actual available

wind power. If PWD > 0, there is a wind power reserve and thus the stochastic variations

of the wind do not affect the power unbalance of the network and are consequently not

responsible for the frequency variations.

Finally, to properly decide the correlation between wind generation forecast and

frequency deviations, some precautions have to be taken into account. In particular, the

periods during which the load demand varies significantly (known as demand ramping)

must be excluded from the analysis. The variation of the load, in fact, leads to generator

rescheduling that causes fast variations of the frequency. These variations are clearly

independent from wind generation.

The remainder of this section outlines the wind dispatch-down procedure and demand

ramping up and down as defined in the network codes of the AIITS.

B.1.1 Wind Dispatch-Down

Wind dispatch-down refers to the available wind energy that is not allowed in the grid.

This dispatch-down of wind is affected by both local network constraints and system-wide

security issues and is necessary to ensure the safe and secure operation of the grid. Wind

farms receive dispatch-down instructions from EirGrid [21]. This instructed dispatch is

subject to curtailments and constraints [21]. To determine the dispatch-down volume

required by the wind farms, EirGrid solves the power flow problem with all required

constraints in place one hour before the dispatch instructions with the updated forecast

of the available wind energy. Table B.1 shows the volume of monthly wind dispatch-down

as percentage of the total available wind energy per year under study [19]. The technical

procedures and constraints implemented by EirGrid are outlined below.

B.1.1.1 Curtailments

Curtailments refers to the dispatch-down of wind due to the limits imposed by the power

system [19].
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Table B.1: Wind dispatch-down as percentage of total available wind energy per year for the
AIITS system in the period from 2014 to 2017.

Year 2014 2015 2016 2017

Jan – 4.3 3.5 –

Feb – 4.2 3.1 1.7

Mar – 8.8 – 3.3

Apr – 2.0 1.3 3.6

May – 4.3 1.2 3.5

Jun – 4.8 – 4.1

Jul 3.4 3.7 – 3.2

Aug 3.6 5.6 – 2.9

Sep 1.8 2.5 – 5.1

Oct – 3.9 1.8 10.6

Nov – – 1.3 2.6

Dec 4.9 6.3 3.3 –

(a) System Non-Synchronous Penetration Limit. The system non-synchronous

penetration limit (SNSP) is defined as:

SNSP =
Wind Gen + HVDC Imports

System Demand + HVDC Exports
· 100 , (B.2)

and is used by EirGrid for ensuring a secure and sustainable operation of the grid

i.e., the grid frequency does not deviate much due to SNSP penetration [22]. The

SNSP is calculated for each trading period using (B.2) [22]. The HVDC imports

and exports of electricity in (B.2) come from Moyle and East-West HVDC inter-

connector with the Great British grid. There has been an increment of 5% per year

in the SNSP limit starting from 50% in 2014 to 65% by the end of 2017 [20]. SNSP

limit is imposed by system demand. This means the AIITS can accommodate more

wind if demand levels are high as it happens during the day from 10:00 to 20:00

when demand is generally high. Wind curtailment will be higher in the case of low

demand with high wind production.

(b) Rate of Change of Frequency (RoCoF)/Inertia. The system frequency is an indirect

measurement of the balance between supply and demand. If a contingency involving

the outage of a generator or the loss of load occurs, the frequency deviates from
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the reference frequency under balanced operation, e.g., 50 Hz in Europe. The rate

with which the frequency deviates away from the mean is known as the rate of

change of frequency (RoCoF) [19]. An event causing high RoCoF rates can drive the

system towards instability. EirGrid must ensure a minimum number of synchronous

generators to be online in different locations of the power system to provide inertia to

avoid higher RoCoF and hence, maintain system stability. For this reason, EirGrid

may ask the wind farms to dispatch down in order to maintain the power system

balanced and provide inertia to avoid high RoCoF rates. Note, however, that only a

negligible volume of available wind energy was curtailed, during the period under

study in this thesis, due to RoCoF/inertia [19].

(c) Operating Reserve Requirements. TSOs must ensure a certain amount of operating

reserve to be available in the power system to provide for the imbalance occurred due

to the greater variations of system demand. This reserve cannot be provided from

non-synchronous wind penetration. Hence wind production has to be dispatched

down to provide room for operating reserve. In the AIITS, wind curtailments are

generally higher overnight, i.e., from 23:00 to 09:00 [19].

B.1.1.2 Constraints

The dispatch-down of wind due to technical constraints imposed by the network are known

as constraints. Firstly, constraints can be understood as localized power carrying capacity

of the network at the region of wind production. Secondly, outages in the network that

may occur due to maintenance, upgrade works or faults. The dispatch-down of wind in the

AIITS remains almost the same throughout the day irrespective of demand levels [19].

B.1.2 Demand Ramps

Figure B.1 shows the load profile of the AIITS during a typical day, for different months.

Conventionally, the period from 10:00 to 16:00 is called day hours and the period from

16:00 to 10:00 night hours. The system demand generally ramps down between 18:00

and 04:00. Then system demand ramps up from 04:00 to 10:00 and from 16:00 to 18:00

hours. Load ramping leads to greater variations of the grid frequency during night hours.

