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Notation

The notation used throughout this thesis is stated below for quick reference.

Note that if a superscript “s” is added, the resulting symbol indicates stressed

operating condition.

Functions

Ik(·) Current magnitude through branch k as a function of the prob-

lem variables.

Inm(·) Current magnitude from bus n to bus m as a function of the

problem variables.

Pk(·) Active power flow through branch k as a function of the problem

variables.

Pnm(·) Active power flow from bus n to bus m as a function of the

problem variables.

Qk(·) Reactive power flow through branch k as a function of the prob-

lem variables.

Qnm(·) Reactive power flow from bus n to bus m as a function of the

problem variables.

xxi



xxii NOTATION

Sej(·) Ceiling function of the Automatic Voltage Regulator (AVR) con-

nected to generator j.

z Total cost function.

zD Cost function of load active power adjustments.

zG Cost function of generator active power adjustments.

zLTC Cost function of set point adjustments for on-Load Tap-Changing

(LTC) transformers.

zPHS Cost function of set point adjustments for PHase-Shifting (PHS)

transformers.

zSVC Cost function of set point adjustments for Static Var Compen-

sator (SVC) devices.

zTCSC Cost function of set point adjustments for Thyristor-Controlled

Series Compensator (TCSC) devices.

zV Cost function of voltage magnitude adjustments.

Variables

bSVC,n Susceptance of the SVC device at bus n.

E ′
j Electromotive force magnitude of generator j.

E ′
dj d-axis transient voltage of generator j.

E ′
qj q-axis transient voltage of generator j.

Idj d-axis current of generator j.



NOTATION xxiii

Iqj q-axis current of generator j.

PDi Active power consumption of demand i.

PDn Total active power consumption in bus n.

Pej Electrical power of generator j.

PGj Active power production of generator j.

PGn Total active power production in bus n.

QDn Total reactive power consumption in bus n.

QGj Reactive power production of generator j.

QGn Total reactive power production in bus n.

QSVCn Reactive power injected by the SVC device at bus n.

Tk Tap ratio of LTC transformer k.

Vn Voltage magnitude at bus n.

Vdj d-axis voltage of generator j.

Vqj q-axis voltage of generator j.

xTCSC,k Reactance of the TCSC device of branch k.

ΔP down
k Active power flow decrease through branch k for security pur-

poses.

ΔP up
k Active power flow increase through branch k for security pur-

poses.

ΔP down
Di Active power decrease in demand i for security purposes.
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ΔP up
Di Active power increase in demand i for security purposes.

ΔP down
Dn Total active power demand decrease at bus n for security pur-

poses.

ΔP up
Dn Total active power demand increase at bus n for security pur-

poses.

ΔP down
Gj Active power decrease in generator j for security purposes.

ΔP up
Gj Active power increase in generator j for security purposes.

ΔP down
Gn Total active power generation decrease at bus n for security pur-

poses.

ΔP up
Gn Total active power generation increase at bus n for security pur-

poses.

ΔV down
n Voltage magnitude decrease at bus n for security purposes.

ΔV up
n Voltage magnitude increase at bus n for security purposes.

δ Rotor angle of the One-Machine Infinite-Bus (OMIB) equivalent.

δj Rotor angle of generator j.

θn Voltage angle at bus n.

λ Loading parameter.

λ∗ Loading margin resulting from the OPF problem described in

Appendix B.

φk Phase of the PHS transformer k.

ω Rotor speed of the OMIB equivalent.
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ωj Rotor speed of generator j.

Constants

bmax
SVC,n Maximum susceptance of the SVC at bus n.

bmin
SVC,n Minimum susceptance of the SVC at bus n.

cdown
Di Cost of decreasing load i.

cdown
Gj Offering cost of generator j to decrease its dispatched power for

security purposes.

cup
Gj Offering cost of generator j to increase its dispatched power for

security purposes.

cdown
LTC,n Penalty for decreasing voltage magnitude at bus n controlled by

a LTC transformer.

cup
LTC,n Penalty for increasing voltage magnitude at bus n controlled by

a LTC transformer.

cdown
PHS,k Penalty for decreasing power flow through branch k controlled

by a PHS transformer.

cup
PHS,k Penalty for increasing power flow through branch k controlled

by a PHS transformer.

cdown
SVC,n Penalty for decreasing voltage magnitude at bus n controlled by

a SVC device.

cup
SVC,n Penalty for increasing voltage magnitude at bus n controlled by

a SVC device.
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cdown
TCSC,k Penalty for decreasing power flow through branch k controlled

by a TCSC device.

cup
TCSC,k Penalty for increasing power flow through branch k controlled

by a TCSC device.

cdown
Vn Penalty for decreasing voltage magnitude at bus n.

cup
Vn Penalty for increasing voltage magnitude at bus n.

Imax
k Maximum current magnitude through branch k.

PA
Di Base-case active power consumption of demand i.

PM
Di Active power consumption of demand i as determined by the

market dispatching procedure.

PA
Gj Base-case active power production of generator j.

PM
Gj Active power production of generator j as determined by the

market dispatching procedure.

Pmax
Gj Capacity (maximum power output) of generator j.

Pmin
Gj Minimum power output of generator j.

Pmj Mechanical power of generator j.

QA
Di Base-case reactive power consumption of demand i.

QA
Gj Base-case reactive power production of generator j.

Qmax
Gj Maximum reactive power limit of generator j.

Qmin
Gj Minimum reactive power limit of generator j.
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Rup
Gj Active power ramp-up limit of generator j.

Rdown
Gj Active power ramp-down limit of generator j.

Rup
Tk

Ramp-up limit of LTC transformer k.

Rdown
Tk

Ramp-down limit of LTC transformer k.

Rup
φk

Ramp-up limit of PHS transformer k.

Rdown
φk

Ramp-down limit of PHS transformer k.

Tmax
k Maximum tap ratio of LTC transformer k.

Tmin
k Minimum tap ratio of LTC transformer k.

V A
n Base-case voltage magnitude at bus n.

V max
n Maximum voltage magnitude at bus n.

V min
n Minimum voltage magnitude at bus n.

xmax
TCSC,k Maximum reactance of the TCSC device of branch k.

xmin
TCSC,k Minimum reactance of the TCSC device of branch k.

δmax Rotor angle limit of the OMIB equivalent.

θA
n Base-case voltage angle at bus n.

φmax
k Maximum phase-shifter tap of PHS transformer k.

φmin
k Minimum phase-shifter tap of PHS transformer k.

ψDi Power factor angle of demand i.
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Parameters

Aej First ceiling coefficient of the AVR connected to generator j.

Bej Second ceiling coefficient of the AVR connected to generator j.

Bj� Element j� of the reduced susceptance matrix.

bk Series susceptance of element k.

bpk Shunt susceptance of element k.

Gj� Element j� of the reduced conductance matrix.

gk Conductance of element k.

Kaj Amplifier gain of the AVR connected to generator j.

Kej Field circuit gain of the AVR connected to generator j.

Kfj Stabilizer gain of the AVR connected to generator j.

MC Total inertia coefficient of the critical machine group.

Mj Inertia coefficient of generator j.

MNC Total inertia coefficient of the non-critical machine group.

rk Resistance of element k.

Taj Amplifier time constant of the AVR connected to generator j.

Tej Field circuit time constant of the AVR connected to generator

j.

Tfj Stabilizer time constant of the AVR connected to generator j.
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T ′
d0j d-axis open circuit transient time constant of generator j.

T ′
q0j q-axis open circuit transient time constant of generator j.

Vrefj Reference voltage of the AVR connected to generator j.

tstep Integration time step.

V max
rj Maximum regulator voltage of the AVR connected to generator

j.

V min
rj Minimum regulator voltage of the AVR connected to generator

j.

xk Reactance of element k.

xdj d-axis synchronous reactance of generator j.

x′dj d-axis transient reactance of generator j.

xqj q-axis synchronous reactance of generator j.

x′qj q-axis transient reactance of generator j.

Y k Series admittance of element k.

Ybus Reduced admittance matrix.

Y Di Equivalent admittance for load i.

Y Dn Equivalent load admittance in bus n.

Zk Series impedance of element k.

Δt Time interval considered.

δr Return angle of the OMIB equivalent.
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δu Unstable angle of the OMIB equivalent.

λSM Security margin.

μ Probability of the considered operating condition. For the stressed

cases, μs is the probability of occurrence of the contingency con-

sidered in the stressed operating condition s.

σj Sensitivity of the critical eigenvalue real part with respect to

active power generation j.

ωb Base synchronous frequency.

Sets

D Set of demands.

Dn Set of demands located at bus n.

G Set of on-line generators.

GC Set of critical machines.

Gn Set of on-line generators located at bus n.

GNC Set of non-critical machines.

N Set of buses.

NG Set of generator buses.

NSVC Set of buses with SVC devices.

S Set of all stressed operating conditions.
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Su Subset of stressed operating conditions relevant for small-signal

stability analysis (Su ⊂ S).

T Set of time steps.

Θn Set of buses connected to bus n through a branch.

Ω Set of network branches.

ΩFT Set of fixed-tap transformers (ΩFT ⊂ Ω).

ΩL Set of transmission lines (ΩL ⊂ Ω).

ΩLTC Set of LTC transformers (ΩLTC ⊂ Ω).

ΩPHS Set of PHS transformers (ΩPHS ⊂ Ω).

ΩTCSC Set of lines with TCSC devices (ΩTCSC ⊂ Ω).

Numbers

np Dimension of control variables.

nx Dimension of state variables.

ny Dimension of algebraic variables.

Indices

i Index of demands.

j, � Indices of generators.

k Index of network branches.

n, m Indices of buses.





Chapter 1

Introduction

This thesis is devoted to the development of procedures that ensure power

system security in the context of real-time operation. The proposed procedures

are intended to assist system operators in guaranteeing an appropriate security

level both optimally and economically.

Power system security refers to the ability of a power system to reach

acceptable steady-state operating conditions after being subjected to sudden

disturbances, such as short circuits or unexpected system component failures,

without uncontrolled cascading outages that potentially lead to blackouts.

Blackouts have a pronounced negative impact on the economy and on soci-

ety. However, within a market environment and for economic reasons, power

systems are exposed to increasing stress because they are usually operated

close their stability limits. Under these circumstances, the blackout risk may

increase.

To reduce the risk of blackouts, the power system should be operated such

that no equipment is overloaded, all bus voltage magnitudes are within appro-

priate limits, and acceptable steady-state operating conditions can be reached

after the transient phenomena induced by a plausible contingency [9]. Al-

though security is taken into account in the planning and operations planning

stages of a power system, security assessment and control procedures are key

tasks during real-time operation. In this context, the system operator must

respond within a very limited time frame, usually from a few minutes to some

1
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hours, to ensure security.

1.1 Motivation

Most existing electricity markets provide dispatch solutions that are based on

economic grounds and, generally, do not explicitly consider security issues.

As a result, during real-time operation, the system operator must ensure sys-

tem security and implement control actions as necessary. Control actions may

involve adjustments to the market solution through alterations made to the

generator power outputs (generating unit redispatching), adjustments to the

voltage set points and power flow control devices, and adjustments to load con-

sumption (load shedding). Real-time operation of the power system includes

three primary tasks: security assessment, contingency filtering, and security

control.

Security assessment involves a number of studies in which the state of the

network for each one of a pre-specified set of contingencies is determined. The

method used to select the contingencies that should be included in this set

continues to be a topic for discussion [102]. Although diverse criteria can

be used, one commonly accepted criterion is to consider the single outage of

any system element, whether or not it is preceded by a single-, double-, or

three-phase fault. This is known as the N − 1 security criterion.

Contingency filtering identifies contingencies from within a pre-specified

set that can lead to system instability. The filtering criteria are such that all

the critical contingencies are selected. The contingencies of interest are those

that threaten the integrity of the system. Accordingly, the stability of the

post-contingency state of the power system is an important characteristic.

Security control consists in deciding whether preventive or corrective con-

trol actions (or a combination of both) are suitable countermeasures against

potential stability problems, and in designing the corresponding set of control

actions that improve the overall system security level. Security control tools

should help the system operator make appropriate decisions. In this context,

the Optimal Power Flow (OPF) is an appropriate and well-established tool to

identify the control actions that are needed to ensure the desired security level.
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In addition, market participants expect that the security control modifies

as little as possible the market dispatch solution. In order to ensure that

the security adjustments minimally impact the original market solution, it is

necessary to model the behavior of the system and the security constraints in

detail. As a consequence, the system operator typically has to deal with a

nonlinear model and advanced stability analysis concepts, such as bifurcation

theory.

Furthermore, to study the transient stability under a major disturbance

generally requires cumbersome time-domain simulations. Incorporating tran-

sient stability constraints within an OPF model poses the challenge of marrying

time-domain simulation and optimization. Consequently, the security-targeted

redispatching step is a complex and not fully solved task.

The use of a security constrained OPF is increasingly necessary in today’s

stressed electric energy systems, which operate under market rules. Thus,

there exists a significant need to develop OPF models that incorporate diverse

security constraints to guarantee an appropriate security level.

1.2 Thesis Objectives

The general objective of this thesis is to develop a security-redispatching OPF-

based control tool to assist the system operator in avoiding problems related

to voltage, small-signal, and transient instabilities.

Specific objectives are stated below:

1. Objectives pertaining to voltage stability:

1.1. To formulate an OPF problem that yields an estimate of the voltage

stability margin for the power system.

1.2. To establish a criterion for contingency filtering with regard to volt-

age stability.

1.3. To design a security-redispatching OPF-based control tool that ex-

plicitly considers voltage stability constraints through several sys-

tem operating states. Specifically, these system states include a pre-
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contingency operating condition and a set of stressed post-contingency

operating conditions.

1.4. To formulate these operating conditions using an ac model of the

network, as well as detailed static models of its different compo-

nents, including regulating transformers and Flexible AC Trans-

mission System (FACTS) devices.

1.5. To formulate coupling constraints between pre- and post-contingency

states that represent the physical limitations of different system con-

trol components in terms of set point adjustments.

2. Objectives pertaining to small-signal stability:

2.1. To extend the security-redispatching OPF-based control tool de-

veloped in item 1 above to take into account small-signal stability

problems.

2.2. To incorporate small-signal stability criteria into the contingency

filtering procedure.

2.3. To formulate small-signal stability constraints based on sensitivities.

3. Objectives pertaining to transient stability:

3.1. To design a security-redispatching OPF-based control tool that ex-

plicitly considers transient stability constraints using a discretized

dynamic model of the power system.

3.2. To establish an objective criterion to determine the transient sta-

bility limit.

3.3. To incorporate this transient stability limit into the security-redis-

patching OPF-based control tool.

1.3 Literature Review

This section reviews the technical literature related to the topics dealt with in

this dissertation.
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1.3.1 Voltage Stability Analysis

Several voltage stability analysis methods are described in references [13, 40,

118]. These methods can be classified under two main categories: static and

dynamic methods.

In the static analysis, the power system is usually modeled by means of

the power flow equations. Static methods determine the system conditions at

which the equilibrium points of the power flow equations disappear. Voltage in-

stability phenomena (e.g., voltage collapse) are associated with the appearance

of certain bifurcations, specifically saddle-node and limit-induced bifurcations,

in the power flow equations of the system [118]. The goal of this analysis is to

determine the proximity of a given power system operating condition to the

bifurcation point, i.e., to the voltage collapse point.

The most basic and widely accepted index to assess the proximity to voltage

collapse is the loading margin. This index is defined as the amount of addi-

tional load, following a specific load increase pattern, that may cause voltage

collapse [118]. The loading margin can be calculated in principle by starting

at a given operating condition, increasing the load with small increments, and

recomputing load flows at each increment until the voltage collapse point is

reached. The loading margin is then the total additional load. Following this

idea, the Continuation Power Flow (CPF) method is proposed in [2, 18, 19].

This method determines the loading margin by computing the solution path.

Alternatively, OPF-based methods, [8, 38, 99], compute the loading margin di-

rectly, without determining the solution path between the current and the

critical operating condition.

Other indices and methods have been proposed to estimate the proximity to

the voltage collapse point. These indices include the minimum singular value

criterion [80], the minimum eigenvalue criterion [62], the second order perfor-

mance index [12], the voltage instability proximity index [120], test functions

[30], the reduced determinant criterion [20], and the tangent vector index [45],

as well as indices based on sensitivities [11, 56], and energy functions [46, 103].

Most of these methods are described and analyzed in [118].

Dynamic methods are intended to analyze how different devices and con-
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trols affect voltage stability. With this information, emergency controls can

be designed in order to stop a developing voltage collapse, for instance. In dy-

namic analysis, the power system is modeled by a set of differential-algebraic

equations, and time-domain simulations are performed [39, 121]. These meth-

ods generally require substantial computational resources. To speed up the

calculations, quasi-steady-state (QSS) methods, which combine static and dy-

namic approaches have been proposed in [41–43, 76]. QSS methods are also

used to accurately compute the system loading margin, [41, 42]. Finally, a volt-

age stability analysis framework that combines bifurcation theory and time-

domain simulation has also been reported in [125].

In this thesis, voltage stability analysis is addressed from a static viewpoint.

The voltage stability assessment of a given operating condition is carried out

using the loading margin, which is a voltage stability measurement with a

physical meaning. In this thesis, loading margins are computed with an OPF-

based method. The CPF method is not used since it can be shown to be a

particular case of OPF approaches [8].

1.3.2 Small-Signal Stability Analysis

Small-signal stability analysis establishes that the stability of a system equi-

librium point under small disturbances can be studied by linearizing the non-

linear system equations around the system equilibrium point. Then, the system

stability can be determined by inspecting the eigenvalues of the system state

matrix [82]. Because each eigenvalue corresponds to an oscillation mode of

the system, small-signal stability analysis is also referred to as modal analysis

[73, 114]. Small-signal instability is characterized by one or more eigenvalues

whose real part becomes positive. As a pair of complex eigenvalues crosses

the imaginary axis, it is known as Hopf bifurcation [118], and has been widely

studied in recent years [21, 77, 128, 132].

Together with eigenvalues, small-signal stability analysis outputs the as-

sociated right and left eigenvectors. For a particular eigenvalue, the associ-

ated right eigenvector represents a measure of the effect of the state variables

on the corresponding oscillation mode whereas the associated left eigenvector
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measures the control effect on this mode. The participation factors can be ob-

tained by appropriately combining the right and left eigenvectors, [108, 127].

A participation factor is a dimensionless magnitude that provides information

about the influence of a particular state variable in a given oscillation mode.

This information is used to design and place damping control devices, as for

example, in [37, 58, 72, 74, 143].

The computation of all eigenvalues and eigenvectors entails a high com-

putational burden for large-scale electric energy systems. Several “reduction”

techniques have been reported in the literature to compute only the subset of

eigenvalues associated with the oscillation modes of interest. These techniques

include the selective modal analysis [111], the modified Arnoldi’s iteration [113]

and the dominant pole spectrum eigensolver [84]. Each of these techniques has

special features that make it suitable for particular applications. In [75], the

use of several complementary techniques has been proposed.

Since the efficient computation of eigenvalues is outside the scope of this

thesis, reduction techniques are not applied, and all system eigenvalues are

computed during small-signal stability assessment.

1.3.3 Transient Stability Analysis

In transient stability analysis, the focus is on the transient phenomena that

follow a sudden and large disturbance in a power system. Due to the highly

non-linear dynamic nature of the transient phenomena, the static analysis,

such as bifurcation analysis, fails and linearization around a system equilibrium

point is of no use. Typically, transient stability analysis is carried out using

one of the following techniques:

• Time-domain simulation

• Direct method

• Hybrid method

These methods are briefly described in the following subsections. Alternatively,

other approaches for transient stability analysis based on automatic learning

methods have been proposed. Most of these methods are described in [131].
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1.3.3.1 Time-domain simulation

The time-domain method consists in the numerical integration of the differential-

algebraic equations that model the power system. Such calculations have al-

ways been considered to analyze the behavior of a power system when sub-

jected to a large disturbance. Typically, implicit numerical integration meth-

ods are used to solve the transient stability model (e.g., the trapezoidal rule)

[6, 73, 114]. In transient stability studies, time-domain simulations are carried

out for a maximum simulation period that depends on the complexity of the

system model, which is typically set to 3 s for the most simplified model and

up to 15 s for highly detailed models [106].

The time-domain simulations provide the evolution of the system variables

over time. A common practice to detect a loss of synchronism is to check

whether or not the inter-machine rotor angle deviations lie within a specific

range of values during the simulation. Unfortunately, this range is system,

if not operating-point, dependent and is typically established using heuristic

criteria. For instance, Table 1.1 lists some of such values that have been

proposed in the literature.

Table 1.1: Rotor angle deviation limits for transient stability analysis used in
the literature

Reference Rotor angle deviation limit

[degrees]

[61], [138], [78], [27] 100

[135] 120

[28] 144

[98] 180

[53] 270
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1.3.3.2 Direct methods

Direct methods assess transient stability by partially or completely avoiding

solving the set of differential-algebraic equations that describe the dynamics

of the system. Two common direct methods are described below.

Methods based on the Lyapunov functions. These methods rely on applying

the Lyapunov second criterion [82], i.e., on the construction of Lyapunov func-

tions. A Lyapunov function is a scalar function of the system state vector with

a specific mathematical characterization [67]. In short, this function must be

positive definite, and its time derivative must be negative semi-definite along

the solutions of the system equations. The procedure involves computing the

value of the Lyapunov function for the system state corresponding to the in-

stant when the disturbance is cleared. Stability is determined by comparing

this value of the Lyapunov function with a given limit value.

The direct methods based on Lyapunov functions have two main limita-

tions: (i) it is difficult to construct a suitable Lyapunov function for a multi-

machine power system unless highly simplified models are used, and (ii) it is

difficult to define a practical stability domain due to the fact that the Lyapunov

criterion is only sufficient for multi-machine power systems.

The Lyapunov functions used in transient stability studies are functions of

the energy type. The best-known is the transient energy function [7, 104]. With

respect to the definition of the stability domain, several methods have been

proposed; e.g., the closest unstable equilibrium point method [79], the method

based on the boundary of the stability region to find the controlling unstable

equilibrium point (BCU method) [31], and the Potential Energy Boundary

Surface (PEBS) method [104].

If the transient energy function is applied to a one-machine infinite bus sys-

tem modeled in the classical simplified way, the transient stability assessment

is equivalent to that provided by the equal area criterion [107]. Therefore, the

equal area criterion may be viewed as an application of the Lyapunov functions

to simple systems.

Equal area criterion. The Equal Area Criterion (EAC) is a well-known

technique used to study the transient stability of systems that comprise either
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one machine and an infinite bus or two machines. A detailed description of the

EAC can be found in almost any book on power system analysis, e.g., in [114]

or [73]. The EAC relies on energy transfers and analyzes transient stability

without solving the power system differential-algebraic equations. This tech-

nique establishes that the stability of a one-machine plus infinite bus system,

or a two-machine system, is guaranteed as long as the kinetic energy stored

in the system during the fault period (accelerating area) does not exceed the

energy that the system can dissipate (decelerating area). The application of

the EAC to multi-machine power systems is based on the empirical observa-

tion that, if synchronism is lost, the system machines divide into two groups.

Then, each group can be replaced by an equivalent machine, which forms an

equivalent two-machine system to which the EAC can be applied. However,

the task of identifying in advance the correct groups into which the system

splits makes the direct application of EAC to a multi-machine system difficult.

1.3.3.3 Hybrid methods

Hybrid methods overcome the two limitations of the Lyapunov functions based

on the following two observations [106]:

1. The problem of stability estimation may be tackled by considering a

two-machine or a one-machine equivalent of the multi-machine system.

2. The modeling problem may be solved by including the Lyapunov function

computation within time-domain simulations.

The first observation stems from the fact that the stability condition of the

Lyapunov criterion becomes both sufficient and necessary for the particular

case of a two-machine or a one-machine equivalent system that is described

with a simplified model. The second observation is based on the idea of con-

structing a Lyapunov function for the simplified power system model and eval-

uating this function step-by-step with the value of the system states provided

by a time-domain simulation of the detailed power system model. The result-

ing Lyapunov function is path-dependent and is called the pseudo-Lyapunov

function.
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Two different hybrid approaches exist. The first considers a Lyapunov func-

tion that is constructed for the multi-machine system and computed along the

multi-machine trajectory [83]. However, establishing an appropriate stability

limit remains a difficult task. The second approach, the named SIngle Ma-

chine Equivalent (SIME) method [106], considers the one-machine equivalent

of the multi-machine system and analyzes its stability using the EAC, which

considerably simplifies the stability limit determination process.

The SIME method provides stability limits based on objective stability

criteria and is used in this thesis for transient stability analysis.

1.3.4 Optimal Power Flow

The Optimal Power Flow (OPF) problem was introduced in the sixties [26, 49],

and it is currently considered one of the most useful tools for power system

operations and planning. In general, the OPF is a nonlinear programming

(NLP) problem that determines the optimal control set points of the system

to minimize a desired objective function, subject to certain system constraints

[71].

The most common objective functions include the minimum operation cost,

minimum active power losses, the minimum deviation from a specific operating

condition. The objective function usually depends on variables with a direct

economical impact (e.g., power generation or load shedding) and variables

without a direct cost impact (e.g., bus voltage magnitudes).

The constraints that an OPF problem incorporates can be divided into

equality and inequality constraints. The equality constraint set typically con-

sists of both active and reactive power balance equations at each bus of the

network. In general, inequality constraints represent the technical limits of the

system, e.g., generator power capacity and voltage magnitude limits.