As discussed above, to be able to identify the impact of wind generation on the system,
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Figure B.1: System Demand for a particular day for all the months in 2016, with maximum
demand at 6249.36 MW.

the effect of load ramping has to be separated as much as possible from the frequency

deviations. In the case study, thus, only day hours are considered.

B.2 Correlation Indices

Two statistical indices to evaluate the correlation between wind generation and frequency

deviations, namely, the Pearson’s correlation coefficient and the p-value are considered.

B.2.1 Pearson’s correlation coefficient

The Pearson’s correlation coefficient is a measurement of the linear correlation between

two variables [33], as follows:

r =

∑N
i (Xi −X)(Yi − Y )

(N − 1)σXσY
, (B.3)

141



where N is the number of observations; Xi and Yi are the values of the two time series,

with length N , whose correlation is to be calculated; X and Y are the mean values of

the time series Xi and Yi, respectively; and σX and σY are the standard deviations of the

time series Xi and Yi, respectively.

The Pearson’s correlation coefficient can take any value between −1 and 1. r = 1 and

r = −1 indicate perfect linear relation between the variables, whereas r = 0 indicates a

non-linear relation. In particular, r > 0 indicates that if X increases also Y increases.

Only positive correlation coefficients are observed in the case study discussed in this thesis.

B.2.2 p-value

The Pearson’s correlation coefficient reflects the degree of correlation between two variables

but does not provide any information weather such a correlation is significant or not. The

index used to express the statistical significance of a correlation is known as p-value [23].

Given the t-distribution:

t =
r
√
N − 2√
1− r2

, (B.4)

the p-value is defined as:

p-value = 2Pr(T > t) , (B.5)

where T follows a t distribution with N − 2 degrees of freedom. Hence the p-value is twice

the probability (for double tail events) to obtain the current value of r if the correlation

were actually zero (null hypothesis). The null hypothesis for this study is defined as the

lack of correlation between wind generation and the hourly standard deviation of the

frequency.

Being a probability, the p-value range is [0, 1]. A small p-value implies the rejection of

the null hypothesis and imposes that the correlation r is significant. The conventional

threshold p = 0.05 is chosen in the case study to validate statistical significance of a

correlation between the variables [23]. So, if p < 0.05, the frequency fluctuations are

assumed to be statistically correlated with the penetration of wind generation in the

system.
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B.3 Case Study

Two sets of data are considered in this case study. The Pearson’s correlation coefficients

and p-values are calculated taking X = Pwind%, i.e., the instantaneous value (15-minute

values averaged over 1 hour) of wind energy produced in an hour as percentage share of

system demand:

Pwind% =
Hourly Averaged Wind Production

Hourly Averaged System Demand
· 100 , (B.6)

and Y = σf , i.e., the standard deviation of the system frequency over the same period for

which Pwind% is calculated.

Table B.2 shows the correlation of Pwind% with σf per month in the period from 2014 to

2017. Note that frequency data were not available for some months. The wind penetration

and frequency fluctuation show a relatively large correlation (r > 0.4) in most of the

months.

Table B.3 shows the p-values for the same months considered in Table B.2. All

the values are well below 0.01 except for three months (January 2015, April 2016 and

June 2017), which, consistently, are the same months that show the lowest values of the

Pearson’s correlation coefficients. Interestingly, these three months are all in different

Table B.2: Pearson’s coefficients for Pwind% and σf for the AIITS system in the period from
2014 to 2017.

Year 2014 2015 2016 2017

Jan – 0.2400 0.4939 –

Feb – 0.5919 0.4233 0.4595

Mar – 0.3923 – 0.3599

Apr – 0.4756 0.2075 0.4971

May – 0.5009 0.4127 0.5374

Jun – 0.4198 – 0.1424

Jul 0.3692 0.5791 – 0.3987

Aug 0.5033 0.5514 – 0.4029

Sep 0.4513 0.3615 – 0.3063

Oct – 0.5759 0.5793 0.3580

Nov – – 0.5997 0.4053

Dec 0.4619 0.3660 0.3374 –
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Table B.3: p-values for Pwind% and σf for the AIITS system in the period from 2014 to 2017.

Year 2014 2015 2016 2017

Jan – 1.51 · 10−2 < 10−6 –

Feb – < 10−6 6.80 · 10−6 < 10−6

Mar – 1.21 · 10−7 – 5.84 · 10−5

Apr – < 10−6 1.92 · 10−2 < 10−6

May – < 10−6 5.84 · 10−5 < 10−6

Jun – < 10−6 – 9.55 · 10−2

Jul 9.82 · 10−5 < 10−6 – 3.44 · 10−6

Aug < 10−6 < 10−6 – < 10−6

Sep 4.15 · 10−7 1.33 · 10−5 – 1.31 · 10−4

Oct – < 10−6 < 10−6 3.36 · 10−6

Nov – – < 10−6 7.71 · 10−6

Dec < 10−6 6.97 · 10−6 4.65 · 10−5 –

years. The least correlated month is June 2017, while the maximum correlated month

is November 2016. Figures B.2 and B.3 present the scatter plot where x-axis represents

Pwind% and y-axis is σf for the months of June 2017 and November 2016, respectively. In

June 2017, the wind penetration has been greater than 50% for a significant number of

hours, whereas, in November 2016, the wind penetration remained below 50% all time.

Still wind penetration and frequency fluctuations are more correlated in November 2016

than in June 2017. Moreover, in June 2017, there are several hours with a high standard

deviation of the frequency but these hours are mostly characterized by low value of Pwind%.

In November 2016, the hours with higher σf are mostly characterized by high Pwind%.

These apparently mixed results can be explained by comparing the values of wind

dispatch down, i.e., PWD in different periods. Figure B.4 shows the histogram of PWD for

four relevant months, where x-axis represents PWD and y-axis shows the number of hours

for which the wind dispatch-down happened. Comparing the histograms and looking

at the values in Table B.2, it is evident that the month with greater number of hours

during which PWD is high shows a relatively low correlation between wind generation and

frequency variations. This supports the argument made in Section B.1 that the higher

the amount of wind rejected, the lower the correlation in a given month.

April 2016 is an exception to this rule. This month shows a low correlation between wind

and frequency variations despite having a lower PWD and fewer hours of wind curtailment,
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Figure B.2: Scatter plot of σf vs Pwind% for the month of June 2017.
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Figure B.3: Scatter plot of σf vs Pwind% for the month of November 2016.

compared to January 2015. However, note that, in 2016, the AIITS faced a significant

number of the transmission outages, mainly due to maintenance and refurbishment of the

transmission system [19]. These outages led to significant changes in the transmission

network topology, which could be the cause for such a low correlation in the month of

April 2016.
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[31] G. M. Jónsdóttir and F. Milano, “Modeling correlation of active and reactive power

of loads for short-term analysis of power systems,” in 20th International Conference

on Environmental and Electrical Engineering (EEEIC), Madrid, Spain, 2020, pp. 1 –

5. 2, 4

[32] P. Ju, H. Li, C. Gan, Y. Liu, Y. Yu, and Y. Liu, “Analytical assessment for transient

stability under stochastic continuous disturbances,” IEEE Transactions on Power

Systems, vol. 33, no. 2, pp. 2004–2014, March 2018. 3, 5, 11

[33] M. Kendall and A. Stuart, The Advanced Theory of Statistics. Vol.2: Inference and

Relationship, 4th ed. London, UK: Griffin, 1979. 141

[34] E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations.

New York, NY, third edition: Springer, 1999. 16

[35] E. Kloeden, E. Platen, and H. Schurz, Numerical Solution of SDE Through Computer

Experiments. New York, NY, third edition: Springer, 2003. 18

[36] P. Kundur, Power System Stability and Control. Mc Graw-Hill, 1994. 53

[37] Y. Lei and Y. Liu, “The impact of synchronized human activities on power system

frequency,” in IEEE PES General Meeting, Jul. 2014. 134

[38] L. Li, X. Wang, Q. Chen, and Y. Teng, “Dynamic equivalence method of wind farm

considering the wind power forecast uncertainty,” in 2019 IEEE Innovative Smart

Grid Technologies - Asia (ISGT-Asia), 2019, pp. 1677–1682. 43

[39] X. Li, X. Zhang, L. Wu, P. Lu, and S. Zhang, “Transmission line overload risk

assessment for power systems with wind and load-power generation correlation,”

IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1233–1242, 2015. 4

150



[40] H. Liu and Z. Chen, “Aggregated modelling for wind farms for power system transient

stability studies,” in 2012 Asia-Pacific Power and Energy Engineering Conference,

2012, pp. 1–6. 43

[41] J. Liu, J. Liu, J. Zhang, W. Fang, and L. Qu, “Power system stochastic transient

stability assessment based on Monte Carlo simulation,” The Journal of Engineering,

vol. 2019, no. 16, pp. 1051–1055, 2019. 18, 68

[42] X. Liu, Z. Zhang, W. Wang, H. Zheng, J. Hao, and Y. Chen, “Two-stage robust

optimal dispatch method considering wind power and load correlation,” in 2018 2nd

IEEE Conference on Energy Internet and Energy System Integration (EI2), 2018, pp.

1–6. 4

[43] A. Loukatou, S. Howell, P. Johnson, and P. Duck, “Stochastic wind speed modelling

for estimation of expected wind power output,” Applied Energy, vol. 228, pp. 1328 –

1340, 2018. 3

[44] A. Loukatou, S. Howell, P. Johnson, and P. Duck, “Stochastic wind speed modelling

for estimation of expected wind power output,” Applied Energy, vol. 228, pp. 1328 –

1340, 2018. 18, 26

[45] A. Malvaldi, S. Weiss, D. Infield, J. Browell, P. Leahy, and A. M. Foley, “A spatial and

temporal correlation analysis of aggregate wind power in an ideally interconnected

europe,” Wind Energy, vol. 20, no. 8, pp. 1315–1329, 2017. 103
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