This basic OPF formulation was first extended to include security criteria

in [3]. The resulting optimization problem, known as Security-Constrained

Optimal Power Flow (SC-OPF), includes additional constraints related to the

system operating conditions in case of contingencies. The goal of the SC-OPF

problem is to guarantee that the system operates properly under both the
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pre-contingency and post-contingency conditions [65].

The SC-OPF problem is generally used as a preventive control tool in

the sense that it does not address the possibility of adjusting controls in the

post-contingency operating conditions [24]. However, together with preventive

control actions, the SC-OPF can provide corrective control actions if these

adjustments are taken into account. To this end, a set of coupling constraints

is added to the SC-OPF problem. These constraints recognize that the ad-

justment range of certain controls is determined by their set points in the

pre-contingency operating condition [93].

In this thesis, a SC-OPF formulation that includes coupling constraints

is proposed to address voltage and small-signal stability issues. The objec-

tive is to minimize the redispatching control actions needed to achieve a pre-

specified security level. Although the proposed SC-OPF problem is employed

throughout the thesis as a preventive control tool, it can also be used to derive

corrective control actions if required.

Many different mathematical techniques have been applied to solve the

OPF problem. Their description can be found, for instance, in [10, 35, 81, 134].

The main drawback of mathematical programming solvers for NLP problems

is that obtaining the global optimum cannot be guaranteed if the considered

OPF formulation is not convex. However, current commercial solvers (e.g.,

CONOPT [50] and MINOS [95]) can be started from different initial points

such that local minima are avoided. In this thesis CONOPT is employed to

solve diverse OPF formulations. Alternatively, heuristic procedures, such as

those proposed in [15, 17, 139, 142], can be used at the cost of not being able

to precisely characterize the quality of the solution attained.

1.3.5 Optimal Power Flow with Voltage Stability Con-

straints

Many of the procedures proposed in the literature to address voltage prob-

lems enforce transmission capacity limits that are computed off-line to ensure

voltage stability conditions, e.g., [14, 64, 136, 140]. The use of these “artifi-

cial” stability limits may result in economic inefficiencies due to sub-optimal
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solutions. Stability conditions based on the power flow equations have been in-

cluded along with thermal line capacity constraints in [18, 36, 87–89, 110, 124].

Security constraints in the form of post-contingency operating conditions are

added to not only guarantee a stable operating condition but also a given dis-

tance to the maximum loading condition associated with bus voltage limits,

equipment thermal limits and/or the system voltage stability limits. With this

aim, in [22, 55, 130], voltage stability constraints based on the loading margin

sensitivities with respect to control variables have been proposed. Methods for

computing such sensitivities can be found in [23, 66, 90].

However, in all the approaches above, control actions are applied to a sin-

gle system condition, i.e., either to the pre-contingency condition (preventive

control) or to the post-contingency condition (corrective control). An OPF

formulation that combines both the preventive and the corrective control was

first proposed in [93]. The goal is to provide a centralized solution for the

optimal pre- and post-contingency dispatches. The optimization problem in-

cludes static constraints on both the pre-contingency and post-contingency

system conditions. The post-contingency system conditions are linked to the

pre-contingency condition by coupling equations in the form of ramping con-

straints. Recently, some OPF problems with this structure have been proposed

in [25, 34, 141].

In this thesis, an OPF problem for voltage stability control is proposed.

The proposed OPF formulation has the structure described above, i.e., the

OPF problem includes static constraints on pre and post-contingency system

conditions. The novel contribution with respect to [25, 34, 93] is that the post-

contingency system conditions are further stressed by a loading parameter.

This parameter is used to define a security margin. The coupling constraints

ensure that the system can reach the stressed conditions such that the security

margin is guaranteed.
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1.3.6 Optimal Power Flow with Small-Signal Stability

Constraints

The main cause of small-signal rotor angle instability is directly related to an

insufficient damping torque that leads to power system oscillations. Therefore,

to prevent small-signal instability, most solutions proposed in the literature add

damping torque devices to the systems.

Power System Stabilizers (PSS) are widely used as appropriate devices for

damping control because of their relative low cost and general effectiveness.

These devices add additional stabilizing control signals to the input of gener-

ator exciters. The optimal placement and design of PSS devices has been the

object of considerable research effort [37, 58, 72, 74, 143].

High Voltage Direct Current (HVDC) and Flexible AC Transmission Sys-

tem (FACTS) devices with supplementary control signals have been proposed

as an alternative way to damp power system oscillations in [54, 92].

All these devices lead to effective solutions and are used in practice. How-

ever, from the system operation point of view, the use of damping controllers

may not always be sufficient to solve the small-signal security problem. Some

reasons for the limited effectiveness of damping controllers include the follow-

ing [32]:

1. Implementation of damping controllers usually requires lengthy design,

manufacture, installation, and commission procedures. Therefore, it is

difficult to meet the short-term solution requirements for operation prob-

lems.

2. Appropriate damping controller design requires full knowledge of the

technical characteristics of the system. Nowadays, this is increasingly

difficult due to the electric power industry restructuring.

3. Frequently, the possibility that a power transfer is limited by the small-

signal stability problem occurs only for a short period of time. Adding

new controllers may not be the most efficient way to mitigate such a

problem.
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4. Even if appropriate damping controllers are installed, there are always

situations in which specific operating conditions fall beyond what the

controllers are designed for. Additional remedial measures are necessary

to accommodate these operating conditions.

Therefore, some researchers have proposed OPF methods to deal with small-

signal instability issues during the power system operation.

In [32], two sensitivity-based methods are proposed. The objective is to

minimize generation rescheduling to maximize power transfer between two

areas subject to small-signal stability constraints under a set of selected con-

tingencies. Both methods use a linear optimization problem where the amount

of active power generation rescheduled in one area is balanced by rescheduling

the same amount of active power generation in the other area. The small-signal

stability constraint is formulated in terms of the sensitivities of the damping

ratio of the least stable rotor angle mode in the system [129] with respect to

the active power generation that corresponds to a previously selected set of

generators.

In [33] small-signal stability constraints are included in an OPF problem

in which the expected security cost, first proposed in [34], is minimized. The

OPF problem includes the pre-contingency operating conditions and the post-

contingency operating conditions for an entire set of credible contingencies.

The small-signal stability constraints are formulated in terms of the first-order

and second-order sensitivities of a set of critical eigenvalues with respect to

the OPF decision variables.

As in [33], the OPF problem proposed in this thesis for small-signal sta-

bility control also considers several operating conditions. However, the post-

contingency conditions are stressed operating conditions characterized by both

a contingency and a fictitious loading level that defines a distance to instabil-

ity, in terms of the load power. The formulation of the small-signal stability

constraints is based on the first-order Taylor series expansion of the real part

of the critical eigenvalue. Thus, first-order sensitivities of the real part of the

critical eigenvalue with respect to generator powers are used.
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1.3.7 Optimal Power Flow with Transient Stability Con-

straints

The Transient Stability Constrained OPF (TSC-OPF) is a non-linear opti-

mization problem that includes algebraic constraints and differential equations.

Consequently, standard mathematical programming techniques cannot be di-

rectly applied and a variety of ad hoc algorithms have been proposed. A critical

review of several approaches proposed for solving the TSC-OPF problem can

be found in [137].

Different methods have been proposed to embed transient stability con-

straints in an OPF problem. In [28, 119, 135], the original TSC-OPF is con-

verted into an optimization problem via a constraint transcription based on

functional transformation techniques.

In [115] and [61], the power system transient stability model is transformed

into an algebraic set of equations for each time step of the time domain sim-

ulation. This set of algebraic equations is introduced in the OPF as transient

stability constraints. The size of the resulting problem is typically large. Also,

in [138], this model is extended to consider multiple contingencies. The number

of constraints is significantly reduced by using a reduced admittance matrix in

[138] and [78].

In [53, 98, 112], the transient stability assessment is solved separately, and

the results are used to determine a bound on the active power generation of

a group of selected machines within a standard OPF problem. The main ad-

vantages of this approach are its compatibility with any dynamic model of the

system and its relatively low computational burden. The main disadvantage is

that obtaining an optimal solution cannot be guaranteed because the stability

limits are approximated by bounds on active power generation.

A notable drawback of all the TSC-OPF models mentioned above, except

the one proposed in [112], is the criterion used to define the stability limits.

In [27, 28, 53, 61, 78, 98, 135, 138], transient stability is characterized in terms

of the inter-machine rotor angle deviation. The limits imposed are arbitrarily

established and their values differ from one reference to another (see Table

1.1). This fact suggests that these TSC-OPF methods cannot guarantee an



1.4. Models and Tools 17

optimal solution.

On the other hand, the stability criteria used in [115, 119] are based on

Lyapunov functions. Since these criteria ensure stability but are not able to

ensure instability, the solutions provided may ultimately be conservative.

Finally, in [112], the SIME method is used for transient stability assessment.

This method provides an objective stability criterion. However, this criterion

had not been previously used directly in a TSC-OPF. The TSC-OPF problem

proposed in this thesis includes discretized equations of the system transient

stability model together with transient stability bounds on the angle of the one-

machine equivalent system defined by the SIME method. Transient stability

bounds are computed by the SIME method as well, thus avoiding arbitrary

criteria.

1.4 Models and Tools

Once the market dispatching results are available, and prior to actual power

delivery, the system operator must have a set of appropriate procedures with

which to check system security and implement redispatching actions on the

dispatching solution, if needed.

The procedures proposed in this thesis are mainly of three types: secu-

rity assessment, contingency filtering, and security control procedures. The

characteristics of the security assessment and contingency filtering procedures

depend on the instability phenomenon of interest. The security control proce-

dure is based on an OPF model. The objective is to minimize the cost of the

control actions on the base-case operating condition (market dispatching ad-

justed by losses) that achieve a secure operation. This OPF problem basically

includes constraints that represent the operating condition of the system that

results from adjusting the base case for security purposes. If security problems

are detected in the security assessment procedures, additional constraints are

added to the OPF problem. The form of these additional constraints depends

on the instability phenomenon that limits system operation.
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1.4.1 Base Case

The starting point of the analysis in this thesis is a base-case operating con-

dition that is established through a market dispatching solution adjusted by

losses. Note, however, that other criteria can be used, e.g., the base case could

be the actual system state provided by the state estimator. The input data is

the solution provided by a market clearing algorithm. It is assumed that this

dispatching solution does not take into account any estimate of transmission

losses. Then, a non-linear OPF problem is solved to achieve the system power

balance. The objective of this OPF problem is to minimize the cost of gen-

erating the power system losses. The equality constraints are the power flow

equations in which voltage magnitudes at generator buses and the set point

of transmission control devices are treated as variables. The inequality con-

straints represent voltage magnitude limits at generator buses and operating

limits of transmission control devices. Other technical limits, such as the volt-

age magnitude limits at load buses or the current flow limits of the elements of

the network, are not included when calculating the base-case solution. These

limits are handled later in the security control procedures. Therefore, together

with the balanced power system condition, the solution of this OPF provides

the optimal set points of control devices and voltage magnitudes at generator

buses to minimize the cost of generating the system losses.

1.4.2 Security Assessment and Contingency Filtering

Once the system base-case operating condition is known, security assessment

procedures are carried out. These are two types of procedures: static and

dynamic. The static security assessment procedures include post-contingency

loading margin computation and eigenvalue analysis at the post-contingency

maximum loading condition. Dynamic security assessment is a time-domain

simulation of a given contingency using the SIME method. The contingencies

analyzed in the security assessment procedures are those of the N − 1 security

criterion. The results of the security assessment procedures are used to select

the contingencies that should be taken into account in the security control

procedure.
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1.4.2.1 Loading Margin Determination

For a given contingency, the post-contingency loading margin of the power

system is computed using a non-linear OPF problem. The objective is to

evaluate the maximum additional load that the system can provide without

exceeding a technical limit or a voltage stability limit, in a given period of

time. Thus, the objective function to maximize represents the load power

increase with respect to the base-case load; equality constraints are the power

flow equations; and inequality constraints represents technical limits, such as

bus voltage magnitude limits and current flow limits through the branches

of the network. In addition, inequality constraints include a set of ramping

constraints that model the generator capacities within a given period of time

to increase/decrease their active power outputs with respect to their base-

case power outputs. Similarly, ramping constraints are used to model the

capacity of some control devices, such as on-load tap-changing and phase-

shifting transformers, to adjust their set points.

Each post-contingency loading margin is compared with a pre-specified

value. This value is fixed by the ISO and represents the required security

margin. If the post-contingency loading margin is lower than the required

security margin, the contingency is included in the security control procedure

because of the risk of voltage instability issues.

1.4.2.2 Eigenvalue Analysis at the Maximum Loading Condition

Eigenvalue analysis is performed for each post-contingency maximum loading

condition. For this maximum loading condition, the system state matrix is

evaluated and its eigenvalues are computed. If the post-contingency maximum

loading condition presents one or more eigenvalues with a positive real part,

then the contingency is included in the security control procedure due to the

risk of small-signal instability issues.

1.4.2.3 Time-Domain Simulation and SIME Method

A time-domain simulation is carried out for each contingency. In this case, the

contingency is composed of a fault and the subsequent line tripping. Time-
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domain simulation solves the differential-algebraic equations of the system for

a given period of time. During the time-domain simulation, the SIME method

is used to identify transient instabilities. For each time step of the time domain

simulation, the SIME method reduces the original multi-machine system to a

two-machine system. This two-machine system is further reduced to a one-

machine infinite-bus (OMIB) equivalent whose transient stability is analyzed

according to the equal area criterion.

If transient instability is identified at the first-swing of the system, the

SIME method provides information about the set of machines that lose syn-

chronism (critical machines) and the value of the OMIB equivalent rotor angle

at the instant at which synchronism is lost. If the instability occurs after

the first swing (multi-swing instability), besides the above information, the

SIME method also calculates the maximum value of the OMIB equivalent ro-

tor angle during the first swing of the system. If the system experiences either

first-swing instability or multi-swing instability, the contingency is included in

the security control procedure because of potential transient instability.

1.4.3 Security Control Procedure

The proposed security control procedure is a redispatching procedure. This

redispatching procedure uses an OPF problem whose objective is to minimize

the cost of the adjustments with respect to the base-case operating condition

needed to achieve a secure operation. The objective function includes the

costs of generation power adjustments, penalties for adjustments to the voltage

magnitude at generator buses and to the set point of transmission control

devices, and the costs of load power adjustments. The OPF problem contains

several sets of constraints. The basic constraints are related to the operating

condition that results from adjusting the base case. This operating condition

is hereinafter called adjusted operating condition. Equality constraints are the

power flow equations of the adjusted operating condition, whereas inequality

constraints represent the system technical limits. This basic formulation is

extended to include security constraints as required.



1.4. Models and Tools 21

1.4.3.1 Voltage Stability Constraints

Security constraints related to voltage stability are modeled by system stressed

operating conditions. Each stressed operating condition is a post-contingency

operating condition in which the system load is increased with respect to the

base-case load. This load increase represents the security margin required by

the ISO. Together with the power flow equations and technical limits of the

stressed conditions, ramping constraints are added. These constraints couple

the adjusted operating condition with stressed operating conditions and model

the capacity of different system components to adjust their set points in a given

time period. Ramping constraints guarantee that the system is able to reach

the considered stressed operating conditions, thus guaranteeing the security

margin.

The generation powers, voltage magnitudes at generator buses, and control

device set points at the stressed operating conditions are defined in terms of

adjustments to the adjusted operating condition. To ensure economic oper-

ation in the stressed systems, the costs and penalties for these adjustments

are included in the objective function. To this end, the cost of operating at

the adjusted condition and the cost of operating at each stressed condition are

weighted. The weighting factors are defined in terms of the probabilities of oc-

currence of the contingencies considered for the stressed operating conditions.

1.4.3.2 Small-Signal Stability Constraints

With regard to small-signal stability, the OPF problem has a similar structure

to that of the voltage stability problem, i.e., security constraints are added

to the OPF in the form of stressed operating conditions. In addition, each

stressed operating condition includes small-signal stability constraints. First,

for each stressed operating condition, eigenvalue analysis is performed and

critical eigenvalues are identified. Then, small-signal stability constraints are

formulated based on the first-order Taylor series expansion of the real part of

the critical eigenvalue. Thus, first-order sensitivities of the real part of the

critical eigenvalue with respect to generation powers are used.

The small-signal stability constraints force the generation powers of the
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stressed conditions to change such that the real part of the critical eigenvalues

becomes negative. These changes eventually translate into changes in the

adjusted operating condition. The size of the changes in the generation powers

should be small due to the linear nature of the first-order Taylor approximation.

With this goal, the size of these changes is controlled, and the OPF problem

is solved iteratively.

1.4.3.3 Transient Stability Constraints

Security constraints related to transient stability are modeled with discrete-

time equations that describe the multi-machine system. For each contingency

considered, a set of these equations are added to the problem along with the

equation of the OMIB equivalent that characterizes the contingency. Transient

stability limits are introduced in the form of bounds on the OMIB equivalent

rotor angle. These bounds, together with the OMIB equivalent, are formulated

using the information provided by the SIME method.

Transient stability constraints and limits are defined for a particular op-

erating condition. After solving the OPF problem, this operating condition

varies, and the transient behavior of the system differs from the previous one.

Therefore, transient stability of the new operating condition should be as-

sessed. If instability is detected, transient stability constraints and limits are

updated, and the OPF problem is solved again. The procedure stops when

transient stability is guaranteed for all considered contingencies.

1.4.4 Additional Remarks

The security control procedures proposed in this thesis are mainly preventive

control tools, i.e., the objective is to obtain the optimal control actions that

should be applied here-and-now to ensure that the system operates properly

if any single contingency occurs. However, security control procedures related

to voltage and small-signal stability can also provide corrective control actions

if the security margins in the stressed systems are reduced to zero. In such a

case, the stressed operating conditions are simply the post-contingency oper-

ating conditions. If these procedures are used as preventive/corrective control
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tools, the solutions are generally more economical than those provided by pure

preventive control tools because the security constraints (stressed operating

conditions) are less restrictive. However, the post-contingency operating con-

ditions are only acceptable if corrective control actions are applied immediately

after the contingency, and this may not be feasible in practice. The proposed

preventive control tools impose a feasible post-contingency operating condition

on the system with a higher loading level than the actual one. Therefore, at a

cost, a greater manoeuvering margin is expected if the contingency occurs.

On the other hand, the existence of an acceptable post-contingency oper-

ating condition does not guarantee that the system can reach it. Instability

phenomena can appear during the evolution of the system after contingency.

In this sense, this thesis also considers transient instability phenomena.

For simplicity, the proposed procedures related to voltage and small-signal

stability are designed to impose identical security margins for the considered

contingencies. However, security margins can be particularized for each con-

tingency. For example, it can be of interest to establish a security margin for a

contingency leading to system collapse higher than that required for a contin-

gency only inducing congestion in a single transmission line. In this manner,

security margins can be defined in terms of the impact of contingencies on the

power system or, in other words, in terms of the risk that each contingency

entails for the power system.

Although the procedures related to voltage, small-signal and transient sta-

bility are presented separately throughout the thesis, they belong to a unified

procedure. This unified procedure is as follows:

1. Security assessment and contingency filtering procedures related to both

voltage and small-signal stability are carried out. If security criteria are

violated, the corresponding OPF problem is formulated and solved until

the security criteria are satisfied.

2. The transient stability assessment procedure is applied to the solution of

the previous step. If transient instability phenomena are found, transient

stability constraints are embedded in the OPF problem formulated in the

previous step.
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1.4.5 Hardware and Software

All simulations presented throughout this thesis were performed using Matlab

7.6 [123] and GAMS 22.7 [16], on a Sun Fire X4140, RoHS-5, with two 2.3-

GHz processors with 8 GB of RAM. To solve power flows, compute eigenvalues,

and perform time-domain simulations, PSAT [86] was used. With regard to

transient stability analysis, PSAT was modified to include an embedded SIME

algorithm. Finally, all OPF problems were solved using CONOPT [50] under

GAMS.

1.5 Thesis Organization

This document is organized as follows.

Chapter 1 introduces the security problem and states the motivation for

this thesis. Next, the main objectives pursued in this thesis are listed. Subse-

quently, a review of the state of the art of several topics relevant to this thesis

is provided. The chapter continues by describing the proposed models and

the tools used to solve the problems tackled in this dissertation. Finally, the

organization of the thesis is presented.

Chapter 2 begins with an overview of voltage stability and establishes the

criteria and methods for voltage stability assessment. The chapter continues

with a description of the procedure used to select contingencies that threaten

the system voltage stability. Next, the proposed redispatching procedure to

solve security issues pertaining to voltage stability is described. Finally, the

proposed procedure is illustrated using a 6-bus system. Moreover, the effect

of several control devices on the redispatching procedure is analyzed and dis-

cussed in detail using a 24-bus system.

Chapter 3 begins with an overview of small-signal stability and establishes

the criteria and methods for small-signal stability assessment. Subsequently,

the procedure used to select contingencies that threaten the system small-signal

stability is described. Then, the proposed redispatching procedure to solve

security issues pertaining to small-signal stability is described. This procedure

uses an OPF problem with a similar structure as that described in Chapter
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2. The proposed procedure is illustrated using the WECC 9-bus, 3-machine

system and tested on the New England 39-bus, 10-machine system and the

IEEE 145-bus, 50-machine system. The results are analyzed and discussed.

Chapter 4 begins with an overview of transient stability analysis and de-

scribes the SIME method. Then, the proposed redispatching procedure to

solve security issues pertaining to transient stability is provided. Next, the

performance of the proposed procedure is illustrated using the WECC 9-bus,

3-machine system. Finally, the proposed procedure is tested on the New Eng-

land 39-bus, 10-machine system and on a 1228-bus, real-world power system.

Chapter 5 provides a summary of the dissertation as well as a set of relevant

conclusions and contributions related to the procedures proposed in this thesis.

In addition, possible future research work is suggested.

Additionally, this document includes four appendices. Appendix A de-

scribes the OPF problem used to obtain a base-case operating condition, which

constitutes the starting point of the analysis carried out throughout the thesis.

Appendix B formulates the OPF problem used to compute the loading margin

and the maximum loading condition of a power system. Appendix C describes

the mathematical model of the power system components used throughout

the thesis. Finally, Appendix D provides the data from the power systems

analyzed in the examples and the case studies considered in the thesis.





Chapter 2

Optimal Power Flow with

Voltage Stability Constraints

This chapter provides a security redispatching procedure that achieves an ap-

propriate security level in terms of voltage stability. The procedure uses a

Voltage Stability Constrained Optimal Power Flow (VSC-OPF) that explic-

itly considers security limits using stressed loading conditions. The solution

of this VSC-OPF corresponds to the optimal preventive control actions that

have to be taken to ensure the required security level. Furthermore, a vari-

ety of control devices are incorporated in the VSC-OPF problem to enhance

system security.

The chapter begins with an overview of voltage stability. Section 2.2

presents the contingency filtering procedure used to select the contingencies

that compromise a given security level. In Section 2.3, the VSC-OPF problem

is formulated and the steps of the redispatching procedure are described. In

Sections 2.4 and 2.5, the performance of the proposed procedure is tested on

a 6-bus system and on a 24-bus system, respectively. The results are ana-

lyzed and discussed. Finally, Section 2.6 reviews the main conclusions of this

chapter.

27
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2.1 Voltage Stability

Voltage stability refers to the ability of a power system to maintain steady

voltages at all buses throughout the system after suffering a disturbance from

a given initial operating condition [102]. Voltage instability occurs if the power

system is not able to maintain or restore the voltage profile at network buses.

Typically, voltage instability is a consequence of the inability of the combined

generation and transmission system to deliver the power requested by loads

[44]. In particular, voltage collapse is the process by which the sequence of

events accompanying voltage instability leads to a blackout or to abnormally

low voltages in a significant part of the power system, [73, 122]. Voltage sta-

bility is threatened if a disturbance increases the power demand beyond the

capacity of the combined transmission and generation system. After the dis-

turbance, system devices, such as voltage regulators or on-load tap-changers,

try to restore the power consumed by the loads. The restored loads increase

the stress on the network, which limits its capability for power transfer and

voltage support. This situation is aggravated if some generators reach their

reactive power limits. The result is a run-down situation that drives the power

system to collapse [40, 44, 70, 73, 122].

In this chapter, a static voltage stability analysis is presented. This analysis

is computationally less intensive than other analyses based on dynamic models

and is suitable to estimate voltage stability margins, identify factors that in-

fluence voltage stability and examine power system performance under a large

number of operating conditions, [2, 63, 80, 94]. However, if the stability study

were to involve issues such as coordination of controls and protections, the

static analysis should be complemented with quasi-steady-state time-domain

simulations [40, 44].

2.1.1 System Model

Regarding voltage stability studies, the model of the power system can be

represented by the power flow equations in the form:

g(y,p, λ) = 0, (2.1)
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where vector y (y ∈ R
ny) contains the algebraic variables (e.g., voltage mag-

nitude at load buses), p (p ∈ R
np) includes the control variables (e.g., ac-

tive power output of generators), and λ (λ ∈ R) is a loading parameter that

is typically used to represent a parametric load change that moves the sys-

tem from one equilibrium point to another. In this model, the function g

(g : R
ny × R

np × R �−→ R
ny) represents the standard power flow equations.

Power flow equations are commonly used for voltage stability studies since

these equations properly define steady-state system operating conditions [118].

The use of power flow equations implies some assumptions, namely [40]: (i)

generator voltages are constant under the action of automatic voltage regula-

tors, (ii) generator reactive power limits are updated according to the operation

of over-excitation limiters, and (iii) loads are constant powers (for instance, un-

der the action of LTC transformers working in between limits, and neglecting

their deadbands).

2.1.2 Bifurcation Analysis

Bifurcation theory is a widely used analytical tool for analyzing voltage in-

stability and collapse phenomena. This theory provides general mathematical

tools to classify instabilities and to study the behavior of non-linear systems in

the neighborhood of bifurcation or critical equilibrium points. Moreover, this

theory provides quantitative information on remedial actions to avoid criti-

cal conditions [116]. A typical assumption of bifurcation theory is that the

system equations depend on a set of parameters and variables. Then, stabil-

ity/instability properties are assessed by varying the parameters. Bifurcation

theory makes use of the steady-state approximation, i.e., the system parame-

ters change slowly. The system can thus be assumed to “move” smoothly from

one equilibrium point to another following these changes.

Bifurcation theory identifies power system instability conditions with the

appearance of Saddle-Node Bifurcations (SNBs), Limit-Induced Bifurcations

(LIBs), and Hopf Bifurcations (HFs) in the system equations. The former

two bifurcations are directly associated with voltage collapse, and they are

presented below. The latter is associated with the lack of sufficient damping
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torque, in particular under the influence of automatic voltage regulators, and

it is presented in Chapter 3.

2.1.2.1 Saddle-Node Bifurcation

Figure 2.1 depicts a typical PV curve that presents a SNB. Subscript o repre-

sents the actual operating condition, whereas subscript c indicates the critical

solution at the bifurcation point. This kind of bifurcation has the following

properties [47, 116, 118]:

1. Two equilibria, one stable and one unstable, coalesce.

2. The sensitivity of a system variable with respect to λ is infinite.

3. The Jacobian matrix Dyg(y,po, λ)|c has a simple zero eigenvalue, i.e.,

the Jacobian matrix is singular.

4. The dynamic of the collapse in the proximity of the bifurcation point is

characterized by a monotonic change of system variables. The change is

initially slow, and then it becomes fast and results in a voltage collapse.

In mathematical terms, SNB conditions are as follows:

g(yc,po, λc) =0

Dyg(y,po, λ)|cv̂ = ŵTDyg(y,po, λ)|c =0

‖v̂‖ = ‖ŵ‖ =1

where v̂ and ŵ are, respectively, the right and the left eigenvectors correspond-

ing to the zero eigenvalue, and the operator ‖ · ‖ is the Euclidean norm.

A SNB is basically characterized by two power flow solutions that coalesce

and disappear as certain system parameters (particularly the system load)

change slowly. In practical terms, a SNB typically lead to voltage collapse.

2.1.2.2 Limit-Induced Bifurcation

In the power system context, this type of bifurcation was first studied in detail

in [48]. LIBs originate from a change in system equations: a system device
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V

λ

Operating condition (yo,po,λ)

SNB

λ = 0 λ = λc

Figure 2.1: Saddle-node bifurcation.

reaches an operating limit as λ increases. This causes a “breaking point” in

the system. A typical example of breaking point is the case in which one of

the reactive power limits of a generator is reached. In this situation, generator

j loses control over the voltage of its associated bus Vn = V ref
n when any of its

reactive power limits is reached, i.e., QGj = Qmax
Gj or QGj = Qmin

Gj . Therefore,

the equation that fixes the voltage magnitude is substituted for the equation

that fixes the reactive power output.

A breaking point can be viewed as the solution of the following system:

g(yc,po, λc) =0,

g̃(yc,po, λc) =0,

where vector function g (g : R
ny × R

np × R �−→ R
ny) represents the initial

system equations and function g̃ (g̃ : R
ny × R

np × R �−→ R) represents the

new equation related to the reached limit. A breaking point must satisfy the



32 2. Optimal Power Flow with Voltage Stability Constraints

resulting set of equations. If at a breaking point two system equilibria coalesce

and disappear, a LIB occurs. Mathematically, in contrast with a SNB, a LIB

associated with the power flow equations is an equilibrium point (yc,po, λc) at

which the corresponding Jacobian matrix Dyg(y,po, λ)|c is nonsingular [126].

Figure 2.2 depicts a PV curve with a breaking point and a LIB. Observe

that a breaking point does not cause voltage collapse. Once reached, the equi-

librium points continue to exist as the loading parameter λ changes. However,

a LIB corresponds to a point at which two equilibria coalesce and disappear,

and causes voltage collapse.

V

λ

Operating condition (yo,po,λ)

Breaking point

LIB

λ = 0 λ = λc

Figure 2.2: Limit-induced bifurcations.

2.1.3 Voltage Stability Assessment

Since voltage instability is often a catastrophic event, it is of interest to deter-

mine the proximity of the power system operating condition to collapse, i.e.,

to quantify the margin to instability. The proximity to voltage collapse can

be estimated by means of several indices [118]. A very common index is the
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loading margin. For a particular power system operating condition (yo,po),

the loading margin is defined as the maximum amount of additional load that

the system can provide until a SNB or a LIB point is reached. The value

of the loading margin depends on the pattern in which the load is increased.

Throughout this thesis, all system loads are increased according to the follow-

ing expressions:

PDi = (1 + λ)PA
Di, ∀i ∈ D (2.2)

QDi = (1 + λ)QA
Di, ∀i ∈ D (2.3)

where PA
Di and QA

Di are the active and reactive load powers, respectively, which

correspond to the system operating condition for which the loading margin

computation is required (i.e., (PA
Di, Q

A
Di) ∈ po). From expressions (2.2) and

(2.3) and observing Figures 2.1 and 2.2, it follows that the loading margin is

actually the value λc.

The loading margin associated either with a SNB or with a LIB corresponds

directly to the solution of the following general optimization problem:

Maximize
y, λ

λ (2.4)

subject to g(y,po, λ) = 0 (2.5)

ymin ≤ y ≤ ymax (2.6)

where constraints (2.5) represent the power flow equations and constraints (2.6)

represent system device limits, which are typically generator reactive power

limits. The solution of problem (2.4)-(2.6) provides the maximum loading

condition of the power system, defined by λ∗ and y∗, with respect to the

system operating condition defined by po.

The voltage stability assessment used in this thesis is based on the concept

of loading margin. For a particular power system operating condition, the

loading margin is defined as the maximum amount of additional load that the

system can provide without exceeding a voltage stability limit. Voltage stabil-
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ity limits lead to system collapse and correspond to a SNB or a LIB point. In

this thesis, the definition of loading margin is extended to take into account

technical limits, such as bus voltage limits and transmission line/transformer

thermal limits. These limits do not directly cause collapse but should be

avoided because they can initiate cascade line tripping phenomena. In addi-

tion, generator ramping limits are taken into account. The ramps represent

the generator capacity to supply additional load within a given period of time

(Δt). Similarly, ramping constraints are used to model the capacity of certain

control devices, such as on-load tap-changing and phase-shifting transformers,

to adjust their set points. Therefore, for a particular power system operating

condition, the loading margin λ∗ represents the maximum amount of addi-

tional load that the system can provide without exceeding a technical limit

while ensuring that a voltage collapse does not appear within a given period of

time Δt. The value of λ∗ is determined according to the optimization problem

described in Appendix B.

2.2 Security Assessment: Contingency Filter-

ing

The security assessment, also known as contingency analysis [9, 65, 133], basi-

cally involves a number of studies in which the state of the network is deter-

mined for each of the selected contingencies. For the sake of simplicity, but

without loss of generality, in this thesis the initial set of contingencies includes

those of the N − 1 security criterion. This initial set is reduced by means

of a contingency filtering procedure in order to identify the most harmful, or

critical, contingencies.

Regarding voltage stability, contingency filtering is carried out using the

loading margin λ∗, which is introduced in Subsection 2.1.3, as a severity in-

dex. The selection of the critical contingencies is based on comparing the

corresponding value of λ∗ with a pre-defined value, the security margin (λSM).

The security margin λSM is defined as the loading margin that the system

should have with respect to voltage stability limits, operation limits, or physi-
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cal limits, within the time interval Δt if any single contingency occurs. Thus,

for a given value of λSM, the contingency filtering procedure is as follows:

1. For each of the contingencies, λ∗ is calculated using the problem de-

scribed in Appendix B.

2. If λ∗ ≤ λSM the contingency is selected as critical.

3. If λ∗ > λSM the contingency is filtered out.

Other possible way to perform contingency filtering is to compute the sys-

tem operating condition that corresponds to a pre-contingency system configu-

ration where the load is increased by the amount λSM. Then, each contingency

is applied and post-contingency operating conditions are computed by solving

a power flow analysis. Critical contingencies are those that lead either to

divergence of the post-contingency power flow calculation or to system limit

violations. This methodology allows speeding up the contingency filtering pro-

cedure, but it is rather conservative, i.e., there exists the risk of labeling as

critical some harmless contingencies due to the simplifying assumptions of the

power flow analysis.

2.3 Security Redispatching

Once a working condition has been established through a dispatching proce-

dure (e.g., a market clearing algorithm), but prior to actual power delivery, the

independent system operator (ISO) must check system security and implement

redispatching actions on the dispatching solution if needed.

This section suggests a redispatching procedure based on a Voltage Stability

Constrained Optimal Power Flow (VSC-OPF) problem to assist the system

operator in ensuring an appropriate security level. The starting point for the

procedure is a base-case operating condition established through a dispatching

solution adjusted by losses (see Appendix A).

The VSC-OPF problem considers several operating conditions: the ad-

justed operating condition and a set of stressed operating conditions. The

adjusted operating condition results from adjusting the base-case operating
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condition. Each one of the stressed operating conditions is associated with a

single contingency and a fictitious loading level that enables to set a distance

to instability in terms of load. Furthermore, the procedure allows control de-

vices to be incorporated. In particular, two regulating transformers and two

FACTS devices are considered: an on-Load Tap-Changing (LTC) transformer,

a PHase-Shifting (PHS) transformer, a Static Var Compensator (SVC) device,

and a Thyristor-Controlled Series Compensator (TCSC) device. The solution

of the proposed procedure provides the preventive control actions for the base-

case solution that guarantee a pre-specified security level. It is assumed that

the system operator has access to the generator technical information and that

the generators provide the ISO with cost offers for redispatching.

2.3.1 VSC-OPF Problem Description

This subsection describes the objective function and all constraints pertaining

to the VSC-OPF problem in detail.

2.3.1.1 Objective function

The objective function is aimed at minimizing the variations with respect to

the base-case solution. In particular, the objective function is composed of

several terms that represent adjustment costs and penalty functions. The

adjustment costs correspond to changes in the generation and load powers,

while the penalty functions concern voltage magnitudes at generator buses,

and set points of control devices. Thus, for the adjusted operating condition,

the total cost function of generation power adjustments is

zG(ΔP up
Gj ,ΔP

down
Gj ) =

∑
j∈G

cup
GjΔP

up
Gj + cdown

Gj ΔP down
Gj , (2.7)

where cup
Gj and cdown

Gj are, respectively, the offering costs of generator j to in-

crease and decrease its power dispatch for security purposes. The total penalty
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function of voltage magnitude adjustments at generator buses is

zV(ΔV up
n ,ΔV down

n ) =
∑

n∈NG

cup
VnΔV up

n + cdown
Vn ΔV down

n . (2.8)

The term (2.8) is included to penalize any changes to the base-case voltage

magnitudes at generator buses since the voltage profile of the base case is

considered to be the most suitable.

Additionally, the changes to the set point of control devices with respect to

the base case are also penalized. Two types of voltage controlling devices: the

LTC and the SVC; and two types of power flow controlling devices: the PHS

and the TCSC, are considered in this chapter. The total penalty function of

set point adjustments for the LTC is

zLTC(ΔV up
n ,ΔV down

n ) =
∑

n∈NLTC

cup
LTC,nΔV up

n + cdown
LTC,nΔV down

n , (2.9)

the total penalty function of set point adjustments for the PHS is

zPHS(ΔP
up
k ,ΔP down

k ) =
∑

k∈ΩPHS

cup
PHS,kΔP

up
k + cdown

PHS,kΔP
down
k , (2.10)

the total penalty function of set point adjustments for the SVC is

zSVC(ΔV up
n ,ΔV down

n ) =
∑

n∈NSVC

cup
SVC,nΔV

up
n + cdown

SVC,nΔV
down
n , (2.11)

and the total penalty function of set point adjustments for the TCSC is

zTCSC(ΔP up
k ,ΔP down

k ) =
∑

k∈ΩTCSC

cup
TCSC,kΔP

up
k + cdown

TCSC,kΔP
down
k . (2.12)

Similarly, for each one of the considered stressed operating conditions, the total

cost function of generation power adjustments is

zs
G(ΔP up,s

Gj ,ΔP down,s
Gj ) =

∑
j∈G

cup
GjΔP

up,s
Gj + cdown

Gj ΔP down,s
Gj , (2.13)
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the total penalty function of voltage magnitude adjustments is

zs
V(ΔV up,s

n ,ΔV down,s
n ) =

∑
n∈NG

cup
VnΔV up,s

n + cdown
Vn ΔV down,s

n , (2.14)

the total penalty function of set point adjustments for the LTC is

zs
LTC(ΔV up,s

n ,ΔV down,s
n ) =

∑
n∈NLTC

cup
LTC,nΔV up,s

n + cdown
LTC,nΔV down,s

n , (2.15)

the total penalty function of set point adjustments for the PHS is

zs
PHS(ΔP

up,s
k ,ΔP down,s

k ) =
∑

k∈ΩPHS

cup
PHS,kΔP

up,s
k + cdown

PHS,kΔP
down,s
k , (2.16)

the total penalty function of set point adjustments for the SVC is

zs
SVC(ΔV up,s

n ,ΔV down,s
n ) =

∑
n∈NSVC

cup
SVC,nΔV up,s

n + cdown
SVC,nΔV

down,s
n , (2.17)

and the total penalty function of set point adjustments for the TCSC is

zs
TCSC(ΔP up,s

k ,ΔP down,s
k ) =

∑
k∈ΩTCSC

cup
TCSC,kΔP

up,s
k + cdown

TCSC,kΔP
down,s
k . (2.18)

Cost function (2.13) and penalty functions 2.14-(2.18) are introduced to force

all stressed systems to work economically and to minimize changes to the set

points of control devices. Furthermore, a term is included to take into account

the cost of adjustments to the demand power levels. These adjustments in-

volve only demand power decrements. The total cost function of load power

adjustments is

zD(ΔP down
Di ) =

∑
i∈D

cdown
Di ΔP down

Di . (2.19)

The cost function (2.19) is not considered explicitly for the stressed operating

conditions since load powers of the stressed systems are linked to the loads

of the adjusted condition (see (2.42) and (2.44)). In summary, the resulting
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objective function is as follows:

z = μ
(
zG(ΔP up

Gj ,ΔP
down
Gj ) + zV(ΔV up

n ,ΔV down
n )

+ zLTC(ΔV up
n ,ΔV down

n )

+ zPHS(ΔP
up
k ,ΔP down

k )

+ zSVC(ΔV up
n ,ΔV down

n )

+ zTCSC(ΔP up
k ,ΔP down

k )
)

+
∑
s∈S

μs
(
zs
G(ΔP up,s

Gj ,ΔP down,s
Gj ) + zs

V(ΔV up,s
n ,ΔV down,s

n )

+ zs
LTC(ΔV up,s

n ,ΔV down,s
n )

+ zs
PHS(ΔP

up,s
k ,ΔP down,s

k )

+ zs
SVC(ΔV up,s

n ,ΔV down,s
n )

+ zs
TCSC(ΔP up,s

k ,ΔP down,s
k )

)
+ zD(ΔP down

Di ). (2.20)

where μ and μs are, respectively, the probability of operating in the adjusted

operating condition and the probability of occurrence of the contingency con-

sidered in the stressed operating condition s. These probabilities satisfy:

μ+
∑
s∈S

μs = 1, (2.21)

where μs 	 μ, [33].

2.3.1.2 Power flow equations for the adjusted operating condition

The adjusted operating condition is defined by the active and reactive power

balance at all buses:

PGn − PDn =
∑

m∈Θn

Pnm(·), ∀n ∈ N , (2.22)

QGn −QDn =
∑

m∈Θn

Qnm(·), ∀n ∈ N , (2.23)
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where the powers on the left-hand side of each equation above are

PGn =
∑
j∈Gn

PGj , ∀n ∈ N , (2.24)

PDn =
∑
i∈Dn

PDi, ∀n ∈ N , (2.25)

QGn =
∑
j∈Gn

QGj , ∀n ∈ N , (2.26)

QDn =
∑
i∈Dn

PDi tan(ψDi), ∀n ∈ N , (2.27)

with

PGj = PA
Gj + ΔP up

Gj − ΔP down
Gj , ∀j ∈ G, (2.28)

PDi = PA
Di − ΔPDi, ∀i ∈ D, (2.29)

and

ΔP up
Gj ≥ 0, ∀j ∈ G, (2.30)

ΔP down
Gj ≥ 0, ∀j ∈ G, (2.31)

ΔPDi ≥ 0, ∀i ∈ D. (2.32)

Equation (2.27) implies that constant power factor loads are considered. The

functions on the right-hand sides of (2.22) and (2.23) are the power flow equa-

tions and depend on the device connected between buses n and m. Appendix

C describes these equations in detail.

The voltage magnitudes controlled by generators, LTC transformers and

SVC devices are defined as

Vn = V A
n + ΔV up

n − ΔV down
n , ∀n ∈ (NG ∪NLTC ∪ NSVC), (2.33)

with

ΔV up
n ≥ 0, ∀n ∈ (NG ∪ NLTC ∪ NSVC), (2.34)

ΔV down
n ≥ 0, ∀n ∈ ((NG ∪NLTC ∪ NSVC). (2.35)
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The power flows controlled by PHS transformers and TCSC devices are

defined as

Pk = PA
k + ΔP up

k − ΔP down
k , ∀k = (n,m) ∈ (ΩPHS ∪ ΩTCSC), (2.36)

with

ΔP up
k ≥ 0, ∀k = (n,m) ∈ (ΩPHS ∪ ΩTCSC), (2.37)

ΔP down
k ≥ 0, ∀k = (n,m) ∈ (ΩPHS ∪ ΩTCSC). (2.38)

Finally, note that superscript “A” in (2.28), (2.29), (2.33) and (2.36) indi-

cates the base-case solution.

2.3.1.3 Power flow equations for the stressed operating conditions

The power flow equations for the stressed operating conditions are

P s
Gn − P s

Dn =
∑

m∈Θn

P s
nm(·), ∀n ∈ N , ∀s ∈ S, (2.39)

Qs
Gn −Qs

Dn =
∑

m∈Θn

Qs
nm(·), ∀n ∈ N , ∀s ∈ S, (2.40)

where the powers on the left-hand side of (2.39) and (2.40) are defined as

P s
Gn =

∑
j∈Gn

P s
Gj , ∀n ∈ N , ∀s ∈ S, (2.41)

P s
Dn =

∑
i∈Dn

(1 + λSM)PDi, ∀n ∈ N , ∀s ∈ S, (2.42)

Qs
Gn =

∑
j∈Gn

Qs
Gj , ∀n ∈ N , ∀s ∈ S, (2.43)

Qs
Dn =

∑
i∈Dn

(1 + λSM)PDi tan(ψDi), ∀n ∈ N , ∀s ∈ S, (2.44)

with

P s
Gj = PGj + ΔP up,s

Gj − ΔP down,s
Gj , ∀j ∈ G, ∀s ∈ S, (2.45)
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ΔP up,s
Gj ≥ 0, ∀j ∈ G, ∀s ∈ S, (2.46)

ΔP down,s
Gj ≥ 0, ∀j ∈ G, ∀s ∈ S, (2.47)

where PGj is defined as in (2.28) and PDi is defined as in (2.29).

The functions of the right-hand side of (2.39) and (2.40) have the same

expressions as the power flow equations (2.22) and (2.23), respectively, except

for the fact that the corresponding variables are substituted by those pertaining

to the stressed operating conditions.

Equations (2.39)-(2.44) are introduced to represent the system at the load-

ing level determined by the security margin λSM. Moreover, each set of equa-

tions (2.39)-(2.44) includes a single line outage to enforce theN−1 contingency

criterion. Therefore, each of the stressed operating conditions is characterized

by λSM and by a single contingency.

Like the adjusted operating condition, the voltage magnitudes at the gener-

ator buses and the variables controlled by regulating transformers and FACTS

devices for the stressed operating conditions are defined as

V s
n = Vn + ΔV up,s

n −ΔV down,s
n ,

∀n ∈ (NG ∪ NLTC ∪ NSVC), ∀s ∈ S, (2.48)

with

ΔV up,s
n ≥ 0, ∀n ∈ (NG ∪NLTC ∪ NSVC), ∀s ∈ S, (2.49)

ΔV down,s
n ≥ 0, ∀n ∈ (NG ∪NLTC ∪NSVC), ∀s ∈ S. (2.50)

and

P s
k = Pk + ΔP up,s

k −ΔP down,s
k ,

∀k = (n,m) ∈ (ΩPHS ∪ ΩTCSC), ∀s ∈ S, (2.51)

with

ΔP up,s
k ≥ 0, ∀k = (n,m) ∈ (ΩPHS ∪ ΩTCSC), ∀s ∈ S, (2.52)
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ΔP down,s
k ≥ 0, ∀k = (n,m) ∈ (ΩPHS ∪ ΩTCSC), ∀s ∈ S. (2.53)

Finally, Vn in (2.48) and Pk in (2.51) are defined as in (2.33) and (2.36),

respectively.

2.3.1.4 Technical limits

The power production is limited by the capacity of the generators. Thus, under

normal and stressed conditions,

Pmin
Gj ≤ PGj ≤ Pmax

Gj , ∀j ∈ G, (2.54)

Pmin
Gj ≤ P s

Gj ≤ Pmax
Gj , ∀j ∈ G, ∀s ∈ S, (2.55)

Qmin
Gj ≤ QGj ≤ Qmax

Gj , ∀j ∈ G, (2.56)

Qmin
Gj ≤ Qs

Gj ≤ Qmax
Gj , ∀j ∈ G, ∀s ∈ S. (2.57)

Voltage magnitudes throughout the system under the adjusted and stressed

operating conditions should be within operating limits,

V min
n ≤ Vn ≤ V max

n , ∀n ∈ N , (2.58)

V min
n ≤ V s

n ≤ V max
n , ∀n ∈ N , ∀s ∈ S. (2.59)

The current flow through all branches of the network must be below thermal

limits,

Ik(·) ≤ Imax
k , ∀k = (n,m) ∈ Ω, (2.60)

Is
k(·) ≤ Imax

k , ∀k = (n,m) ∈ Ωs, ∀s ∈ S, (2.61)

where functions Ik(·) depend on the device k connected between buses n and

m. The expressions of these functions are defined in Appendix C. The func-

tions Is
k(·) have the same expressions as Ik(·) except for the fact that the

corresponding variables are substituted by those pertaining to the stressed

operating conditions.

Changes in the production of generators between the adjusted and the
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stressed operating conditions are limited by ramping constraints,

P s
Gj − PGj ≤ Rup

GjΔt, ∀j ∈ G, ∀s ∈ S, (2.62)

PGj − P s
Gj ≤ Rdown

Gj Δt, ∀j ∈ G, ∀s ∈ S. (2.63)

The time interval Δt is the period within which generators are able to adjust

their power production levels in order to reach the stressed operating condi-

tions. Also, observe that (2.62) and (2.63) along with (2.42) and (2.44) couple

the variables of the stressed systems with those pertaining to the adjusted

operating condition.

Constraints (2.62) and (2.63) enforce the fact that increments and decre-

ments to the generator power outputs can be obtained only within given rates,

which in turn depend on the type and characteristics of the power plants.

These constraints constitute a necessary condition to ensure that the stressed

operating conditions can be reached within the considered time period.

Regarding the FACTS devices and regulating transformers considered, while

the SVC and TCSC device responses to implement the required changes can be

considered instantaneous for the time duration Δt, the responses of the LTC

and the PHS transformers are conditioned by a mechanically driven operation,

and they are not instantaneous. As for generators, these physical constraints

are related to ramping limits,

T s
k − Tk ≤ Rup

Tk
Δt, ∀k = (n,m) ∈ ΩLTC, ∀s ∈ S, (2.64)

Tk − T s
k ≤ Rdown

Tk
Δt, ∀k = (n,m) ∈ ΩLTC, ∀s ∈ S, (2.65)

φs
k − φk ≤ Rup

φk
Δt, ∀k = (n,m) ∈ ΩPHS, ∀s ∈ S, (2.66)

φk − φs
k ≤ Rdown

φk
Δt, ∀k = (n,m) ∈ ΩPHS, ∀s ∈ S. (2.67)

It is implicitly assumed that the redispatching actions, such as power ad-

justments, and the operation of regulating transformers and FACTS devices

are feasible within the time duration Δt.

Finally, any device connected to the system is allowed to vary within its
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rating values. Therefore, under normal and stressed conditions, for LTC trans-

formers:

Tmin
k ≤ Tk ≤ Tmax

k , ∀k = (n,m) ∈ ΩLTC, (2.68)

Tmin
k ≤ T s

k ≤ Tmax
k , ∀k = (n,m) ∈ ΩLTC, ∀s ∈ S, (2.69)

for PHS transformers:

φmin
k ≤ φk ≤ φmax

k , ∀k = (n,m) ∈ ΩPHS, (2.70)

φmin
k ≤ φs

k ≤ φmax
k , ∀k = (n,m) ∈ ΩPHS, ∀s ∈ S, (2.71)

for TCSC devices:

xmin
TCSC,k ≤ xTCSC,k ≤ xmax

TCSC,k, ∀k = (n,m) ∈ ΩTCSC, (2.72)

xmin
TCSC,k ≤ xs

TCSC,k ≤ xmax
TCSC,k, ∀k = (n,m) ∈ ΩTCSC, ∀s ∈ S, (2.73)

and for SVC devices:

bmin
SVC,n ≤ bSVC,n ≤ bmax

SVC,n, ∀n ∈ NSVC, (2.74)

bmin
SVC,n ≤ bsSVC,n ≤ bmax

SVC,n, ∀n ∈ NSVC, ∀s ∈ S. (2.75)

There are two kind of limits in the case of regulating transformers and FACTS

devices: (i) technical operating limits, such as tap ratio and phase limits (2.68)-

(2.71), and (ii) capacity limits, such as the reactance sizes of the TCSC devices

(2.72)-(2.73) and susceptance sizes of the SVC devices (2.74)-(2.75).

2.3.1.5 Other constraints

The proposed VSC-OPF problem includes the following additional constraints:

− π ≤ θn ≤ π, ∀n ∈ N , (2.76)

− π ≤ θs
n ≤ π, ∀n ∈ N , ∀s ∈ S, (2.77)
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θref = 0, (2.78)

θs
ref = 0, ∀s ∈ S. (2.79)

Equations (2.76) and (2.77) are included to reduce the feasibility region, thereby

causing the OPF problem to converge more rapidly in general.

2.3.1.6 VSC-OPF problem formulation

The formulation of the VSC-OPF problem is summarized below:

Minimize (2.20)

subject to

1. Power flow equations for the adjusted operating condition (2.22)-(2.23).

2. Power flow equations for all the stressed operating conditions (2.39)-

(2.40).

3. Technical limits (2.54)-(2.75).

4. Other constraints (2.76)-(2.79).

2.3.2 Security Redispatching Description

The proposed security redispatching procedure is as follows.

1. Base-Case Solution. The base-case solution corresponds to the solution

of a dispatching procedure (e.g., a market clearing procedure) adjusted

by losses. Specifically, the base-case solution is obtained from the OPF

problem described in Appendix A.

2. Selection of Stressed Operating Conditions. For a given security margin

λSM, the stressed operating conditions to be included in the VSC-OPF

problem (set S) are identified by applying the procedure described in

Subsection 2.2. Stressed operating conditions are defined for each one of

the contingencies selected, by setting the loading parameter λSM to the

desired value in equations (2.42) and (2.44).
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3. Solve the VSC-OPF problem. The OPF problem described in Subsection

2.3.1.6 is solved. The solution corresponds to the optimal preventive

control actions needed to ensure the security margin λSM.

It should be noted that the system is not expected to operate at the loading

level defined by λSM. In other words, the load increase represented by λSM is

not a predicted load increase. Instead, the parameter λSM is used to enforce a

margin to instability, in terms of the load. A stressed operating condition is

defined by a contingency and the λSM value. Accordingly, if the system at the

stressed operating condition is stable, it is assumed to be stable at the adjusted

operating condition as well, and it has at least a margin λSM to instability even

if the contingency occurs.

A relevant case arises if λSM = 0. In addition to the preventive control

actions that correspond to the adjusted operating condition, the solution out-

put by the proposed procedure defines the emergency control actions needed

to maintain stability if any of the considered contingencies occurs. These

emergency control actions correspond to changes to the values of the control

variables under the different stressed operating conditions.

2.4 Voltage Stability - Illustrative Example

For illustration purposes, the proposed security redispatching procedure is ap-

plied to a 6-bus system (W&W 6-bus system). This system is based on the 6-

bus system reported by Wood & Wollenberg in [133]. Generator data, demand

data, network data and technical limits, along with the one-line diagram, for

this system are provided in Appendix D. Regulating transformers and FACTS

devices are not considered. For clarify, the results of each step of the proposed

procedure are provided.

2.4.1 Base Case

The base-case solution is obtained from the OPF problem described in Ap-

pendix A. Table 2.1 provides this base-case solution.
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Table 2.1: Voltage stability illustrative example. W&W 6-bus system: Base-
case solution.

Bus Gen. Dem. PA
Gn QA

Gn PA
Dn QA

Dn V A
n θA

n

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1 - 0.4575 0.3876 0 0 1.1000 -0.0077

2 2 - 1.2441 0.5284 0 0 1.1000 0

3 3 - 0.9231 0.5640 0 0 1.1000 -0.0018

4 - 1 0 0 0.7000 0.5500 1.0466 -0.0368

5 - 2 0 0 1.0500 0.7000 1.0238 -0.0638

6 - 3 0 0 0.8000 0.6000 1.0476 -0.0444

2.4.2 Selection of the Stressed Operating Conditions

Once the base-case solution is available, contingency analysis is carried out.

The analyzed contingencies correspond to the outage of each line of the system.

For each one of these contingencies, the loading margin λ∗ is obtained by

solving the optimization problem described in Appendix B. The considered

time period is set to five minutes (Δt = 5 minutes).

Table 2.2 provides the value of λ∗ and the enforced limits at the maximum

loading condition for each one of the analyzed contingencies.

The stressed operating conditions are selected for three different security

margins: λSM = 0.03, λSM = 0.05, and λSM = 0.10. Table 2.3 includes the

results of applying the contingency filtering procedure described in Section 2.2

for the three security margins. If the required security margin is 0.03, only

the stressed operating condition corresponding to the outage of line 1 − 5 is

taken into account in the VSC-OPF problem. If the required security margin

is 0.05, three stressed operating conditions are taken into account in the VSC-

OPF problem: outage of line 1 − 5, outage of line 3 − 5, and outage of line

3 − 6. Finally, if the required security margin is 0.10, five stressed operating

conditions are taken into account in the VSC-OPF problem, as indicated in

Table 2.3.
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Table 2.2: Voltage stability illustrative example. W&W 6-bus system: Loading
margin and enforced limits.

Cont. λ∗ Enforced Limits

1 - 2 0.1708 Rup
G1, R

up
G2, R

up
G3

1 - 4 0.1603 Rup
G1, R

up
G2, R

up
G3

1 - 5 0.0199 Rup
G2, I

max
5−6 , Imax

5−4

2 - 3 0.1708 Rup
G1, R

up
G2, R

up
G3

2 - 4 0.0782 Rup
G1, R

up
G3, I

max
5−6 , Imax

2−1

2 - 5 0.0862 Rup
G1, R

up
G2, I

max
5−6 , Imax

2−1 , Imax
5−4

2 - 6 0.1655 Rup
G1, R

up
G2, R

up
G3

3 - 5 0.0370 Rup
G1, R

down
G3 , Imax

5−6 , Imax
5−4

3 - 6 0.0460 Rup
G1, R

up
G2, I

max
3−2 , Imax

6−2 , Imax
6−5

4 - 5 0.1693 Rup
G1, R

up
G2, R

up
G3

5 - 6 0.1679 Rup
G1, R

up
G2, R

up
G3

Table 2.3: Voltage stability illustrative example. W&W 6-bus system: Stressed
operating conditions for different security margins.

λSM Contingencies Selected

0.03 Outage of line 1 − 5

0.05 Outage of lines 1 − 5, 3 − 5 and 3 − 6

0.10 Outage of lines 1 − 5, 3 − 5, 3 − 6, 2 − 4 and 2 − 5

2.4.3 Solving the VSC-OPF Problem

For each of the three security margins considered, the VSC-OPF problem

(2.20)-(2.79) is solved. The probability of occurrence of each selected con-

tingency is set to 0.01. Figure 2.3 depicts the redispatching actions on the

generator powers with respect to the base case for λSM = 0.03, 0.05, and 0.10,

whereas Figure 2.4 depicts the redispatching actions on the demand powers
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with respect to the base case for the same security margins.
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Figure 2.3: Voltage stability illustrative example. W&W 6-bus system: Re-
dispatching actions on generator powers for λSM = 0.03, 0.05 and 0.10.
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Figure 2.4: Voltage stability illustrative example. W&W 6-bus system: Re-
dispatching actions on demand powers for λSM = 0.03, 0.05 and 0.10.

The security margin pertaining to λSM = 0.03 is achieved by redistributing
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generation powers among generators, while no load power has to be shed.

Due to ramping constraints, the generator of bus 2 must increase its power

production in order to satisfy the single stressed operating condition. As a

result, the remaining generators have to adjust their power production levels

in order to supply the actual load. These are the most economical preventive

control actions that satisfy the predefined security margin.

For λSM = 0.05, a small amount of load has to be shed at buses 5 and

6 to satisfy the three stressed operating conditions. The generators adjust

their power production levels within the range determined by their ramping

constraints, to carry out the changes at minimum cost.

As expected, for λSM = 0.10, the amount of power load that has to be

shed is higher than in the case of λSM = 0.05. With respect to generators,

the power adjustments are smaller than in the previous cases as a result of

the power demand reduction in the system. These are the optimal preventive

control actions that ensure a system stability margin of λSM = 0.10 if any of

the five considered outages occurs.

2.4.4 Remarks on Penalty Factors

Penalties pertaining to generator voltage and control device adjustments are

not associated with the actual cost that these adjustments involve. Actually,

the cost of these adjustments can be considered negligible if compared with

generation and demand power adjustments. The choice of penalty factor values

is motivated by two reasons:

(i) The voltage profile and set points of control devices for the base case are

considered the most suitable. From the market results, bus voltage mag-

nitudes at generator buses and set points of control devices are calculated

by solving an OPF problem that minimizes transmission losses (precisely,

the cost of generating transmission losses, see Appendix A). Therefore,

the base-case values for these variables are those that minimize power

flows throughout the network. Bus voltages and control device settings

can be also established based on other criteria. For example, by max-

imizing the remaining capacity of the system reactive power resources.
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In any case, there is a justified interest to maintain the voltage profile

and set points of control devices as close as possible to their values for

the base case.

(ii) The nature of the objective function used in the proposed security control

OPF problem. From the simulations performed during the work reported

in this dissertation, it has been observed that if penalty factors are set

to a value smaller than the generator offering costs (e.g., zero), the solu-

tion of the proposed OPF problem can be “inappropriate”. For instance,

solutions can be obtained that show load curtailment but no generation

redispatching. This is because bus voltages are adjusted such that net-

work losses compensate the load decrement (note that this is “cheaper”

than generation redispatching). Certainly, if the load decrement is small,

the adjustments in voltages could be also small, but cases are observed

with a very degraded voltage profile (voltage magnitudes attaining their

lower limit at several generator buses) for small load decrements, and

this solution could be unsuitable from the system operation point of

view. Note that if generator cost curves (operating costs) are used in

the objective function, this problem does not appear because the cost of

generating transmission losses is implicity considered.

A numerical example is provided in the following. For the simulations

performed on the W&W 6-bus system, the offering costs of generators are

cup
G1 = cdown

G1 = 12 $/p.u.h, cup
G2 = cdown

G2 = 10 $/p.u.h, and cup
G3 = cdown

G3 = 11.0

$/p.u.h, the costs of load curtailment are cdown
Di = 1000 $/p.u.h for all demands,

and penalty factors for voltage magnitude adjustments are cup
Vn = cdown

Vn = 100

$/p.u.h for all generator buses (the units of penalty factors are introduced

only for compatibility with costs). Table 2.4 provides the results of applying

the proposed procedure for λSM = 0.05. In particular, this table shows the

redispatching actions (yellow bars in Figures 2.3 and 2.4), and the resulting

voltage profile for the adjusted operating condition. The total redispatching

cost, i.e., zG(ΔP up
Gj ,ΔP

down
Gj ) + zD(ΔP down

Di ), is $24.5336/h, and the network

losses are 0.0801 p.u.
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Table 2.4: Voltage stability illustrative example. W&W 6-bus system: Re-
dispatching actions and voltage profile of the adjusted operating condition for
λSM = 0.05 using cup

Vn = cdown
Vn = 100 $/p.u.h.

Bus ΔP up
Gn ΔP down

Gn ΔP down
Dn Vn

# [p.u.] [p.u.] [p.u.] [p.u.]

1 0 0.1457 0 1.1000

2 0.4059 0 0 1.1000

3 0 0.2705 0 1.1000

4 0 0 0 1.0458

5 0 0 0.0135 1.0246

6 0 0 0.0023 1.0470

Total 0.4059 0.4162 0.0158 -

Alternatively, the VSC-OPF problem is solved by using cup
Vn = cdown

Vn = 0

$/p.u.h. Table 2.5 provides the results. In this case, the total redispatching

cost is $24.0156/h, and the network losses are 0.1248 p.u.

Observe that, in both cases, the adjustments in system load and the amount

of power that should be increased in generator 2 are equal. However, with

penalty factors equal to zero, the amount of power that should be decreased

in generators 1 and 3 is smaller than in the case of cup
Vn = cdown

Vn = 100. This is

possible because the solution obtained with penalty factors equal to zero corre-

sponds to a system operating condition with low bus voltage levels and, there-

fore, with higher network losses. As a result, the security margin is achieved

for a smaller redispatching cost but with a degraded operating condition.

In this thesis, to maintain a “good” voltage profile is preferred. There-

fore, for all simulations performed throughout the dissertation, the penalties

of voltage magnitude adjustments (cup
Vn,c

down
Vn ) and the penalties of set point

adjustments of control devices (cup
LTC,n, cdown

LTC,n, cup
PHS,k, c

down
PHS,k, c

up
SVC,n, c

down
SVC,n,

cup
TCSC,k, c

down
TCSC,k) are set higher than the costs of generation power adjustments

(cup
Gj , c

down
Gj ) but lower than the costs of demand decrements (cdown

Di ), to avoid
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Table 2.5: Voltage stability illustrative example. W&W 6-bus system: Re-
dispatching actions and voltage profile of the adjusted operating condition for
λSM = 0.05 using cup

Vn = cdown
Vn = 0 $/p.u.h.

Bus ΔP up
Gn ΔP down

Gn ΔP down
Dn Vn

# [p.u.] [p.u.] [p.u.] [p.u.]

1 0 0.1199 0 1.0392

2 0.4059 0 0 1.0069

3 0 0.2516 0 0.9357

4 0 0 0 0.9521

5 0 0 0.0135 0.9000

6 0 0 0.0023 0.9017

Total 0.4059 0.3715 0.0158 -

load curtailment unless it is strictly necessary to maintain system security.

2.5 Voltage Stability - Case Study

In this section, the proposed security redispatching procedure is applied to

a 24-bus system (IEEE 24-bus system) based on the IEEE Reliability Test

System [100]. The one-line diagram of this system is provided in Appendix

D. The main purpose of the simulations is to show the effect of regulating

transformers and FACTS devices on the security level of the system and the

redispatching cost. The positions of these control devices have been selected

based on knowledge of the network and seeking to improve the system load-

ability and security. FACTS device siting is outside the scope of this thesis,

but the interested reader can consult [91], which suggests an efficient algorithm

for FACTS device network allocation. Generator data, demand data, network

data, regulating transformer data, FACTS data and technical limits are pro-

vided in Appendix D. To account for the impact of regulating transformers

and FACTS devices on the redispatching procedure, the thermal limit of line
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11-13 is set to 1.75 p.u. out of 5.0 p.u. Furthermore, the simulations only con-

sider the outage of the transformer between buses 3 and 24. The probability of

occurrence of this contingency is set to 0.01, and the time interval considered

is Δt = 5 minutes.

In the simulations below, each regulating transformer and each FACTS de-

vice is studied separately to better illustrate its effect on the redispatching pro-

cedure. Simulation results are depicted in Figure 2.5. The curves in that figure

represent the cost of the preventive control actions, i.e., zG(ΔP up
Gj ,ΔP

down
Gj ) +

zD(ΔP down
Di ), as a function of the security margin λSM.

As expected, the case with no control device leads to the most expensive

solutions as the value of λSM increases. For 0.04 ≤ λSM ≤ 0.10, the binding

constraints are mainly voltage limits (in particular, at bus 3). For these values

of the security margin, the most effective control devices are the LTC trans-

former and the SVC device, which is reasonable because these devices control

voltage levels. On the other hand, for 0.04 ≤ λSM ≤ 0.10, the effects of the

PHS transformer and the TCSC device are negligible since modifying power

flows does not alleviate voltage problems.

For λSM > 0.10, the binding constraints are the limits on transmission lines

(in particular, on line 11-13) together with voltage limits (in particular, at bus

3). An increasing amount of load has to be shed for these security margin

values and hence, the change in the slope of the redispatching cost. The most

effective control devices are the PHS transformer and the TCSC device, since

these devices best control power flows. For λSM > 0.10 the effects of the LTC

transformer and the SVC device are negligible because the operation of these

devices does not alleviate the line congestions.

For illustration, two snapshots of the solutions shown in Figure 2.5 (dotted

vertical lines) are further discussed: for λSM = 0.08 and for λSM = 0.14.

Furthermore, an example that combines two control devices is also considered.

2.5.1 Solution for λSM = 0.08

Figure 2.6 depicts the generation power adjustments at each bus for λSM =

0.08. Power adjustments are in p.u. with respect to the base-case level. The
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Figure 2.5: Voltage stability case study. IEEE 24-bus system: Costs of pre-
ventive control actions as a function of the security margin λSM. Effects of
LTC transformer, PHS transformer, SVC device and TCSC device.

bar chart shows the solution obtained without control devices and with the

LTC transformer and SVC device. Solutions with the PHS transformer and

TCSC device are not depicted because these devices have a minor effect on

the system for this security margin.

Figure 2.7 depicts the demand power adjustments with respect to the base

case. The load to be shed is located at bus 3, whereas the power production

is transferred from bus 22 to bus 13.

Table 2.6 lists the effects of regulating transformers and FACTS devices on

the total generation adjustment, the total demand adjustment and the total

cost of preventive control actions for the 24-bus system and λSM = 0.08. Only

the LTC transformer and SVC device are able to significantly reduce the cost

and amount of power adjustments. However, with the SVC device, there is

no need for load shedding; thus, in this case, the SVC device is more effective
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Figure 2.6: Voltage stability case study. IEEE 24-bus system: Generation
power adjustments for λSM = 0.08. Effects of the LTC transformer and SVC
device.
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Figure 2.7: Voltage stability case study. IEEE 24-bus system: Load power
adjustments for λSM = 0.08. Effects of the LTC transformer and SVC device.

than the LTC transformer. This result is mainly due to the position of the

SVC device in the network.
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Table 2.6: Voltage stability case study. IEEE 24-bus system: Total generation
power adjustment, total demand power adjustment and total cost for λSM =
0.08.

Device
∑
j∈G

ΔP up
Gj

∑
j∈G

ΔP down
Gj

∑
i∈D

ΔP down
Di Total Cost

[p.u.] [p.u.] [p.u.] [$/h]

No device 0.8529 1.0445 0.1008 239.77

LTC 0.9200 1.0566 0.0448 118.12

PHS 0.8561 1.0446 0.0990 236.22

SVC 0.9610 1.0510 0 20.28

TCSC 0.8630 1.0267 0.0932 227.32

2.5.2 Solution for λSM = 0.14

Figure 2.8 illustrates the generation power adjustments at each bus for λSM =

0.14. Once again, power adjustments are in p.u. with respect to the base-case

level. The bar chart shows the solution obtained with no control device and

with the PHS transformer and TCSC device. Solutions with the LTC trans-

former and SVC device are not depicted because these devices have a small

effect on the system for this security margin. In this case, several generators

are involved in the redispatching process.

Figure 2.9 depicts the demand power adjustments with respect to the base

case. Due to the high loading level, the number of loads affected by shedding

and the total amount of load shed are significantly higher than those in the

case of λSM = 0.08.

Table 2.7 provides the effects of regulating transformers and FACTS devices

on the total generation adjustment, the total demand adjustment and the total

cost of preventive control actions for the 24-bus system and λSM = 0.14. Only

the PHS transformer and TCSC device are capable of significantly reducing

the cost and the amount of power adjustments. However, the PHS transformer

leads to less expensive results than the TCSC device. This is basically due to

the fact that the TCSC device reaches its capacity limits.
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Figure 2.8: Voltage stability case study. IEEE 24-bus system: Generation
power adjustments for λSM = 0.14. Effects of the PHS transformer and TCSC
device.
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Figure 2.9: Voltage stability case study. IEEE 24-bus system: Load power
adjustments for λSM = 0.14. Effects of the PHS transformer and TCSC device.

2.5.3 Effect of the FACTS Size

The capacity limits of FACTS devices define their size. Table 2.8 shows the

total cost incurred using different capacity limits of SVC and TCSC devices.
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Table 2.7: Voltage stability case study. IEEE 24-bus system: Total generation
power adjustment, total demand power adjustment and total cost for λSM =
0.14.

Device
∑
j∈G

ΔP up
Gj

∑
j∈G

ΔP down
Gj

∑
i∈D

ΔP down
Di Total Cost

[p.u.] [p.u.] [p.u.] [$/h]

No device 1.7413 2.7362 0.8050 1808.53

LTC 1.7509 2.7399 0.7989 1795.44

PHS 2.5601 3.0000 0.2598 625.58

SVC 1.7806 2.7464 0.7795 1753.37

TCSC 1.9836 2.7556 0.5881 1340.34

The first column indicates the factor used to reduce or increase FACTS limits.

The results show that, for the considered case and with the given FACTS

device positions, the size of the SVC device can be reduced by one-half without

significantly affecting the total cost of redispatching actions. The results also

show that an increase in the size of the TCSC device considerably reduces the

total costs for λSM = 0.14. In general, the proposed procedure can also be used

to determine the effect of the size of FACTS devices on the security redispatch.

2.5.4 Effect of Regulating Transformer Ramping Con-

straints

Ramping constraints that regulate the functioning of LTC and PHS trans-

formers affect the bus voltage levels and generator reactive power productions,

as well as the transformer control variables, i.e., the tap ratio T and phase

shifting angle φ. Table 2.9 shows the values of T and φ at the adjusted op-

erating condition and the stressed operating condition for the two considered

security margins, λSM = 0.08 and λSM = 0.14, respectively. The table also

shows the values of transformer control variables without ramping constraints.
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Table 2.8: Voltage stability case study. IEEE 24-bus system: Total cost with
different control limits of FACTS devices.

λSM = 0.08 λSM = 0.14

Factor SVC TCSC SVC TCSC

[$/h] [$/h] [$/h] [$/h]

0.1 101.63 242.24 1800.98 1765.43

0.5 20.41 235.91 1778.32 1576.75

1 20.28 227.32 1753.37 1340.34

2 20.22 220.27 1715.60 864.51

10 20.21 216.29 1704.72 608.89

The LTC transformer is not affected by ramps in either case. Considering

the PHS transformer, the value of φ is conditioned by the value of φs due

to ramping constraints for λSM = 0.14. Observe that if ramping constraints

were not considered in the problem, the PHS transformer would not be able

to reach the stressed operating condition within the considered time period.

In the case without ramping constraints, the value for φ is −0.0022. Taking

into account the capacity of the PHS transformer to adjust its tap facility

(π/600 rad/min) and the considered time period (Δt = 5 min.), the value

of the phase-shifter tap could only reach −0.0284, which is a value far from

−0.1403. Consequently, the security margin would not be guaranteed as the

system would be unable to reach the stressed operating condition within the

considered time period.

2.5.5 Effect of Combining Multiple Control Devices

The effects of the LTC transformer and SVC device (voltage controlling de-

vices) are basically decoupled from the effects of the PHS transformer and

TCSC device (power flow controlling devices). This fact suggests that the

combined use of one voltage controlling device and one power flow controlling

device can lead to comparatively cheaper solutions than other combinations
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Table 2.9: Voltage stability case study. IEEE 24-bus system: Effects of ramp-
ing constraints on LTC and PHS variables.

λSM = 0.08 λSM = 0.14

Device Variable No ramps With ramps No ramps With ramps

LTC
T 1.0499 1.0499 1.0470 1.0470

T s 1.0500 1.0500 1.0500 1.0500

PHS
φ 0.0930 0.0930 −0.0022 −0.1141

φs 0.0500 0.0668 −0.1403 −0.1403

across the entire range of load levels. This is confirmed by Figure 2.10. Note

that combining a PHS transformer and a SVC device leads to an overall lower

cost than the linear combination of each device, especially for λSM > 0.10. For

example, for λSM = 0.14, the cost of power adjustments in the case with no de-

vices is $1808.5/h; in the case with the PHS transformer this cost is $625.6/h;

in the case with the SVC device this cost is $1753.4/h; and in the case with the

PHS transformer and SVC device, this cost is $59.7/h. Therefore, operation

with only the PHS transformer saves $1182.9/h and the operation with only

the SVC device saves $55.2/h. The joint operation of the PHS transformer

and SVC device saves $1748.8/h which is noticeably higher than the sum of

the savings obtained through the separate operation of these devices.

From the analysis, it is apparent that the redispatching cost resulting from

the proposed procedure can be reduced if adequate regulating transformers

and FACTS devices are installed in the system. This is not a surprising result;

however, the proposed procedure provides a quantitative analysis of the effect

of control devices on security redispatching pertaining to voltage stability.

2.5.6 Simulation Times

Table 2.10 provides the CPU times for each simulation carried out in this case

study involving different control devices (rows). This table shows the CPU

time to obtain the base-case solution, i.e., to solve the OPF problem described
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Figure 2.10: Voltage stability case study. IEEE 24-bus system: Cost of pre-
ventive control actions as a function of the security margin λSM. Simultaneous
effects of the PHS transformer and SVC device.

in Appendix A for each case (second column). Table 2.10 also shows the CPU

time to solve the VSC-OPF problem described in Subsection 2.3.1.6 (third

column). For each case considered, this problem is solved for different values

of λSM. The values provided in the third column of Table 2.10 correspond to

the average CPU times required to solve the VSC-OPF problem.

2.6 Summary and Conclusions

This chapter has presented a security redispatching procedure that resolves

security issues pertaining to voltage stability. It is intended to help system

operators ensure an appropriate level of security. Once a base-case solution is

available, contingency analysis is performed based on the concept of loading

margin. For each pre-specified set of contingencies, the loading margin of the
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Table 2.10: Voltage stability case study. IEEE 24-bus system: Simulation
times.

Base Case VSC-OPF

Device CPU CPU

[s] [s]

No device 0.02 1.96

LTC 0.03 1.86

PHS 0.04 1.08

SVC 0.04 1.82

TCSC 0.04 1.29

PHS and SVC 0.05 1.01

system is computed and the critical contingencies are identified in terms of the

desired security level. Next, the procedure uses an OPF that includes voltage

stability constraints.

This OPF problem explicitly considers security limits through stressed op-

erating conditions. The stressed operating conditions are defined by both a

contingency and a pre-defined loading condition higher than that of the base

case. Moreover, the proposed OPF problem may include four types of control

devices: LTC transformer, PHS transformer, SVC device and TCSC device.

The time delays for LTC and PHS transformers to adjust their set points are

modeled as ramping limits on the tap ratios and phase angles, respectively.

A 6-bus system is used to illustrate the performance of the proposed redis-

patching procedure, whereas the effect of regulating transformers and FACTS

devices on the proposed redispatching procedure is analyzed and discussed in

detail using a 24-bus system.

Simulations results show the ability of the proposed procedure to provide

a number of preventive redispatching actions for the base-case solution that

achieve the desired security level with respect to voltage instability issues. This

is attained at minimum cost, using the available control devices in the network.
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Simulations also show that system security can be improved if appropriate

control devices are installed in the system. This is confirmed by the reduc-

tion in the redispatching cost that results from the proposed procedure. Cost

savings may be a key factor when deciding which device to install.

The proposed procedure is able to tackle multi-contingency cases. Thus,

the VSC-OPF problem can incorporate constraints for the whole set of contin-

gencies that correspond to the N − 1 security criterion. However, the size of

the resulting OPF problem is quite large for real-world systems, and its solu-

tion may require prohibitive computational times. Prior contingency filtering

reduces the size of the VSC-OPF problem, thus incorporating only contingen-

cies that threaten system security. Therefore, contingency filtering makes the

proposed procedure appropriate from a practical point of view.

Finally, the proposed procedure solves a non-linear non-convex OPF prob-

lem. Therefore, obtaining a global optimum cannot be guaranteed. However,

the non-linear programming solver can be started from different initial points

in order to avoid local minima. Multi-minima have not been observed in the

simulations carried out in this chapter.





Chapter 3

Optimal Power Flow with

Small-Signal Stability

Constraints

This chapter extends the security redispatching procedure described in Chap-

ter 2 to take into account small-signal stability issues. The resulting security

redispatching procedure achieves an appropriate system security level in terms

of both voltage stability and small-signal stability. The procedure is based on

an Optimal Power Flow (OPF) problem that includes both voltage stability

and small-signal stability constraints. This OPF problem explicitly considers

security limits through stressed loading conditions. The solution of the pro-

posed redispatching procedure corresponds to the optimal preventive control

actions required to ensure the desired security level.

The chapter begins with a brief overview of small-signal stability. In Sec-

tion 3.2 the contingency filtering procedure used to select the contingencies

that compromise a given security level is presented. In Section 3.3, the OPF

problem is formulated and the steps of the redispatching procedure are de-

scribed. In Sections 3.4 and 3.5, the performance of the proposed procedure

is tested on the WECC 9-bus, 3-machine system, the New England 39-bus,

10-machine system, and the IEEE 145-bus, 50-machine system. The results

are analyzed and discussed. Finally, Section 3.6 offers the main conclusions of

67
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this chapter.

3.1 Small-Signal Stability

Small-signal stability is a general concept that can involve both voltage and

rotor-angle stability. This thesis focuses on small-signal rotor-angle stability

(for simplicity, hereinafter, small-signal stability). Small-signal stability is con-

cerned with the ability of a power system to maintain synchronism under small

disturbances. The disturbances are considered to be sufficiently small that the

power system equations can be linearized for analysis [102].

Small-signal instability depends on the operating condition of the system

and mostly appears in the form of rotor angle oscillations whose amplitude

increases due to insufficient damping torque.

Small-signal instability appears in the form of local mode oscillations and/or

in the form of inter-area mode oscillations. Local mode oscillations are typi-

cally rotor angle oscillations of a single generator swinging against the rest of

the generators of the system. The damping of these oscillations depends on

the strength of the transmission system seen by the generator, the generator

excitation control system and the generator power output. Inter-area mode

oscillations are related to a group of generators in one area swinging against

a group of generators in another area. The characteristics of these oscillations

are complex and differ significantly from those of local mode oscillations, [73],

[109].

3.1.1 System Model

In small-signal stability studies the power system is represented by the follow-

ing set of differential-algebraic equations (DAE):

[
ẋ

0

]
=

[
f(x,y,p)

g(x,y,p)

]
(3.1)

where vector x (x ∈ R
nx) contains the state variables (e.g., δ, ω), vector y

(y ∈ R
ny) includes algebraic variables (e.g., V , θ, QG) and p (p ∈ R

np) is
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the vector of control variables (e.g., PG, PD, QD). Function f (f : R
nx ×

R
ny × R

np �−→ R
nx) is a nonlinear vector function associated with the state

variables x that usually represents the system differential equations, such as

those associated with the synchronous machine dynamics, control devices, etc.;

and vector function g (g : R
nx × R

ny × R
np �−→ R

ny) represents a system of

algebraic equations, including the power flow equations, algebraic equations

associated with the synchronous machine model, etc.

3.1.2 Small-Signal Stability Assessment

The small-signal stability of a power system depends on its operating condi-

tion. Assuming that the system is at steady-state, the power system operating

condition is an equilibrium point with all the derivatives ẋ in (3.1) equal to

zero. Then, once the control variables are known (p = po), the values of the re-

maining variables that define a system equilibrium point (xo,yo) are obtained

by solving the following set of equations:

[
0

0

]
=

[
f (xo,yo,po)

g(xo,yo,po)

]
(3.2)

The small-signal stability assessment is based on linearized analysis of the

multi-machine power system. This analysis establishes that the stability of

a system equilibrium point under small disturbances can be studied by lin-

earizing the equations of the non-linear system around the system equilibrium

point. Then, the system stability can be determined according to the roots

of the characteristic equation of the linearized system. Small-signal stability

assessment is also referred to as modal analysis [73, 114].

3.1.2.1 Linearization

Linearization is carried out by approximating the DAE system (3.1) by the first

term of the Taylor series expansion at the system equilibrium point (xo,yo).
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Therefore, the linearization of (3.1) leads to the following expression:

[
Δẋ

0

]
=

[
Dxf Dyf

Dxg Dyg

][
Δx

Δy

]
(3.3)

where Dxf , Dxg, Dyf and Dyg are, respectively, the Jacobian matrices of

the vector functions f and g with respect to the variables x and y computed

at (xo,yo); and Δx, Δy are small increments with respect to the equilibrium

point, that is, Δx = x − xo and Δy = y − yo.

Assuming that the Jacobian matrix Dyg is non-singular, the algebraic

variables can be eliminated from (3.3) to obtain the system equation

Δẋ = Asys Δx, (3.4)

where Asys is the system state matrix and it is computed as

Asys = Dxf − Dyf [Dyg]−1 Dxg. (3.5)

If the Jacobian matrix Dyg is singular, a singularity induced bifurcation is

said to occur. In such a case, the DAE system (3.1) should be redefined,

[118]. However, since singularity induced bifurcations result from modeling

issues rather than stability issues, this singularity case is not considered in

this thesis.

3.1.2.2 Stability criterion

Small-signal stability can be assessed based on the eigenvalues of the system

state matrix Asys. Lyapunov’s first method, [82], establishes the following:

1. If all eigenvalues of matrix Asys have negative real parts, the system

equilibrium point is asymptotically stable.

2. If at least one of the eigenvalues of matrix Asys has a positive real part,

the system equilibrium point is unstable.

In the case of eigenvalues having real parts equal to zero, it is not possible to

establish anything in general.
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3.1.2.3 Bifurcation Analysis

As stated in Chapter 2, bifurcation theory assumes that the system equa-

tions depend on a set of parameters as well as on variables. Thus, stabil-

ity/instability properties can be assessed by varying these parameters. Typi-

cally, the parameter used in bifurcation analysis is the system load. Bifurcation

theory makes use of a quasi-static approximation, which means that the system

load changes “slowly”, and it can be assumed to “move” smoothly from one

equilibrium point to another as a result of the load changes. Under these as-

sumptions, modal analysis of the system equilibrium points can be performed

to monitor the evolution of the eigenvalues of the system state matrix in the

complex plane as the system load changes slowly.

Bifurcation theory identifies small-signal instability conditions through Hopf

Bifurcations (HB). These bifurcations are characterized by a system state ma-

trix eigenvalue, typically a pair of complex conjugated eigenvalues, whose real

part becomes positive as the system load increases slowly. In other words,

one pair of complex eigenvalues “moves” from the left hand side to the right

hand side of the complex plane. The point where the pair of complex conju-

gate eigenvalues reaches (and crosses) the imaginary axis is known as the HB

point [118]. Thus, the imaginary axis of the complex plane constitutes the

small-signal stability frontier. Figure 3.1 illustrates a Hopf bifurcation.

3.2 Security Assessment: Contingency Filter-

ing

In this section, the contingency filtering procedure described in Section 2.2 of

Chapter 2 is enhanced to identify the harmful contingencies related to both

small-signal and voltage instability. The initial set of contingencies includes all

contingencies of the N − 1 security criterion, that is, the outage of any system

element. For a given security margin λSM, the proposed contingency screening

procedure works as follows:

1. For each one of the initial set of contingencies, the maximum loading
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Figure 3.1: Hopf bifurcation in the complex plane.

condition and the loading margin λ∗ of the system are computed using

the problem described in Appendix B.

2. At the maximum loading condition, modal analysis is carried out and

the eigenvalue with the largest real part α is computed.

3. If λ∗ ≤ λSM, the contingency is selected. At the loading condition defined

by λSM the system exhibits potential voltage instability.

4. If α > 0, the contingency is selected. This situation implies that a Hopf

bifurcation has occurred. Thus, at the loading condition defined by λSM,

the system may suffer from small-signal instability.

5. If λ∗ > λSM and α < 0, the contingency is filtered out.

Note that the computation of λ∗ for one contingency and the modal anal-

ysis at the corresponding maximum loading condition is independent of other

contingencies. This fact can be exploited to reduce computing time by using

parallel computation.
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3.3 Security Redispatching

Once a working condition has been established through a dispatching proce-

dure (e.g., a market clearing algorithm), but prior to actual power delivery, the

independent system operator (ISO) must check system security and implement

redispatching actions on the dispatching solution if needed.

This section suggests a redispatching procedure based on a Small-Signal

Stability Constrained Optimal Power Flow (SSSC-OPF) problem to assist the

system operator to ensure an appropriate security level. The starting point

of the procedure is a base-case operating condition established through a dis-

patching solution adjusted by losses (see Appendix A).

The SSSC-OPF considers several operating conditions: the adjusted oper-

ating condition and a set of stressed operating conditions. The adjusted oper-

ating condition results from adjusting the base-case operating condition. Each

of the stressed operating conditions is associated with a single contingency

and a fictitious loading condition that allows setting a distance to instability

in terms of load. The solution of the proposed procedure provides the preven-

tive control actions on the base-case solution that are needed to guarantee a

pre-specified security level. It is assumed that the system operator has access

to the technical information of generators and that the generators provide the

ISO with cost offers for redispatching.

3.3.1 SSSC-OPF Problem Description

This subsection describes the objective function and all constraints used in

the SSSC-OPF problem in detail. Much of the formulation of this problem

is similar to that of the VSC-OPF problem described in subsection 2.3.1 of

Chapter 2. However, these equations are described again here for completeness.

3.3.1.1 Objective function

The objective function is aimed at minimizing the variations with respect to

the base-case solution. In particular, the objective function is composed of

several terms that represent adjustment costs and penalty functions. The
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adjustment costs correspond to changes in the generation and load powers,

while the penalty functions concern voltage magnitudes at generator buses.

Thus, for the adjusted operating condition, the total cost function of generation

power adjustments is

zG(ΔP up
Gj ,ΔP

down
Gj ) =

∑
j∈G

cup
GjΔP

up
Gj + cdown

Gj ΔP down
Gj , (3.6)

where cup
Gj and cdown

Gj are, respectively, the offering costs of generator j to in-

crease and decrease its power dispatch for security purposes. The total penalty

function of voltage magnitude adjustments at generator buses is

zV(ΔV up
n ,ΔV down

n ) =
∑

n∈NG

cup
VnΔV up

n + cdown
Vn ΔV down

n . (3.7)

The term (3.7) is included to penalize any changes to the base-case voltage

magnitudes at generator buses since the voltage profile of the base case is

considered to be the most suitable. Similarly, for each one of the considered

stressed operating conditions, the total cost function of generation power ad-

justments is

zs
G(ΔP up,s

Gj ,ΔP down,s
Gj ) =

∑
j∈G

cup
GjΔP

up,s
Gj + cdown

Gj ΔP down,s
Gj , (3.8)

and the total penalty function of voltage magnitude adjustments is

zs
V(ΔV up,s

n ,ΔV down,s
n ) =

∑
n∈NG

cup
VnΔV up,s

n + cdown
Vn ΔV down,s

n . (3.9)

Cost function (3.8) and penalty function (3.9) are introduced to force all

stressed systems to work economically and to maintain an appropriate voltage

profile. Furthermore, a term is included to take into account the cost of adjust-

ments to the demand power levels. These adjustments involve only demand

power decreases. The total cost function of load power adjustments is

zD(ΔP down
Di ) =

∑
i∈D

cdown
Di ΔP down

Di . (3.10)
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The cost function (3.10) is not considered explicitly for the stressed operating

conditions since load powers of the stressed systems are linked to the loads

of the adjusted condition (see (3.30) and (3.32)). In summary, the resulting

objective function is as follows:

z = μ
(
zG(ΔP up

Gj ,ΔP
down
Gj ) + zV(ΔV up

n ,ΔV down
n )

)
+
∑
s∈S

μs
(
zs
G(ΔP up,s

Gj ,ΔP down,s
Gj ) + zs

V(ΔV up,s
n ,ΔV down,s

n )
)

+ zD(ΔP down
Di ). (3.11)

where μ and μs are, respectively, the probability of operating in the adjusted

operating condition and the probability of occurrence of the contingency con-

sidered in the stressed operating condition s. These probabilities satisfy:

μ+
∑
s∈S

μs = 1, (3.12)

where μs 	 μ, [33].

3.3.1.2 Power flow equations for the adjusted operating condition

The adjusted operating condition is defined by the active and reactive power

balance at all buses:

PGn − PDn =
∑

m∈Θn

Pnm(·), ∀n ∈ N , (3.13)

QGn −QDn =
∑

m∈Θn

Qnm(·), ∀n ∈ N , (3.14)

where the powers on the left-hand side of each equation above are

PGn =
∑
j∈Gn

PGj, ∀n ∈ N , (3.15)

PDn =
∑
i∈Dn

PDi, ∀n ∈ N , (3.16)

QGn =
∑
j∈Gn

QGj , ∀n ∈ N , (3.17)



76 3. Optimal Power Flow with Small-Signal Stability Constraints

QDn =
∑
i∈Dn

PDi tan(ψDi), ∀n ∈ N , (3.18)

with

PGj = PA
Gj + ΔP up

Gj − ΔP down
Gj , ∀j ∈ G, (3.19)

PDi = PA
Di − ΔP down

Di , ∀i ∈ D, (3.20)

and

ΔP up
Gj ≥ 0, ∀j ∈ G, (3.21)

ΔP down
Gj ≥ 0, ∀j ∈ G, (3.22)

ΔP down
Di ≥ 0, ∀i ∈ D. (3.23)

Equation (3.18) implies that constant power factor loads are considered. The

functions on the right-hand side of (3.13) and (3.14) are the power flow equa-

tions and depend on the device connected between buses n and m. Appendix

C describes these equations in detail. In this chapter and for the sake of sim-

plicity, no control devices are considered. Therefore, the power flow equations

(3.13) and (3.14) only depend on the bus voltage magnitudes and angles. The

voltage magnitudes at the generation buses are defined as

Vn = V A
n + ΔV up

n − ΔV down
n , ∀n ∈ NG, (3.24)

with

ΔV up
n ≥ 0, ∀n ∈ NG, (3.25)

ΔV down
n ≥ 0, ∀n ∈ NG. (3.26)

Finally, note that superscript “A” in (3.19), (3.20) and (3.24) indicates base-

case solution.
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3.3.1.3 Power flow equations for the stressed operating conditions

The power flow equations for the stressed operating conditions are

P s
Gn − P s

Dn =
∑

m∈Θn

P s
nm(·), ∀n ∈ N , ∀s ∈ S, (3.27)

Qs
Gn −Qs

Dn =
∑

m∈Θn

Qs
nm(·), ∀n ∈ N , ∀s ∈ S, (3.28)

where the powers on the left-hand side of (3.27) and (3.28) are defined as

P s
Gn =

∑
j∈Gn

P s
Gj , ∀n ∈ N , ∀s ∈ S, (3.29)

P s
Dn =

∑
i∈Dn

(1 + λSM)PDi, ∀n ∈ N , ∀s ∈ S, (3.30)

Qs
Gn =

∑
j∈Gn

Qs
Gj , ∀n ∈ N , ∀s ∈ S, (3.31)

Qs
Dn =

∑
i∈Dn

(1 + λSM)PDi tan(ψDi), ∀n ∈ N , ∀s ∈ S, (3.32)

with

P s
Gj = PGj + ΔP up,s

Gj − ΔP down,s
Gj , ∀j ∈ G, ∀s ∈ S, (3.33)

ΔP up,s
Gj ≥ 0, ∀j ∈ G, ∀s ∈ S, (3.34)

ΔP down,s
Gj ≥ 0, ∀j ∈ G, ∀s ∈ S, (3.35)

(3.36)

where PGj is defined as in (3.19) and PDi is defined as in (3.20).

The functions of the right-hand side of (3.27) and (3.28) have the same

expressions as the power flow equations (3.13) and (3.14), respectively, except

for the fact that the corresponding variables are substituted by those pertaining

to the stressed operating conditions.

Equations (3.27)-(3.32) are introduced to represent the system at the load-

ing level determined by the security margin λSM. Moreover, each set of equa-

tions (3.27)-(3.32) includes a single line outage to enforce theN−1 contingency

criterion. Therefore, each one of the stressed operating conditions is character-
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ized by λSM and by a single contingency. Like the adjusted operating condition,

the voltage magnitudes at the generator buses are defined as

V s
n = Vn + ΔV up,s

n − ΔV down,s
n , ∀n ∈ NG, ∀s ∈ S, (3.37)

with

ΔV up,s
n ≥ 0, ∀n ∈ NG, ∀s ∈ S, (3.38)

ΔV down,s
n ≥ 0, ∀n ∈ NG, ∀s ∈ S. (3.39)

Finally, Vn in (3.37) is defined as in (3.24).

3.3.1.4 Technical limits

The power production is limited by the capacity of the generators. Hence,

under adjusted and stressed operating conditions,

Pmin
Gj ≤ PGj ≤ Pmax

Gj , ∀j ∈ G, (3.40)

Pmin
Gj ≤ P s

Gj ≤ Pmax
Gj , ∀j ∈ G, ∀s ∈ S, (3.41)

Qmin
Gj ≤ QGj ≤ Qmax

Gj , ∀j ∈ G, (3.42)

Qmin
Gj ≤ Qs

Gj ≤ Qmax
Gj , ∀j ∈ G, ∀s ∈ S. (3.43)

Voltage magnitudes throughout the system under the adjusted and stressed

operating conditions should be within operating limits,

V min
n ≤ Vn ≤ V max

n , ∀n ∈ N , (3.44)

V min
n ≤ V s

n ≤ V max
n , ∀n ∈ N , ∀s ∈ S. (3.45)

The current flow through all branches of the network should be below thermal

limits,

Ik(·) ≤ Imax
k , ∀k = (n,m) ∈ Ω, (3.46)

Is
k(·) ≤ Imax

k , ∀k = (n,m) ∈ Ωs, ∀s ∈ S, (3.47)
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where the functions Ik(·) depend on the device k connected between buses

n and m. The expressions of these functions are provided in Appendix C.

The functions Is
k(·) have the same expressions as Ik(·) except for the fact that

the corresponding variables are substituted by those pertaining to the stressed

operating conditions.

Changes in the production of generators between the adjusted and the

stressed operating conditions are limited by ramping constraints,

P s
Gj − PGj ≤ Rup

GjΔt, ∀j ∈ G, ∀s ∈ S, (3.48)

PGj − P s
Gj ≤ Rdown

Gj Δt, ∀j ∈ G, ∀s ∈ S. (3.49)

The time interval Δt is the period within which generators are able to adjust

their power production levels in order to reach the stressed operating condi-

tions. Also, observe that (3.48) and (3.49) along with (3.30) and (3.32) couple

the variables of the stressed operating conditions with those pertaining to the

adjusted operating condition.

Constraints (3.48) and (3.49) enforce the fact that increments and decre-

ments to generator power outputs can be obtained only within given rates,

which in turn depends on the type and the characteristics of the power plants.

These constraints constitute a necessary condition to ensure that the stressed

operating conditions can be reached within the considered time period.

3.3.1.5 Small-signal stability constraints

The eigenvalues of the system state matrix that are associated with a particular

operating condition are implicit non-linear functions of the system variables

and parameters. As stated in Section 3.1, small-signal instability occurs if the

real part of an eigenvalue (say α ± jβ) of the system state matrix “moves”

from the left-hand side (α < 0) to the right-hand side (α > 0) of the complex

plane, as a result of parameter variation. Therefore, the small-signal stability

boundary is α = 0 for all critical eigenvalues whose real part approaches the

imaginary axis.

The goal of the proposed SSSC-OPF problem is to stabilize a set of stressed

operating conditions, which in turn guarantees the stability of the adjusted



80 3. Optimal Power Flow with Small-Signal Stability Constraints

(non-stressed) operating condition with a margin. The proposed small-signal

stability constraints are based on the first-order Taylor series expansion of the

real part of the critical eigenvalue, assuming that α only depends on active

power generation. Thus, for each of the unstable stressed operating conditions

(contained in set Su), the small-signal stability constraint is as follows:

αs + F s
∑
j∈G

σs
j δP

s
Gj ≤ αmax, ∀s ∈ Su, (3.50)

where αs is the real part of the critical eigenvalue that corresponds to the

unstable stressed operating condition s; δP s
Gj is a finite variation in the form:

δP s
Gj = P s

Gj − P u,s
Gj , (3.51)

where P u,s
Gj is the active power of generator j at the unstable stressed operat-

ing condition s, and σs
j in (3.50) is the sensitivity of the real part αs of the

considered eigenvalue with respect to changes in the power generation P u,s
Gj ,

i.e.,

σs
j =

∂αs

∂P s
Gj

∣∣∣∣∣
u

. (3.52)

Limit αmax can be defined either in terms of the HB point (αmax = 0) or in

terms of a minimal damping ratio ζmin. The expression of the damping ratio

for the critical eigenvalue αs ± jβs is

ζ =
−αs√

(αs)2 + (βs)2
. (3.53)

Thus, solving (3.53) for αs and replacing ζ by the required damping ratio

(ζmin) in the resulting expression, limit αmax is obtained as follows:

αmax = − βsζmin√
1 + (ζmin)2

, ∀s ∈ Su. (3.54)

Finally, the scaling factor F s in (3.50) is needed because the approxima-
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tion of the first-order Taylor series expansion can be inaccurate due to non-

linearities if the power variations δP s
Gj are too large. The magnitude of these

variations depends on the relative values of αs and σs
j . Numerical simulations

throughout the work reported in this chapter show that sensitivities (3.52)

generally exhibit small values (typically absolute values less than 1), whereas

the real part of an eigenvalue can, in principle, assume any value. If the differ-

ence between the αs and σs
j is relatively large (e.g., a factor of 10), satisfying

equation (3.50) can lead to unnecessarily large variations of δP s
Gj . Gener-

ally, the larger the values of δP s
Gj , the further the solution moves from the

initial stressed operating condition. In some cases, the OPF problem may

become infeasible. Thus, a weighting factor F s that controls the size of δP s
Gj

is introduced. Since all sensitivities are multiplied by the same constant F s,

the global direction of (3.50) is not modified as all power variations δP s
Gj are

equally scaled. The following formula outputs a suitable value for the factor

F s:

F s =
αs − αmax

σs
minδP

, (3.55)

where

σs
min = min(|σs

j |), ∀j ∈ G, ∀σs
j �= 0, (3.56)

and the parameter δP (δP > 0) is the desired bound for all increments δP s
Gj ,

i.e., |δP s
Gj| ≤ δP . The logic behind expression (3.55) is shown below. Replacing

the value of F s provided by (3.55) in (3.50) gives

αs − αmax +
∑
j∈G

(αs − αmax)
σs

j

σs
min

δP s
Gj

δP
≤ 0, ∀s ∈ Su, (3.57)

and dividing this expression by αs − αmax renders

1 +
∑
j∈G

σs
j

σs
min

δP s
Gj

δP
≤ 0, ∀s ∈ Su. (3.58)
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Equation (3.56) results in

σs
min ≤ |σs

j |, ∀j ∈ G, ∀σs
j �= 0, (3.59)

which implies that

|σs
j |

σs
min

≥ 1, ∀j ∈ G, ∀σs
j �= 0. (3.60)

Observe that to satisfy (3.58), (3.60) requires that

|δP s
Gj|

δP
≤ 1, ∀j ∈ G, (3.61)

and therefore

|δP s
Gj | ≤ δP , ∀j ∈ G. (3.62)

Note that the purpose of constraint (3.50) is to drive unstable eigenvalues

from the right hand side to the left hand side of the imaginary axis of the

complex plane. Thus, typically, as the value of δP decreases, the variation

of αs also decreases. Therefore, the stable operating condition is achieved

through successive solutions of the proposed OPF problem.

Constraints (3.63) and (3.64) below are used along with (3.50) to ensure

that the variations in the generation powers are always consistent with the

signs of the sensitivities:

δP s
Gj ≥ 0 if σs

j < 0, ∀j ∈ G, ∀s ∈ Su, (3.63)

δP s
Gj ≤ 0 if σs

j > 0, ∀j ∈ G, ∀s ∈ Su. (3.64)

These constraints avoid cycling phenomena that can appear during the solution

process. These cycling solutions are mainly due to the approximate nature of

constraint (3.50).



3.3. Security Redispatching 83

3.3.1.6 Other constraints

The proposed SSSC-OPF problem includes the following additional constraints:

− π ≤ θn ≤ π, ∀n ∈ N , (3.65)

− π ≤ θs
n ≤ π, ∀n ∈ N , ∀s ∈ S, (3.66)

θref = 0, (3.67)

θs
ref = 0, ∀s ∈ S. (3.68)

Equations (3.65) and (3.66) are included to reduce the feasibility region, thereby

causing the OPF problem to converge more rapidly in general.

3.3.1.7 SSSC-OPF problem formulation

The formulation of the SSSC-OPF problem is summarized below:

Minimize (3.11)

subject to

1. Power flow equations for the adjusted operating condition (3.13)-(3.14).

2. Power flow equations for all the stressed operating conditions (3.27)-

(3.28).

3. Technical limits (3.40)-(3.49).

4. Small-signal stability constraints (3.50) and (3.63)-(3.64).

5. Other constraints (3.65)-(3.68).

3.3.2 Security Redispatching Description

The proposed security redispatching procedure based on the SSSC-OPF de-

scribed in the previous subsection is as follows.
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1. Base-Case Solution. The base-case solution corresponds to the solution

of a dispatching procedure (e.g., a market clearing procedure) adjusted

by losses. Specifically, the base-case solution is obtained from the OPF

problem described in Appendix A.

2. Selection of Stressed Operating Conditions. For a given security margin

λSM, the stressed operating conditions to be included in the SSSC-OPF

problem (set S) are identified by applying the procedure described in

Subsection 3.2. Stressed operating conditions are defined for each of the

selected contingencies by setting the loading parameter λSM in equations

(3.30) and (3.32) to the desired value.

3. Solve the SSSC-OPF Problem. The OPF problem described in Subsec-

tion 3.3.1.7 is solved and the adjusted and the stressed operating condi-

tions are computed. Note that the first time that this problem is solved,

constraints (3.50) and (3.63)-(3.64) are not included.

4. Solution Checking. Modal analysis is carried out for each stressed oper-

ating condition computed in step 3. Two alternatives are possible:

(a) The real parts of all eigenvalues associated with all stressed operat-

ing conditions are negative. Thus, all stressed operating conditions

are stable and the procedure stops.

(b) One or more stressed operating conditions result in an eigenvalue

with a positive real part. Sensitivities (3.52) are computed, and the

constraints (3.50) and (3.63)-(3.64) are added to the SSSC-OPF

problem for each one of the unstable stressed operating conditions

(set Su). The procedure continues in step 3.

The flowchart in Figure 3.2 summarizes the proposed method.

It should be noted that the system is not expected to operate at the loading

level defined by λSM. In other words, the load increase represented by λSM is

not a predicted load increase. Instead, the parameter λSM is used to enforce a

margin to instability, in terms of the load. A stressed operating condition is

defined by a contingency and the λSM value. Accordingly, if the system at the
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Base Case

Selection of Stressed Operating Conditions:
Loading Margin

Eigenvalue Analysis

SSSC-OPF

Eigenvalue Analysis

Yes
Stable? End

No

Computation of Sensitivities
Building of Stability Constraints

Figure 3.2: Small-signal stability. Flow chart for the proposed procedure.

stressed operating condition is stable, it is assumed to be stable at the adjusted

operating condition as well, and it has at least a margin λSM to instability even

if the contingency occurs.

Small-signal stability constraints are imposed on the stressed operating con-

ditions. These constraints may cause changes in the generator powers to ensure

small-signal stability for the imposed conditions. In some cases, changes in the

stressed operating conditions imply changes in the adjusted operating condi-

tion because of constraints (3.30)-(3.32) and/or (3.48)-(3.49), which link the

stressed operating conditions to the adjusted one. The new adjusted operating

condition is the result of applying these changes to the base-case operating con-

dition. These changes are redispatching actions, or preventive control actions,
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for the base-case operating condition that are needed to ensure the desired

security margin λSM.

In other cases, the changes in the stressed operating conditions do not

involve any change in the adjusted operating condition. Consequently, no

preventive control actions are needed to achieve the required security margin,

and the adjusted operating condition remains equal to the base-case condition.

A relevant case arises if λSM = 0. In addition to the preventive control

actions that correspond to the adjusted operating condition, the solution out-

put by the proposed procedure defines the emergency control actions needed

to maintain stability if any of the considered contingencies occurs. These

emergency control actions correspond to changes to the values of the control

variables under the different stressed operating conditions.

3.3.3 Sensitivity Calculation

In this thesis, sensitivities (3.52) are computed numerically as follows:

1. As a result of the modal analysis carried out in step 4 of the proposed

redispatching procedure, the real part αs of the critical eigenvalue corre-

sponding to a stressed operating condition s is obtained.

2. The generator power output P s
Gj is varied by a small positive quantity,

ε, and the modal analysis is performed again. A new value of the critical

eigenvalue is obtained whose real part is αs
ε .

3. The sensitivity σs
j is computed as

σs
j =

∂αs

∂P s
Gj

∼= αs
ε − αs

ε
. (3.69)

This procedure is repeated for all generator power outputs related to the con-

sidered stressed operating conditions.

For large systems, the numerical calculation of sensitivities may entail a sig-

nificant computational burden. However, as the sensitivity computations are

independent of each other, the computing time can be reduced using parallel
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computation techniques. Alternatively, closed formulas for computing sensi-

tivities significantly reduce the computational burden. These formulas can be

found, for instance, in [51, 96, 97, 117].

3.4 Small-Signal Stability - Illustrative Exam-

ple

For illustration purposes, the proposed security redispatching procedure is ap-

plied to the WECC 9-bus, 3-machine system. For small-signal stability analy-

sis, the generators are modeled by a two-axis model that incorporates voltage

control. These models are described in Appendix C. Moreover, the one-line

diagram and complete data for this system are provided in Appendix D. For

clarity, the results of each step from the proposed redispatching procedure are

provided.

3.4.1 Base Case

The base-case solution is obtained from the OPF problem described in Ap-

pendix A. Table 3.1 provides this base-case solution.

3.4.2 Selection of the Stressed Operating Conditions

Once the base-case solution is available, contingency analysis is performed.

For simplicity but without loss of generality, only line outages that leave the

system interconnected are considered. Neither generator outages nor antenna

line outages that lead to generator islanding are included in the analysis. For

each contingency, the loading margin λ∗ is obtained by solving the optimiza-

tion problem (B.1)-(B.24) described in Subsection 2.1.3 of Chapter 2. The

considered time period is set to five minutes (Δt = 5 minutes). For each one

of the maximum loading conditions obtained, modal analysis is carried out.

The characterization of each maximum loading condition is completed when

the state variables are initialized. This initialization requires solving the set

of equations (3.2), [114]. The system state matrix is built, and its eigenvalues
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Table 3.1: Small-signal stability illustrative example. WECC 9-bus, 3-machine
system: Base-case solution.

Bus Gen. Dem. PA
Gj QA

Gj PA
Di QA

Di V A
n θA

n

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1 - 1.2633 0.2510 0 0 1.1000 0

2 2 - 1.3642 0.0856 0 0 1.1000 0.0514

3 3 - 1.1955 -0.0592 0 0 1.1000 0.0476

4 - - 0 0 0 0 1.0889 -0.0608

5 - 1 0 0 1.5000 0.6000 1.0595 -0.1164

6 - 2 0 0 1.0800 0.3600 1.0767 -0.0970

7 - - 0 0 0 0 1.0979 -0.0193

8 - 3 0 0 1.2000 0.4200 1.0863 -0.0567

9 - - 0 0 0 0 1.1050 -0.0101

are computed. Table 3.2 lists the calculated value of λ∗, the enforced limits

and the critical eigenvalue at the maximum loading condition for each one of

the contingencies analyzed.

Table 3.2: Small-signal stability illustrative example. WECC 9-bus, 3-machine
system: Loading margin, enforced limits and critical eigenvalues.

Cont. λ∗ Enforced Limits α± jβ

6 - 4 0.1498 Rup
G1, R

up
G2, P

max
G3 -0.2413 ± j7.5584

5 - 4 0.1040 V min
5 , Rup

G2, P
max
G3 1.4272 ± j1.8143

7 - 5 0.1456 Rup
G1, R

up
G2, P

max
G3 -0.1349 ± j6.8823

9 - 6 0.1512 Rup
G1, R

up
G2, P

max
G3 -0.1435 ± j7.5765

7 - 8 0.1435 Rup
G1, R

up
G2, P

max
G3 -0.2147 ± j8.2791

9 - 8 0.1557 Rup
G1, R

up
G2, P

max
G3 -0.3056 ± j11.0802

The stressed operating conditions are selected for a security margin λSM =
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0.08. To this end, the contingency filtering procedure described in Section 3.2

is applied. Observe that no contingency needs to be selected regarding voltage

stability because all loading margins are larger than the selected security mar-

gin. However, the maximum loading condition corresponding to the outage

of line 5-4 exhibits a pair of complex conjugated eigenvalues with a positive

real part. Therefore, the SSSC-OPF problem should include variables and

constraints for the adjusted operating condition and for one stressed operating

condition. The probability of occurrence of the selected contingency is set to

0.01.

3.4.3 Solving the SSSC-OPF Problem

For the security margin considered, the SSSC-OPF problem (3.11)-(3.68) is

solved without constraints (3.50) and (3.63)-(3.64). Table 3.3 provides the

stressed operating condition obtained.

Table 3.3: Small-signal stability illustrative example. WECC 9-bus, 3-machine
system: Stressed operating condition.

Bus Gen. Dem. P s
Gj Qs

Gj P s
Di Qs

Di V s
n θs

n

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1 - 1.4424 0.1229 0 0 1.1000 0

2 2 - 1.6342 1.2266 0 0 1.1000 -0.2652

3 3 - 1.2000 0.3361 0 0 1.1000 -0.1622

4 - - 0 0 0 0 1.0962 -0.0690

5 - 1 0 0 1.6200 0.6480 0.8212 -0.6456

6 - 2 0 0 1.1664 0.3888 1.0706 -0.1806

7 - - 0 0 0 0 1.0345 -0.3550

8 - 3 0 0 1.2960 0.4536 1.0347 -0.3466

9 - - 0 0 0 0 1.0840 -0.2212

The characterization of the stressed operating condition is complete once
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the system state variables are initialized. Since a two-axis model incorporating

voltage control is used for generators, the state variables are δ, ω, E
′
q, E

′
d,

Vm, Vr1, Vr2, and Vf . The initialization of these variables is obtained from

the stressed operating condition of Table 3.3 by solving the set of equations

(3.2) tailored to the model used (see Appendix C). Table 3.4 lists the values

calculated for these state variables.

Table 3.4: Small-signal stability illustrative example. WECC 9-bus, 3-machine
system: State variables under the stressed operating condition.

State Variable Generator 1 Generator 2 Generator 3

δ [rad] 0.1139 0.2914 0.5839

ω [p.u.] 1.0000 1.0000 1.0000

E
′
q [p.u.] 1.1087 1.1414 0.9827

E
′
d [p.u.] 0 0.4488 0.5983

Vm [p.u.] 1.1000 1.1000 1.1000

Vr1 [p.u.] 1.1564 2.9473 2.2777

Vr2 [p.u.] -0.2036 -0.4473 -0.3733

Vf [p.u.] 1.1308 2.4852 2.0742

3.4.4 Solution Checking

Under the stressed operating condition the system state matrix is evaluated

and eigenvalue analysis is carried out. Since there is a pair of complex conju-

gated eigenvalues with a positive real part, namely 0.3775 ± j1.9729 (λSM =

0.08), the stressed operating condition is unstable. To establish the small-

signal stability constraints (3.50) and (3.63)-(3.64), sensitivities (3.52) are

computed using the procedure described in Subsection 3.3.3. The values of

the sensitivities obtained are σs
1 = 0.0050, σs

2 = 0.5230 and σs
3 = 0.2870. The

limit αmax is set to zero. The factor F s is computed using δP = 1 p.u. as
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follows:

F s =
αs

σs
minΔP

=
0.3775

0.0050 × 1
= 75.50.

Taking into account the sign of the sensitivities, the small-signal stability con-

straints are

0.3775 + 75.50(0.0050(P s
G1 − 1.4424)

+ 0.5230(P s
G2 − 1.6342)

+ 0.2870(P s
G3 − 1.2000)) ≤ 0,

and

P s
G1 − 1.4424 ≤ 0,

P s
G2 − 1.6342 ≤ 0,

P s
G3 − 1.2000 ≤ 0.

These constraints are included in the SSSC-OPF problem prior to solve it

again.

3.4.5 Procedure Iterations

The procedure described in the previous subsection is repeated until the real

part of the pair of complex critical eigenvalues becomes negative. This occurs

after 7 iterations. Figure 3.3 depicts the eigenvalue evolution from the right-

hand side to the left-hand side of the complex plane. Specifically, the critical

eigenvalue moves from 0.3775 ± j1.9729 to −0.0173 ± j1.8263.

In the first iteration, all sensitivities of the real part of the critical eigenvalue

for the stressed operating condition with respect to the generator powers are

positive. This result holds for all iterations, as shown in Figure 3.4.

In this situation, the only way to stabilize the stressed operating condition

is to decrease the total generation. As a consequence, the total load demand

must also decrease to maintain the power balance. Figure 3.5 depicts the
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Figure 3.3: Small-signal stability illustrative example. WECC 9-bus, 3-
machine system: Evolution of the pair of complex critical eigenvalues in the
complex plane for λSM = 0.08.

generator and load powers of the stressed operating condition that correspond

to each iteration of the proposed procedure.

Due to constraints (3.30)-(3.32), which link the load of the stressed op-

erating condition to the load of the adjusted one, the load decrease related

to the stressed operating condition forces the load of the adjusted operating

condition to decrease. As a consequence, the generator powers of the adjusted

operating condition are modified. Figure 3.6 depicts the generator and load

powers of the adjusted operating condition that correspond to each iteration

of the proposed procedure.

Table 3.5 provides the generator and load powers that correspond to the

final operating condition obtained after applying the proposed procedure. Ta-

ble 3.5 also provides the redispatching actions with respect to the base case,

namely ΔP up
Gj , ΔP down

Gj and ΔP down
Di .

It is important to observe that ΔP down
Gj and ΔP down

Di represent the most



3.5. Small-Signal Stability - Case Studies 93

1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
σs

1 σs
2 σs

3

Iteration number

S
en

si
ti
v
it
y

va
lu

es

Figure 3.4: Small-signal stability illustrative example. WECC 9-bus, 3-
machine system: Sensitivities of the real part of the pair of critical eigen-
values for the stressed operating condition with respect to generator powers
for λSM = 0.08.

economical redispatching actions that ensure the required security level.

3.5 Small-Signal Stability - Case Studies

In this section, the results of two case studies based on the New England 39-bus,

10-machine system and the IEEE 145-bus, 50-machine system are presented.

3.5.1 New England 39-Bus, 10-Machine System

In this subsection, the proposed security redispatching procedure is applied

to the New England 39-bus, 10-machine system. For small-signal stability

analysis, the generators are modeled using a two-axis model that incorporates

a voltage controller, except for generator 10, which represents an equivalent of

the New York network. These models are described in Appendix C. In order
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Figure 3.5: Small-signal stability illustrative example. WECC 9-bus, 3-
machine system: Generator and load powers of the stressed operating condition
for each iteration of the proposed procedure and for λSM = 0.08.

to force small-signal instability, PSS devices are not considered. The one-line

diagram and the data for this system are provided in Appendix D.

3.5.1.1 Base Case

The base-case solution is obtained from the OPF problem described in Ap-

pendix A. The result of this problem is provided in Appendix D.

3.5.1.2 Selection of the Stressed Operating Conditions

For this system, 35 possible line outages are analyzed. Tables D.20 and D.21

in Appendix D contains the network configuration of this system. The contin-

gencies analyzed affect the first 35 branches described in these tables. None of

these contingencies leads to generator islanding. For each one of these contin-
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Figure 3.6: Small-signal stability illustrative example. WECC 9-bus, 3-
machine system: Generator and load powers of the adjusted operating con-
dition for each iteration of the proposed procedure and for λSM = 0.08.

gencies the loading margin λ is obtained by solving the optimization problem

(B.1)-(B.24) described in Subsection 2.1.3 of Chapter 2. The time period is

Δt = 5 minutes. The value of the loading margin for all considered contin-

gencies is greater than or equal to 0.0957. At the maximum loading condition,

seven contingencies induce Hopf bifurcations. Table 3.6 provides the loading

margin λ and the corresponding critical eigenvalues for these seven contingen-

cies: the outages of lines 1-2, 1-39, 2-25, 8-9, 9-39, 21-22, and 28-29.

The stressed operating conditions that must be incorporated in the SSSC-

OPF problem are selected according to two security margins: λSM = 0.07 and

λSM = 0.09. In these two cases, the seven contingencies from Table 3.6 are

selected to conform to the stressed operating conditions. The probability of

occurrence of each selected contingency is set to 0.01. In summary, the SSSC-

OPF problem used in this case study embodies variables and constraints for
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Table 3.5: Small-signal stability illustrative example. WECC 9-bus, 3-machine
system: Adjusted operating condition and redispatching actions after applying
the proposed procedure.

Bus Gen. Dem. PGj ΔP up
Gj ΔP down

Gj PDi ΔP down
Di

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.]

1 1 - 1.2633 0 0 0 0

2 2 - 1.3220 0 0.0421 0 0

3 3 - 1.1955 0 0 0 0

4 - - 0 0 0 0 0

5 - 1 0 0 0 1.4597 0.0403

6 - 2 0 0 0 1.0800 0

7 - - 0 0 0 0 0

8 - 3 0 0 0 1.2000 0

9 - - 0 0 0 0 0

the adjusted operating condition and for seven stressed operating conditions.

Table 3.6: Small-signal stability case study. New England 10-machine, 39-bus
system: Loading margin and critical eigenvalues for the selected contingencies.

Cont. λ∗ α± jβ

1 - 2 0.1004 0.1905 ± j2.5572

1 - 39 0.1004 0.2089 ± j2.5518

2 - 25 0.1002 0.2095 ± j2.7582

8 - 9 0.1006 0.0705 ± j2.6639

9 - 39 0.1007 0.0922 ± j2.6590

21 - 22 0.0957 0.7435 ± j2.4743

28 - 29 0.0976 0.4326 ± j2.9084
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3.5.1.3 Solution for λSM = 0.07

The initial solution (iteration 1) of the SSSC-OPF problem exhibits an unsta-

ble critical eigenvalue for two stressed operating conditions. These operating

conditions are stabilized after 11 iterations of the proposed procedure using

αmax = 0 and δP = 1 p.u. for the small-signal stability constraints. Table

3.7 shows the critical eigenvalues of the considered stressed operating condi-

tions for the initial unstable solution and for the solution after applying the

proposed procedure.

Table 3.7: Small-signal stability case study. New England 39-bus, 10-machine
system: Critical eigenvalues of the stressed operating conditions before and
after applying the proposed procedure for λSM = 0.07.

Iteration 1 Iteration 11

Cont. αs ± jβs αs ± jβs

1 - 2 -0.0350 ± j2.6911 -0.1580 ± j2.7349

1 - 39 -0.0206 ± j2.6725 -0.1631 ± j2.7043

2 - 25 -0.1605 ± j2.7804 -0.3038 ± j2.5579

8 - 9 -0.1451 -0.1449

9 - 39 -0.1477 -0.1476

21 - 22 0.3330 ± j2.6865 -0.0127 ± j2.5056

28 - 29 0.2134 ± j3.0076 -0.1049 ± j3.0415

The stabilization of the stressed operating conditions affects the adjusted

operating condition. Although no load curtailment is needed, redispatching

actions on the generator powers of the adjusted operating condition are needed

so that the power system can reach the stable stressed operating conditions.

This results from the limiting effect of generator ramping constraints.

Figure 3.7 depicts the redispatching actions with respect to the base case

needed to ensure the desired security margin λSM = 0.07. The redispatch-

ing actions increase some generator powers, ΔP up
Gj , and decrease some other

generator powers, ΔP down
Gj , with respect to the base-case operating condition.
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Figure 3.7: Small-signal stability case study. New England 39-bus, 10-machine
system: Redispatching actions for λSM = 0.07.

3.5.1.4 Solution for λSM = 0.09

The initial solution (iteration 1) of the SSSC-OPF problem shows an unsta-

ble critical eigenvalue for six stressed operating conditions. These operating

conditions are stabilized after 15 iterations of the proposed procedure using

αmax = 0 and δP = 1 p.u. for the small-signal stability constraints. Table

3.8 shows the critical eigenvalues of the considered stressed operating condi-

tions for the initial unstable solution and for the solution after applying the

proposed procedure.

As in the case for λSM = 0.07, the stabilization of the stressed operating

conditions impacts the adjusted operating condition. Figure 3.8 depicts the

redispatching actions that are related to the generator powers with respect to

the base case needed to ensure the desired security margin λSM = 0.09. No

load curtailment is needed. The redispatching actions depicted in Figure 3.8

increase some generator powers, ΔP up
Gj , and decrease other generator powers,

ΔP down
Gj . These results show that generation redispatching can be enough to
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Table 3.8: Small-signal stability case study. New England 39-bus, 10-machine
system: Critical eigenvalues of the stressed operating conditions before and
after applying the proposed procedure for λSM = 0.09.

Iteration 1 Iteration 15

Cont. αs ± jβs αs ± jβs

1 - 2 0.1389 ± j2.5837 -0.1032 ± j2.7958

1 - 39 0.1576 ± j2.5766 -0.1018 ± j2.7746

2 - 25 0.1817 ± j2.7639 -0.3902 ± j2.5315

8 - 9 -0.0088 ± j2.6779 -0.3711 ± j2.3574

9 - 39 0.0159 ± j2.6705 -0.3540 ± j2.3731

21 - 22 0.7161 ± j2.4874 -0.0096 ± j2.7604

28 - 29 0.4228 ± j2.9157 -0.2930 ± j3.3282

restore small-signal stability.

3.5.1.5 Simulation Times

This subsection discusses the computational requirements of the proposed pro-

cedure for the New England 39-bus, 10-machine system. The starting point

of the procedure is the base-case operating condition obtained from the OPF

problem described in Appendix A. This step requires 0.14 s. In the contin-

gency filtering procedure, 35 contingencies are analyzed. This step involves

loading margin computation and eigenvalue analysis at the maximum loading

condition for each considered contingency. Table 3.9 shows the CPU times for

this step. The selection of stressed operating conditions requires 10.4510 s.

Constraints and variables related to seven stressed operating conditions are

included in the SSSC-OPF problem. The initial solution to this problem (i.e.,

without small-signal stability constraints) takes 0.38 s for λSM = 0.07 and 0.39

s for λSM = 0.09.

The procedure requires several iterations to reach the solution. Each it-

eration involves eigenvalue analysis, computing sensitivities and solving the
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Figure 3.8: Small-signal stability case study. New England 39-bus, 10-machine
system: Redispatching actions for λSM = 0.09.

Table 3.9: Small-signal stability case study. New England 39-bus, 10-machine
system: Computational requirements of the contingency filtering procedure.

Loading Eigenvalue Total

margin analysis CPU

Contingencies
35 35 −

analyzed

Average CPU [s]
0.2290 0.0696 0.2986

(per contingency)

Total CPU [s]
8.0150 2.4360 10.4510

(35 contingencies)

SSSC-OPF problem. Eigenvalue analysis is performed for each of the seven

stressed operating conditions obtained after solving the SSSC-OPF problem.
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Sensitivities of the critical eigenvalue real part with respect to each genera-

tor power output are computed by means of numerical differentiation, as de-

scribed in Subsection 3.3.3. Computing sensitivities implies additional eigen-

value analysis and the evaluation of expression (3.69) for each generator and

for each small-signal unstable stressed operating condition. Once sensitivities

have been computed, the corresponding sets of constraints (3.50) and (3.63)-

(3.64) are included in the SSSC-OPF problem. Tables 3.10 and 3.11 list the

average and the total CPU times of each one of these steps for λSM = 0.07 and

λSM = 0.09, respectively. These tables also list the number of times per itera-

tion that eigenvalue analysis is performed, eigenvalue sensitivity is computed,

and the SSSC-OPF problem is solved, along with the number of iterations that

the procedure requires.

Table 3.10: Small-signal stability case study. New England 39-bus, 10-machine
system: Computational requirements of the procedure iterations for λSM =
0.07.

Eigenvalue Sensitivity SSSC-OPF Total

analysis computation problem CPU

NTPI 7 20 1 -

NI 11 10 11 -

Average CPU [s] 0.0696 0.2393 0.4864 -

Total CPU [s] 5.3592 47.8650 5.3500 58.5742

NTPI: number of times per iteration; NI: number of iterations.

The procedure takes a total CPU time of 58.5742 s when λSM = 0.07, and

216.7200 s when λSM = 0.09. Observe that the sensitivity computation is the

step with the highest computational burden. This phenomenon occurs because

eigenvalue sensitivities are computed by means of numerical differentiation. If

closed-form sensitivity formulas are used, the computational burden of this

step can be considerably reduced.
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Table 3.11: Small-signal stability case study. New England 39-bus, 10-machine
system: Computational requirements of the procedure iterations for λSM =
0.09.

Eigenvalue Sensitivity SSSC-OPF Total

analysis computation problem CPU

NTPI 7 60 1 -

NI 15 14 15 -

Average CPU [s] 0.0696 0.2393 0.5600 -

Total CPU [s] 7.3080 201.0120 8.4000 216.7200

NTPI: number of times per iteration; NI: number of iterations.

3.5.2 IEEE 145-Bus, 50-Machine System

In this subsection, the proposed security redispatching procedure is applied

to a slightly modified version of the IEEE 145-bus, 50-machine benchmark

system [101], which is provided in the software package Power System Toolbox

(PST) [29]. This system consists of 145 buses, 453 line/transformers, and 50

machines. Machines connected to buses 93, 102, 104, 105, 106, 110, and 111,

are modeled through a 6th-order model [114]. These machines are equipped

with IEEE ST1a exciters including PSS devices [29]. The classical model is

used for the remaining machines. In order to force small-signal instability, the

PSS device of the machine connected to bus 102 has been removed. Economic

data and technical limits for this system are provided in Appendix D, whereas

the rest of data can be found in [29].

3.5.2.1 Base Case

The base-case solution is obtained from the OPF problem described in Ap-

pendix A.
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3.5.2.2 Selection of the Stressed Operating Conditions

For this system, 434 possible line/transformer outages are analyzed. In the

contingency filtering procedure, the MLC-OPF problem described in Appendix

B is solved and eigenvalue analysis at the maximum loading condition is per-

formed for each contingency. The desired security margin is λSM = 0.05 and

the time period is Δt = 5 minutes. According to the contingency analysis,

five contingencies must be considered in the stressed operating conditions. Ta-

ble 3.12 provides the system loading margin and the critical eigenvalues for

these five contingencies. Since the system loading margins λ∗ for the outages

Table 3.12: Small-signal stability case study. IEEE 145-bus, 50-machine sys-
tem: Loading margin and critical eigenvalues for the selected contingencies.

Contingency λ∗ α± jβ

67 - 124 0.0659 0.2165 ± j9.7872

102 - 117 0.0671 0.0702 ± j6.4852

119 - 130 0.0415 -0.0454 ± j9.4041

119 - 131 0.0392 -0.1010 ± j0

121 - 125 0.0521 0.2882 ± j9.5961

of lines 110-130 and 119-131 are smaller than the required security margin

λSM = 0.05, these contingencies can potentially lead to voltage stability issues.

On the other hand, the outages of lines 67-124, 102-117 and 121-125 show pos-

itive eigenvalues at the maximum loading condition. Thus, these contingencies

are selected due to the risk of small-signal instability at the loading condition

that corresponds to λSM = 0.05. Finally, the probability of occurrence of each

selected contingency is 0.01.

3.5.2.3 Solution for λSM = 0.05

For this case study, the SSSC-OPF problem includes variables and constraints

for the adjusted operating condition and for five stressed operating conditions.

The proposed procedure requires nine iterations to reach the solution using
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δP = 1 p.u. and considering a minimal damping ratio of 0.05 (ζmin = 0.05) for

the small-signal stability constraints. Table 3.13 provides the critical eigen-

values of the considered stressed operating conditions for both the initial and

final iteration of the proposed procedure. The solution of the SSSC-OPF prob-

Table 3.13: Small-signal stability case study. IEEE 145-bus, 50-machine sys-
tem: Critical eigenvalues of the stressed operating conditions before and after
applying the proposed procedure for λSM = 0.05.

Iteration 1 Iteration 4

Contingency αs ± jβs αs ± jβs

67 - 124 0.2740 ± j9.7602 -0.5177 ± j9.3964

102 - 117 -0.1009 ± j0 -0.1009 ± j0

119 - 130 -0.1009 ± j0 -0.1009 ± j0

119 - 131 -0.1010 ± j0 -0.1010 ± j0

121 - 125 -0.1010 ± j0 -0.1010 ± j0

lem without small-signal stability constraints (first iteration of the proposed

procedure) shows generation redispatching and load curtailment. This result

is mainly due to the stabilization of the stressed operating conditions that

correspond to the outages of lines 110-130 and 119-131. Note that, for these

contingencies, λ∗ < λSM. The load curtailment affects all stressed operating

conditions in such that the stressed conditions that correspond to the outages

of lines 102-117 and 121-125 do not present unstable eigenvalues. However,

the stressed operating condition that corresponds to the outage of line 67-124

shows small-signal instability. This stressed operating condition is stabilized

in the fourth iteration using δP = 1 p.u. The final solution shows a total load

curtailment of 2.4078 p.u.

Figure 3.9 depicts two time-domain simulations of the 145-bus system at

the stressed operating condition that corresponds to the outage of line 64-124

when subjected to a small disturbance. In particular, Figure 3.9 shows the

unstable rotor speed trajectories for the solution of the first iteration and the

stable transient for the final solution of the proposed method. Time-domain
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simulations confirm eigenvalue analysis.
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Figure 3.9: Small-signal stability case study. IEEE 145-bus 50-machine system:
Time-domain simulation of the stressed operating condition that correspond
to the outage of line 64-124. Plot (a) corresponds to the first solution and plot
(b) to the final solution.

3.5.2.4 Simulation Times

This subsection discusses the computational requirements of the proposed pro-

cedure for the IEEE 145-bus, 50-machine system. The starting point of the

procedure is the base-case operating condition obtained from the OPF prob-

lem described in Appendix A. This step takes 4.17 s. In the contingency

filtering procedure, 434 contingencies are analyzed. This step involves loading

margin computation and eigenvalue analysis at the maximum loading condi-

tion for each considered contingency. Table 3.14 shows the CPU times for

this step. The selection of stressed operating conditions requires 3326.7836 s
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(� 55.45 minutes). This computing time can be reduced by applying parallel

computation techniques.

Table 3.14: Small-signal stability case study. IEEE 145-bus, 50-machine sys-
tem: Computational requirements of the contingency filtering procedure.

Loading Eigenvalue Total

margin analysis CPU

Contingencies
434 434 −

analyzed

Average CPU [s]
7.3600 0.3054 7.6654

(per contingency)

Total CPU [s]
3194.2400 132.5436 3326.7836

(35 contingencies)

Constraints and variables related to five stressed operating conditions are

included in the SSSC-OPF problem. The initial solution to this problem (i.e.,

without small-signal stability constraints) takes 162.09 s.

The procedure requires nine iterations to reach the solution. Each iteration

involves eigenvalue analysis, computing sensitivities and solving the SSSC-OPF

problem. Eigenvalue analysis is performed for each one of the five stressed

operating conditions obtained after solving the SSSC-OPF problem. In this

case, only one stressed operating condition shows small-signal instability in the

first iteration. For this stressed condition, sensitivities of the critical eigenvalue

real part with respect to each generator power output are computed by means

of numerical differentiation, as described in Subsection 3.3.3. Once sensitivities

have been computed, the corresponding set of constraints (3.50) and (3.63)-

(3.64) is included in the SSSC-OPF problem. Table 3.15 lists the average

and the total CPU times of each one of these steps. This table also lists the

number of times per iteration that eigenvalue analysis is performed, eigenvalue

sensitivity is computed, and the SSSC-OPF problem is solved, along with the

number of iterations that the procedure requires.
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Table 3.15: Small-signal stability case study. IEEE 145-bus, 50-machine sys-
tem: Computational requirements of the procedure iterations for λSM = 0.05.

Eigenvalue Sensitivity SSSC-OPF Total

analysis computation problem CPU

NTPI 5 50 1 -

NI 9 8 9 -

Average CPU [s] 0.3054 0.8916 99.6822 -

Total CPU [s] 13.7430 356.6400 897.1398 1267.5228

NTPI: number of times per iteration; NI: number of iterations.

The procedure takes a total CPU time of 1267.5228 s (� 21.13 minutes).

In this case, the solution to the SSSC-OPF problem is the step with the high-

est computational burden. This step can be a concern for large-scale power

systems if an important number of stressed operating conditions are to be

considered. The development of an ad hoc solution algorithm for this problem

(e.g., based on decomposition techniques) may significantly reduce computing

times.

3.6 Summary and Conclusions

This chapter has presented a security redispatching procedure able to resolve

security issues that pertain to both voltage and small-signal instability. The

proposed procedure is intended to help system operators guarantee an appro-

priate level of security.

Once a base-case solution is available, contingency analysis is carried out

to identify the harmful contingencies pertaining to voltage and small-signal

instability. For each one of the pre-specified set of contingencies, the sys-

tem loading margin is computed. At the maximum loading condition, modal

analysis is carried out, and the critical contingencies are identified in terms

of the desired security margin along with the eigenvalues obtained from the

modal analysis. Then, the procedure solves an OPF problem that includes
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both voltage and small-signal stability constraints.

This OPF problem explicitly considers security limits through stressed op-

erating conditions. These stressed operating conditions are defined by both

a contingency and a pre-defined loading condition that is higher than that of

the base case. Small-signal stability constraints are imposed on the stressed

operating conditions. These constraints are formulated based on the first-order

Taylor series expansion of the critical eigenvalue real part. Thus, first-order

sensitivities of the critical eigenvalue real part with respect to generator pow-

ers are used. Provided that the stressed operating conditions are stable, the

adjusted operating condition is considered to be stable as well, and it has at

least a given security margin even if a contingency occurs.

The performance of the proposed procedure has been illustrated and tested

on the WECC 9-bus, 3-machine system, the New England 39-bus, 10-machine

system, and the IEEE 145-bus, 50-machine system. The results have been

analyzed and discussed in detail.

Simulation results show that redispatching power generation is an effective

way to improve the small-signal stability of the system. Moreover, the proposed

procedure identifies the minimum-cost preventive redispatching actions for the

base-case solution that ensure the required security margin with respect to both

voltage and small-signal stability. Simulations also confirm the ability of the

proposed procedure to address multi-contingency cases.

The proposed procedure comprises certain steps that are time consuming,

which potentially makes their implementation impractical for large-scale power

systems. This is the case of eigenvalue analysis and sensitivity computation.

The computational burden of the eigenvalue analysis can be reduced by com-

puting only those eigenvalues that have the largest real part. For simplicity,

the sensitivities have been computed using numerical differentiation. However,

closed-form sensitivity formulas are available in the literature. These formu-

las considerably reduce (with respect to numerical differentiation) the time

required to compute eigenvalue sensitivities.

Solving the proposed SSSC-OPF problem can be also a concern for large-

scale power systems if an important number of stressed operating conditions

are to be considered. The development of an ad hoc algorithm for this problem



3.6. Summary and Conclusions 109

(e.g., based on decomposition techniques) may significantly reduce computing

times. Since this chapter focuses on the design of an effective procedure, these

computational issues have not been specifically addressed.





Chapter 4

Optimal Power Flow with

Transient Stability Constraints

This chapter describes a redispatching procedure to restore transient stability.

It relies on a transient stability constrained optimal power flow (TSC-OPF)

model. In addition to power flow constraints and limits, the resulting opti-

mal power flow model includes discrete time equations that describe the time

evolution of all the machines in the system. Transient stability constraints

are formulated by reducing the initial multi-machine model to a one-machine

infinite-bus equivalent. This equivalent allows imposing angle bounds that

ensure transient stability.

This chapter is organized as follows. Section 4.1 presents an overview

of transient stability, including the system model and the transient stability

assessment method used in this chapter. Section 4.2 describes the contin-

gency filtering procedure used to identify the harmful contingencies from the

transient stability point of view. In Section 4.3, the TSC-OPF problem is

formulated and the steps of the redispatching procedure are described. In

Sections 4.4 and 4.5, this procedure is tested and analyzed using the WECC

9-bus, 3-machine system, the New England 39-bus, 10-Machine system, and

a real-world 1228-bus, 292-machine system. Finally, Section 4.6 summarizes

and offers some conclusions.

111
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4.1 Transient Stability

Transient stability is concerned with the ability of a power system to maintain

synchronism after a large disturbance, such as a fault on a transmission line

[102]. During the fault period, the rotors of the synchronous machines suffer

an acceleration or deceleration due to the imbalance between the input me-

chanical torque and the output electromagnetic torque in the generators. As

a consequence, the rotor speed of the machines changes and the kinetic en-

ergy stored in the rotating parts of the generators increases or decreases. This

causes the angular separation of the machines. If the system cannot absorb

the kinetic energy stored during the fault period, synchronism is lost. This

kind of instability usually takes the form of aperiodic angular separation of

the machines due to lack of synchronizing torque. Transient instability often

appears during the first swing of the system transient; thus, the time frame of

interest is reduced to one or two seconds after the disturbance. However, in

certain systems, transient instability can appear after the first swing because

of slow inter-area swing modes [73]. This phenomenon is known as multi-swing

instability and its study may involve analysis that extend over time periods

greater than ten seconds.

4.1.1 System Model

In transient stability studies, as in small-signal stability studies, the power

system is represented by a set of differential-algebraic equations (DAE):

[
ẋ

0

]
=

[
f(x,y,p)

g(x,y,p)

]
(4.1)

where vector x (x ∈ R
nx) contains the state variables (e.g., δ, ω), vector y

(y ∈ R
ny) includes algebraic variables (e.g., V , θ, QG) and p (p ∈ R

np) is

the vector of control variables (e.g., PG, PD, QD). Function f (f : R
nx ×

R
ny × R

np �−→ R
nx) is a nonlinear vector function associated with the state

variables x that usually represents the system differential equations, such as

those associated with the synchronous machine dynamics, control devices, etc.;
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and vector function g (g : R
nx × R

ny × R
np �−→ R

ny) represents a system of

algebraic equations, including the power flow equations, algebraic equations

associated with the synchronous machine model, etc.

In this chapter, a classical model is used to represent the power system.

This model is based on the following assumptions [5]:

1. The input mechanical power is constant.

2. Damping is neglected.

3. Synchronous machines are represented by a constant electromotive force

behind a transient reactance.

4. The mechanical rotor angle of the synchronous machine coincides with

the angle of the electromotive force behind the transient reactance.

5. Loads are represented by constant impedances.

Note that this classical model supports sufficient accuracy for moderate com-

putational effort. Within the classical model, the transient behavior of syn-

chronous generators is described by the so-called swing equations:

δ̇j = ωb(ωj − 1), ∀j ∈ G, (4.2)

ω̇j =
1

Mj
(Pmj − Pej), ∀j ∈ G, (4.3)

where δj is the rotor angle, ωj is the rotor speed, Mj is the inertia coefficient,

Pmj is the input mechanical power, and Pej is the output electrical power of

generator j. Finally, ωb in (4.2) represents the base synchronous frequency in

rad/s.

Since the loads are approximated as constant impedances, the equivalent

load admittance at bus n is

Y Dn =
PDn

V 2
n

− j
QDn

V 2
n

, ∀n ∈ N , (4.4)

and the original network can be transformed into an equivalent reduced net-

work whose nodes correspond to the internal generator nodes [5]. The admit-
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tance matrix of the reduced network is called the reduced admittance matrix

and can be used to define the electrical power of the generators. Thus, the

electrical power Pej in (4.3) can be written as follows:

Pej = E ′
j

∑
�

E ′
�[Bj� sin(δj − δ�) +Gj� cos(δj − δ�)], ∀j, � ∈ G, (4.5)

where E ′ is the electromotive force of the corresponding generators andGj� and

Bj� are the elements of the real and imaginary parts of the reduced admittance

matrix Ybus, respectively. The reduced admittance matrix can also be used

with a detailed generator model, as far as the loads are represented as constant

impedances and the admittance matrix reduction is stopped at the machine

buses and does not extend to the fictitious internal node of the machine model.

4.1.2 Center of Inertia

In transient stability studies, it is convenient to express the generator rotor

angles with respect to the system Center Of Inertia (COI) reference to facilitate

the visualization of power system dynamics. The position of the COI is defined

as

δCOI =
1

MT

∑
j∈G

Mjδj , (4.6)

where

MT =
∑
j∈G

Mj . (4.7)

Then, the rotor angle of the generator j with respect to the COI is expressed

as δj − δCOI.

4.1.3 Transient Stability Assessment: SIME Method

The transient stability assessment is the evaluation of the ability of a power

system to withstand sudden large disturbances by surviving the ensuing tran-

sient and moving into an acceptable steady-state operating condition [57]. The

transient stability assessment can be performed using time-domain simulations,

transient energy functions or hybrid methods. Time-domain simulations allow
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taking into account the full system dynamic model and consist in checking

that inter-machine rotor angle deviations lie within a specific range of values.

Unfortunately, this range is system, if not operating-point, dependent and, in

general, is not easy to establish. The methods based on the transient energy

function greatly reduce the computational burden. However, the main limi-

tation to using these methods lies in the construction of a suitable Lyapunov

function and in the definition of the stability domain. Hybrid methods com-

bine the advantages of time-domain simulation and transient energy function

methods while avoiding some of their drawbacks.

In this thesis, transient stability is assessed using the SIngle Machine Equiv-

alent (SIME) method [106], which is a hybrid method. A brief summary of its

fundamental features is provided in the following subsections.

4.1.3.1 Basis

The SIME method is based on the concept of the One-Machine Infinite Bus

(OMIB) equivalent. The OMIB equivalent concept arises out of the obser-

vation that a multi-machine power system loses synchronism because of the

irrevocable separation of its machines into two groups. These two groups can

be replaced by a two-machine system and then by an OMIB equivalent system

[105]. Further, the transient stability of the multi-machine system is assessed

by applying the Equal-Area Criterion (EAC) to the OMIB equivalent system.

The dynamic model of an OMIB system is represented by the “swing”

equation and expressed as

Mδ̈ = Mω̇ = Pm − Pe = Pa, (4.8)

where δ is the rotor angle, ω is the rotor speed, M is the inertia coefficient, Pm

is the input mechanical power, Pe is the output electrical power, and Pa is the

acceleration power of the equivalent OMIB system. A detailed definition of

the parameters of (4.8) appears in Subsection 4.1.3.3. The main characteristic

of the SIME method is that the parameters that define the OMIB equivalent

system are obtained from the physical parameters and time varying data of

the multi-machine system provided by a time-domain simulation. Thus, de-
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tailed dynamic power system models can be considered since equation (4.8)

adequately expresses the OMIB system dynamics and the EAC criterion is still

valid [106]. Therefore, checking the transient stability of the OMIB equiva-

lent by means of the EAC also evaluates the transient stability properties of

the original multi-machine system. Thus, at each time step of a time-domain

simulation, the OMIB parameters are updated and the stability of the OMIB

equivalent is checked by the EAC.

According to the equivalent OMIB parameters and the EAC, SIME estab-

lishes a set of objective stability conditions that allow the time-domain simu-

lation to be stopped as soon as these conditions are met, thereby considerably

reducing the computation time.

4.1.3.2 Identification of the system decomposition pattern

SIME uses information of the system evolution from a time-domain simu-

lation of the considered fault. As soon as the system enters the post-fault

configuration, SIME constructs a sequence of candidate OMIB equivalents by

decomposing the system machines into two candidate groups: (i) the group

of machines that are likely to lose synchronism, so-called critical machines,

and (ii) all other machines, so-called non-critical machines. The maximum

difference (distance) between two adjacent rotor angles, say δj − δ�, indicates

the frontier between the two machine groups, as follows. All generators whose

rotor angles are greater than δj are part of the critical machine group, while

all generators whose rotor angles are lower than δ� are part of the non-critical

machine group. These two groups are replaced by an OMIB equivalent system,

whose transient stability is determined by means of the EAC. This procedure

is carried out for each step of the time-domain simulation until one candidate

OMIB equivalent satisfies the instability conditions. This candidate is termed

the critical OMIB equivalent or simply the OMIB equivalent.

4.1.3.3 OMIB time-varying parameters

The OMIB equivalent parameters are time-varying since they are refreshed at

each time step of the time-domain simulation. The OMIB system parameters,
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δ, ω, M , Pm, Pe and Pa, are computed from the corresponding individual

parameters of each system machine, as follows. Once the groups of critical

machines and non-critical machines are identified, the multi-machine system is

reduced to a two-machine system. The group of critical machines and the group

of non-critical machines are replaced by two equivalent machines using the

concept of partial center of angle. The parameters that define these machines

at each time step t of the time-domain simulation are computed as follows:

δt
C =

1

MC

∑
j∈GC

Mjδ
t
j , (4.9)

δt
NC =

1

MNC

∑
j∈GNC

Mjδ
t
j , (4.10)

ωt
C =

1

MC

∑
j∈GC

Mjω
t
j, (4.11)

ωt
NC =

1

MNC

∑
j∈GNC

Mjω
t
j , (4.12)

where δt
C and ωt

C are, respectively, the equivalent rotor angle and speed of the

critical machine group; and δt
NC and ωt

NC are, respectively, the equivalent rotor

angle and speed of the non-critical machine group. The inertia coefficients of

the critical (MC) and non-critical (MNC) equivalents are expressed as follows:

MC =
∑
j∈GC

Mj , (4.13)

MNC =
∑

j∈GNC

Mj . (4.14)

The OMIB parameters are computed from those of the equivalent two-

machine system. The OMIB equivalent rotor angle δt and rotor speed ωt are

defined as follows:

δt = δt
C − δt

NC, (4.15)

ωt = ωt
C − ωt

NC. (4.16)

Note that ωt, as defined in (4.16), is a relative value of the OMIB equivalent
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rotor speed. The electric power P t
e and the mechanical power P t

m of the OMIB

are derived using the following expressions:

P t
e = M

[
1

MC

∑
j∈GC

P t
ej −

1

MNC

∑
j∈GNC

P t
ej

]
, (4.17)

P t
m = M

[
1

MC

∑
j∈GC

P t
mj −

1

MNC

∑
j∈GNC

P t
mj

]
, (4.18)

where

M =
MCMNC

MC +MNC
, (4.19)

is the inertia coefficient of the OMIB equivalent. Finally, the OMIB acceler-

ating power P t
a is defined by

P t
a = P t

m − P t
e . (4.20)

4.1.3.4 Stability conditions

The EAC establishes that an OMIB system is transient unstable if the kinetic

energy stored during the fault-on period is greater than the maximum potential

energy that the power system can dissipate during the post-fault period.

Figures 4.1 and 4.2 depict the OMIB trajectory for an unstable scenario.

Figure 4.1 shows the P − δ curves and Figure 4.2 depicts the phase plane.

The kinetic energy stored in the system corresponds to the accelerating area

Aacc, whereas the potential energy dissipated by the system corresponds to

the decelerating area Adec. In this case, the electric power P t
e crosses the

mechanical power P t
m or, in other words, the accelerating power Pa passes zero

and continues to increase. From a physical point of view, P t
a = 0 marks the

OMIB loss of synchronism. Moreover, it is observed in the phase plane that

ωt > 0 at the very instant at which P t
e crosses P t

m. Hence, the conditions for

an unstable OMIB trajectory are as follows:

P tu
a = 0, (4.21)
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Ṗ tu
a =

dP t
a

dt

∣∣∣∣
t=tu

> 0, (4.22)

ωtu = ωu > 0, (4.23)

where subscript “u” stands for unstable. The unstable OMIB rotor angle δu

corresponds to the angle at which the instability conditions (4.21)-(4.23) are

met.

P

δ

Aacc

Adec

Pm

Pe

δu

Figure 4.1: Unstable OMIB trajectory. P − δ curve.

Figures 4.3 and 4.4 depict the OMIB trajectory for a stable scenario. Figure

4.3 shows the P −δ curves and Figure 4.4 depicts the phase plane. The kinetic

energy stored in the system corresponds to the accelerating area Aacc ,whereas

the potential energy dissipated by the system corresponds to the decelerating

area Adec. In this case, the electric power P t
e stops increasing before crossing

the mechanical power P t
m line. Moreover, it is apparent in the phase plane that

ωt = 0 at the very instant at which P t
e “comes back”. Hence, the conditions
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ω

δ

ωu

δu

ω = 0

Figure 4.2: Unstable OMIB trajectory. Phase plane.

for a first-swing stable OMIB trajectory are as follows:

ωtr = ωr = 0, (4.24)

P tr
a < 0, (4.25)

where subscript “r” stands for return. The OMIB rotor angle δr corresponds

to the return angle at which the first-swing stability conditions (4.24)-(4.25)

are met.

It should be noted that the instability conditions (4.21)-(4.23) determine

the early termination conditions of the time-domain simulation. However,

when the stability conditions (4.24)-(4.25) are met, the system is first-swing

stable, and the time-domain simulation can be stopped only if multi-swing

instability phenomena are not of interest [106].
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P

δ

Aacc

Adec

Pm

Pe

δr

Figure 4.3: Stable OMIB trajectory. P − δ curve.

4.2 Security Assessment: Contingency Filter-

ing

Contingency analysis selects those contingencies that may lead to system in-

stability from a set of credible contingencies. As in previous chapters, the

initial set of contingencies is defined based on the N − 1 security criterion.

This initial set is reduced with a contingency filtering procedure to identify

the most harmful (i.e., critical) contingencies.

Regarding transient stability, the analyzed contingencies consist of a three-

phase-to-ground symmetrical fault and the subsequent fault clearing by trip-

ping the corresponding line. Critical contingencies are identify with a time-

domain simulation complemented by the SIME method. The contingencies of

interest are those that cause the system to lose synchronism, i.e., the contin-

gencies that cause the system OMIB equivalent to met instability conditions

(4.21)-(4.23).
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ω

δδr

ωr = 0

Figure 4.4: Stable OMIB trajectory. Phase plane.

For first-swing unstable contingencies, the SIME method identifies the crit-

ical and non non-critical machines, the time tu and the OMIB equivalent rotor

unstable angle δu for which instability conditions (4.21)-(4.23) are met. In ad-

dition to this information, for multi-swing unstable contingencies, SIME also

provides the time tr and the OMIB equivalent rotor return angle δr for which

the first-swing stability conditions (4.24)-(4.25) are reached.

Note that the time-domain simulation of one contingency is independent

of those of other contingencies. This fact can be exploited to reduce the com-

putation time by using parallel computation.

4.3 Security Redispatching

This section presents a security redispatching procedure based on a Transient

Stability Constrained Optimal Power Flow (TSC-OPF) problem to assist the

system operator in ensuring transient stability. The proposed TSC-OPF prob-
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lem includes, among others, the pre-contingency power flow equations; tech-

nical bounds on generators, buses and lines; discrete time swing equations for

all the machines of the system (reproducing the actual time-domain simula-

tion); and a transient stability bound on the rotor angle of the system OMIB

equivalent. This OMIB equivalent is computed using the SIME method.

The solution of the proposed procedure provides the preventive control ad-

justments for the base-case solution needed to guarantee transient stability

with respect to a set of contingencies. It is assumed that the system oper-

ator has access to the technical information of the generators and that the

generators provide the ISO with cost offers for redispatching.

4.3.1 TSC-OPF Problem Description

This subsection describes the objective function and all constraints pertaining

to the TSC-OPF problem in detail.

4.3.1.1 Objective function

The objective function is aimed at minimizing the variations with respect to

the base-case solution. In particular, the objective function is composed of

several terms that represent adjustment costs and penalty functions. The

adjustment costs correspond to changes in the generation and load powers,

while the penalty functions concern voltage magnitudes at generator buses.

Thus, the total cost function of generation power adjustments is

zG(ΔP up
Gj ,ΔP

down
Gj ) =

∑
j∈G

cup
GjΔP

up
Gj + cdown

Gj ΔP down
Gj , (4.26)

where cup
Gj and cdown

Gj are, respectively, the offering cost of generator j to increase

and decrease its power dispatch for security purposes. The total penalty func-

tion of voltage magnitude adjustments at generator buses is

zV(ΔV up
n ,ΔV down

n ) =
∑

n∈NG

cup
VnΔV up

n + cdown
Vn ΔV down

n . (4.27)
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The term (4.27) is included to penalize any changes in the base-case voltage

magnitudes at generator buses since the voltage profile of the base case is

considered to be the most suitable. Furthermore, a term is included to take

into account the cost of adjustments to demand powers. These adjustments

involve only demand power decrements. The total cost function of demand

power adjustments is

zD(ΔP down
Di ) =

∑
i∈D

cdown
Di ΔP down

Di , (4.28)

where cdown
Di are the cost of demand curtailment. In summary, the resulting

objective function is as follows:

z = zG(ΔP up
Gj ,ΔP

down
Gj ) + zV(ΔV up

n ,ΔV down
n ) + zD(ΔP down

Di ). (4.29)

4.3.1.2 Pre-contingency power flow equations

The operating condition of the system is established by the active and reactive

power balance at all buses:

PGn − PDn =
∑

m∈Θn

Pnm(·), ∀n ∈ N , (4.30)

QGn −QDn =
∑

m∈Θn

Qnm(·), ∀n ∈ N , (4.31)

where the powers on the left-hand side of each equation are

PGn =
∑
j∈Gn

PGj , ∀n ∈ N , (4.32)

PDn =
∑
i∈Dn

PDi, ∀n ∈ N , (4.33)

QGn =
∑
j∈Gn

QGj , ∀n ∈ N , (4.34)

QDn =
∑
i∈Dn

PDi tan(ψDi), ∀n ∈ N , (4.35)
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with

PGj = PA
Gj + ΔP up

Gj − ΔP down
Gj , ∀j ∈ G, (4.36)

PDi = PA
Di − ΔP down

Di , ∀i ∈ D, (4.37)

and

ΔP up
Gj ≥ 0, ∀j ∈ G, (4.38)

ΔP down
Gj ≥ 0, ∀j ∈ G, (4.39)

ΔP down
Di ≥ 0, ∀i ∈ D. (4.40)

Equation (4.35) implies that constant power factor loads are considered. The

functions on the right-hand side of (4.30) and (4.31) are the power flow equa-

tions and depend on the device connected between buses n and m. Appendix

C describes these equations in detail. In this chapter and for the sake of sim-

plicity, no control devices are considered. Therefore, the power flow equations

(4.30) and (4.31) only depend on bus voltage magnitudes and angles. The

voltage magnitudes at the generation buses are defined as

Vn = V A
n + ΔV up

n − ΔV down
n , ∀n ∈ NG, (4.41)

with

ΔV up
n ≥ 0, ∀n ∈ NG, (4.42)

ΔV down
n ≥ 0, ∀n ∈ NG. (4.43)

Finally, note that superscript “A” in (4.36), (4.37) and (4.41) indicates base-

case solution.

4.3.1.3 Technical limits

The power production is limited by the capacity of the generators.

Pmin
Gj ≤ PGj ≤ Pmax

Gj , ∀j ∈ G, (4.44)
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Qmin
Gj ≤ QGj ≤ Qmax

Gj , ∀j ∈ G. (4.45)

Voltages magnitudes throughout the system should be within operating limits,

V min
n ≤ Vn ≤ V max

n , ∀n ∈ N . (4.46)

The current flow through all branches of the network should be below thermal

limits,

Ik(·) ≤ Imax
k , ∀k = (n,m) ∈ Ω, (4.47)

where functions Ik(·) depend on the device k connected between buses n and

m. The expressions of these functions are provided in Appendix C.

4.3.1.4 Initial values of machine rotor angles, rotor speeds and elec-

tromotive forces

The initial values of generator rotor angles δ0
j and electromotive forces E ′

j are

obtained from the system pre-fault steady-state conditions as follows,

E ′
jVn sin(δ0

j − θn)

x′dj

− PGj = 0, ∀j ∈ Gn, (4.48)

E ′
jVn cos(δ0

j − θn) − V 2
n

x′dj

−QGj = 0, ∀j ∈ Gn, (4.49)

where x′dj is the transient reactance of generator j and, as defined by (4.41),

Vn is the voltage magnitude at the bus to which generator j is connected.

Furthermore, since the pre-fault is a steady-state synchronous condition,

ω0
j = 1, ∀j ∈ G. (4.50)

4.3.1.5 Discrete swing equations

The swing equations (4.2) and (4.3) are discretized using the trapezoidal rule.

Thus, generator rotor angles and speeds for a generic time step (t + 1) are
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defined by the following equations:

δt+1
j − δt

j −
tstep
2
ωb(ω

t+1
j − 1 + ωt

j − 1) = 0, ∀t ∈ T , ∀j ∈ G, (4.51)

ωt+1
j − ωt

j −
tstep
2

1

Mj
(Pmj − P t+1

ej + Pmj − P t
ej) = 0, ∀t ∈ T , ∀j ∈ G, (4.52)

where

P t
ej = E ′

j

∑
�

E ′
�[B

t
j� sin(δt

j − δt
�) +Gt

j� cos(δt
j − δt

�)], (4.53)

and Pmj = PGj . In (4.51) and (4.52), tstep represents the integration time step

used in the trapezoidal rule.

Note that the reduced admittance matrix depends on the network topology;

therefore in (4.53), the values of Bt
j� and Gt

j� are different for the during-fault

and post-fault states and consequently depend on time.

4.3.1.6 Transient stability limit

As stated in Subsection 4.1.3, if a time-domain simulation proves to be un-

stable, the SIME method identifies the critical machines, the time tu and the

OMIB rotor unstable angle δu for which the instability conditions are reached.

Similarly, if a time-domain simulation show first-swing stability, the SIME

method provides the time tr and the OMIB rotor return angle δr for which

the OMIB equivalent meets the first-swing stability conditions. The SIME

criterion is used to define transient stability limits in the OPF problem as fol-

lows. For each time step, the equivalent OMIB rotor angle must be below the

instability limit provided by SIME.

δt ≤ δmax, ∀t ∈ T , (4.54)

where T is as small as possible to reduce computing time but larger than the

first swing of the system. The equivalent OMIB rotor angle is computed as

δt =
1

MC

∑
j∈GC

Mjδ
t
j −

1

MNC

∑
j∈GNC

Mjδ
t
j , (4.55)



128 4. Optimal Power Flow with Transient Stability Constraints

where

MC =
∑
j∈GC

Mj and MNC =
∑

j∈GNC

Mj . (4.56)

4.3.1.7 Other constraints

The proposed TSC-OPF problem includes the following additional constraints:

− π ≤ θn ≤ π, ∀n ∈ N , (4.57)

θref = 0. (4.58)

Equation (4.57) is included to reduce the feasibility region, thereby causing

the OPF problem to converge more rapidly in general.

4.3.1.8 TSC-OPF problem formulation

The formulation of the TSC-OPF problem is summarized below:

Minimize (4.29)

subject to

1. Pre-contingency power flow equations (4.30)-(4.31).

2. Technical limits (4.44)-(4.47).

3. Initial values of machine rotor angles, rotor speeds and electromotive

forces (4.48)-(4.50).

4. Discrete swing equations (4.51)-(4.52).

5. Transient stability limit (4.54).

6. Other constraints (4.57)-(4.58).

The above formulation can be easily extended to the multi-contingency case by

including constraints (4.51)-(4.52) and (4.54) for each contingency considered.
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4.3.2 Security Redispatching Description

Converting the whole time domain simulation of the system transient stabil-

ity model into a set of algebraic equations results in a very large number of

equations to be included in an OPF. Solving this non-linear OPF problem

may require prohibitive computational times and memory burdens, and may

lead to convergence issues. To reduce the number of constraints, the reduced

admittance matrix is used, and the OMIB equivalent trajectory is constrained

only during the first swing of the system. The latter allows the inclusion of

discretized transient stability equations (4.51)-(4.52) and (4.54) for only a few

seconds after the fault occurs.

The proposed procedure is as follows.

1. Base-Case Solution. The base-case solution corresponds to the solution

of a dispatching procedure (e.g., a market clearing procedure) adjusted

by losses. Specifically, the base-case solution is obtained from the OPF

problem described in Appendix A.

2. Contingency Analysis. The critical contingencies are identified by ap-

plying the procedure described in Section 4.2, i.e., carrying out a time-

domain simulation complemented by SIME. For unstable contingencies,

SIME outputs the sets of critical and non-critical machines. Equation

(4.55) incorporates this information. The system can become unstable

in two ways:

(a) First-swing instability. In this case, the instability angle δu pro-

vided by SIME is used to define the transient stability limit δmax in

equation (4.54).

(b) Multi-swing instability. In this case, the OMIB equivalent has a

return angle δr in the first swing. However, after some cycles, the

system loses synchronism. The return angle value δr is used to

define the transient stability limit δmax in equation (4.54). To avoid

multi-swing phenomena, δmax is set to δr−Δδ, i.e., δmax is fixed to a

value smaller than δr. In this way, the system is forced to reach the

first-swing stability conditions for a smaller value of the OMIB rotor
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angle. This implies a reduction in the energy of the OMIB system

and, hence, a reduction in the risk of multi-swing instability. The

value of the decrement Δδ is defined based on a heuristic criterion.

3. Solve the TSC-OPF Problem. The TSC-OPF problem described in Sub-

section 4.3.1.8 is solved, and the new operating condition is obtained.

4. Solution Checking. A time-domain simulation that includes SIME is

solved for the new operating condition obtained in step 3. This simula-

tion is necessary to determine the transient stability of the new operating

condition. Three different cases can be encountered:

(a) The system is stable, and the procedure stops.

(b) The system is first-swing unstable. This result is due to the fact

that the reduced admittance Yt
bus used in the optimization problem

was calculated for the previous operating condition, which exhibits

different voltage values than the solution obtained in step 3 (see

equation (4.4)). Thus, the reduced admittance matrix is updated

and the transient stability limit δmax is fixed to the new value of δu.

The procedure continues at step 3.

(c) The system is multi-swing unstable. In this case, the OMIB equiv-

alent has a return angle δr in the first swing. However, after some

cycles, the system loses synchronism. The return angle value δr

is used to define the new transient stability limit δmax. To avoid

multi-swing phenomena, δmax is set to δr−Δδ. Finally, the reduced

admittance matrix Yt
bus is updated. The procedure continues in

step 3.

The flowchart depicted in Fig. 4.5 illustrates the proposed procedure.

Note that, in the first iteration, the TSC-OPF problem is initialized with

the base-case solution, while in the following iterations the TSC-OPF problem

is initialized with the solution from the previous iteration. In the simulations,

convexity problems have not been observed, mainly due to the fact that the

initial solution is generally close to the optimum.
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Figure 4.5: Transient stability. Flow chart of the proposed procedure.

For simplicity, it is assumed that a single harmful contingency is identified

at step 2. However, as discussed in Subsection 4.3.1.8, multiple contingencies

can readily be taken into account by including equations (4.51)-(4.52) and

(4.54) for each contingency in the TSC-OPF problem.

There may be situations in which the power adjustments determined by
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the proposed procedure modify the instability mode, i.e., they change the set

of critical/non-critical machines. This requires including equations (4.54) and

(4.55) for both the previous and the new instability mode.

4.4 Transient Stability - Illustrative Example

For illustration purposes, the proposed redispatching procedure is applied to

the WECC 9-bus, 3-machine system. The main goal of this example is to

clarify the behavior of the transient stability constraints based on SIME in the

TSC-OPF problem. To this end, each iteration of the proposed procedure is

described in detail.

The generators of the system are represented using a classical model and

the loads are modeled as constant impedances. These models are described in

Appendix C. Moreover, the one-line diagram and the data for this system are

provided in Appendix D.

4.4.1 Base Case

The base-case solution is obtained from the OPF problem described in Ap-

pendix A. This base-case solution is identical to the base-case solution pro-

vided in Table 4.1 of Chapter 3, which is repeated here for clarity.

4.4.2 Contingency Analysis

A time-domain simulation that includes SIME is solved for the base-case oper-

ating condition. The considered contingency is a three-phase-to-ground sym-

metrical fault that takes place at bus 7 and is cleared after 0.3 s by tripping

line 7-5. The clearing time was chosen to force transient instability. The whole

simulation time is 5 s.

The base-case operating condition is first-swing unstable for the contin-

gency considered. The OMIB equivalent for the base case is unstable since the

OMIB rotor angle δ increases beyond the admissible angle δu = 155.01 degrees

after tu = 0.45 s. Generators 2 and 3 compose the set of critical machines,
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Table 4.1: Transient stability illustrative example. WECC 9-bus, 3-machine
system: Base-case solution.

Bus Gen. Dem. PA
Gj QA

Gj PA
Di QA

Di V A
n θA

n

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1 - 1.2633 0.2510 0 0 1.1000 0

2 2 - 1.3642 0.0856 0 0 1.1000 0.0514

3 3 - 1.1955 -0.0592 0 0 1.1000 0.0476

4 - - 0 0 0 0 1.0889 -0.0608

5 - 1 0 0 1.5000 0.6000 1.0595 -0.1164

6 - 2 0 0 1.0800 0.3600 1.0767 -0.0970

7 - - 0 0 0 0 1.0979 -0.0193

8 - 3 0 0 1.2000 0.4200 1.0863 -0.0567

9 - - 0 0 0 0 1.1050 -0.0101

whereas generator 1 is the non-critical machine. Figure 4.6 shows the unstable

behavior of the base-case OMIB equivalent and the rotor angle trajectories af-

ter the occurrence of the contingency and the subsequent fault clearing. Rotor

angle trajectories are depicted using the Center Of Inertia (COI) of the system

as a reference.

4.4.3 Procedure Iterations

Once the sets of critical and non-critical machines have been identified and

the OMIB rotor unstable angle has been calculated, the TSC-OPF problem

described in Subsection 4.3.1.8 is solved. The discretized dynamic equations

(4.51)-(4.52) are included for the first two seconds. Setting T = [0, 2] s is

sufficient to reveal transient instabilities and considerably reduces the com-

putational burden of the proposed OPF problem. The integration time step

tstep is set to 0.05 s, and δmax is set to the value of δu provided by SIME,

i.e., δmax = 155.01 degrees. Finally, the reduced admittance matrix Yt
bus that
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Figure 4.6: Transient stability illustrative example. WECC 9-bus, 3-machine
system: (a) OMIB plot and (b) rotor angle trajectories. Unstable base case.

corresponds to the base-case operating condition is computed. Table 4.2 pro-

vides the operating condition corresponding to the solution of the TSC-OPF
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problem.

Table 4.2: Transient stability illustrative example. WECC 9-bus, 3-machine
system: Solution for the first iteration of the proposed procedure.

Bus Gen. Dem. PGj QGj PDi QDi Vn θn

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1 - 1.4312 0.2498 0 0 1.1000 0

2 2 - 1.1925 0.0733 0 0 1.1000 0.0112

3 3 - 1.1955 -0.0593 0 0 1.1000 0.0254

4 - - 0 0 0 0 1.0895 -0.0688

5 - 1 0 0 1.5000 0.6000 1.0606 -0.1323

6 - 2 0 0 1.0800 0.3600 1.0774 -0.1099

7 - - 0 0 0 0 1.0979 -0.0506

8 - 3 0 0 1.2000 0.4200 1.0863 -0.0842

9 - - 0 0 0 0 1.1050 -0.0323

The transient stability of the new operating condition obtained after solv-

ing the TSC-OPF is checked. A time-domain simulation that includes SIME

is carried out. In this first iteration, the TSC-OPF solution is multi-swing un-

stable: the trajectory of the OMIB equivalent shows a return angle δr = 131.11

degrees in the first swing at tr = 0.56 s but the system loses synchronism at

tu = 1.81 s. Figure 4.7 confirms that this is a multi-swing case. The critical

machines are generators 2 and 3 again, whereas generator 1 is the non-critical

machine.

A new transient stability limit is defined based on the return angle provided

by SIME. Specifically, δmax is set to δr − Δδ using Δδ = 1 degree, i.e., δmax =

130.11 degrees. The reduced admittance matrix Yt
bus is computed for the

operating condition that results from the solution of the first iteration, and

the TSC-OPF problem is solved again to obtain a new operating condition.

Table 4.3 shows this operating condition.

The transient stability of this new operating condition is checked using a
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Table 4.3: Transient stability illustrative example. WECC 9-bus, 3-machine
system: Solution for the second iteration of the proposed procedure.

Bus Gen. Dem. PGj QGj PDi QDi Vn θn

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1 - 1.4771 0.2500 0 0 1.1000 0

2 2 - 1.1764 0.0724 0 0 1.1000 0.0074

3 3 - 1.1955 -0.0591 0 0 1.1000 0.0233

4 - - 0 0 0 0 1.0895 -0.0696

5 - 1 0 0 1.5000 0.6000 1.0607 -0.1328

6 - 2 0 0 1.0800 0.3600 1.0775 -0.1112

7 - - 0 0 0 0 1.0979 -0.0535

8 - 3 0 0 1.2000 0.4200 1.0863 -0.0868

9 - - 0 0 0 0 1.1050 -0.0343

time-domain simulation that includes SIME. In this second iteration, the TSC-

OPF solution is stable. Figure 4.8 shows that the OMIB equivalent and rotor

angle trajectories remain stable throughout the time-domain simulation. The

OMIB return angle is δr = 126.19 degrees in the first-swing at tr = 0.54 s.

Table 4.4 provides the generator active powers for the base case and the

redispatching actions that correspond to the solution after each iteration of the

proposed TSC-OPF-based procedure. Observe that the redispatching actions

consist in transferring active power generation from the critical machines, i.e.,

the “advanced” ones, to the non-critical machines. Specifically, the active

power production is transferred from generator 2 to generator 1, whereas the

load powers remain unaltered.

4.5 Transient Stability - Case Studies

In this section the results of two case studies based on the New England 39-

bus, 10-machine system and a real-world 1228-bus, 292-machine system are
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Table 4.4: Transient stability illustrative example. WECC 9-bus, 3-machine
system: Generator active powers for the base case and redispatching actions
for each iteration of the procedure.

Base Case Iteration 1 Iteration 2

Generator PA
Gj ΔP up

Gj ΔP down
Gj ΔP up

Gj ΔP down
Gj

# [p.u.] [p.u.] [p.u.] [p.u.] [p.u.]

1 1.2633 0.1679 0 0.1838 0

2 1.3642 0 0.1716 0 0.1878

3 1.1955 0 0 0 0

presented.

4.5.1 New England 39-Bus, 10-Machine System

As in the illustrative example of Section 4.4, the generators are represented

with a classical model, and the loads are modeled as constant impedances.

These models are described in Appendix C, whereas the one-line diagram and

data for this system are provided in Appendix D.

4.5.1.1 Base Case

The base-case solution is obtained from the OPF problem described in Ap-

pendix A. The result from this problem is provided in Appendix D.

4.5.1.2 Contingency Analysis

For this system, 35 possible contingencies are analyzed. Tables D.20 and D.21

in Appendix D contains the network configuration of this system. The contin-

gencies analyzed affect the first 35 branches described in these tables. Each

contingency consists of a three-phase-to-ground symmetrical fault at the first

bus of each line (bus “From”), which is cleared after 0.08 s (� 5 cycles) by

tripping the line. None of these contingencies leads to generator islanding.

For each of these contingencies, a time-domain simulation including SIME is
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performed. The whole simulation spans 5 s, and an integration time step of

0.01 s is used. Six contingencies lead the system to transient instability. Table

4.5 lists the instability type, the critical machines, the OMIB rotor unstable

angle and the time to instability for these six contingencies. Table 4.5 also pro-

vides the OMIB rotor return angle in the first swing in the case of multi-swing

instability.

Table 4.5: Transient stability case study. New England 39-bus, 10-machine
system: Results of the contingency analysis.

Fault Line Instability Critical δu tu δr

at bus tripped type machines [degrees] [s] [degrees]

21 16 - 21 multi-swing 1,2,3,4,5,6,7,8,9 95.89 3.49 109.14

22 21 - 22 first-swing 6,7 127.62 0.70 -

25 2 - 25 first-swing 1,2,3,4,5,6,7,8,9 89.21 0.77 -

26 26 - 29 first-swing 9 112.50 0.51 -

28 26 - 28 first-swing 9 105.86 0.43 -

28 28 - 29 first-swing 9 107.03 0.44 -

Figures 4.9-4.14 show the unstable behavior of the OMIB equivalent and

of the rotor angle trajectories for the base case after the occurrence of the

contingencies listed in Table 4.5 and the subsequent fault clearing. Note that

the time-domain simulations were stopped at the very instant that synchronism

was lost, i.e., when instability conditions (4.21)-(4.23) were met. Rotor angle

trajectories are depicted using the COI of the system as a reference. For

these contingencies, the system suffers first-swing instability, except for the

fault at bus 21 cleared by tripping the line 16-21, which causes the system to

experience multi-swing instability. In this latter case, as Figure 4.9 shows, the

system remains stable in the first swing but loses synchronism in the second

swing due to the separation of generators 1-9 from generator 10. Note that,

in this system, generator 10 is the equivalent of a big external network that is

represented by a machine with large inertia.
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The fault at bus 22 cleared by tripping the line 21-22 results in the sepa-

ration of generators 6 and 7 from the rest of the system, as shown in Figure

4.10. Observe that the bus and the line affected by the contingency are close

to these generators, which leads to their loss of synchronism.

The fault at bus 25 cleared by tripping the line 2-25 results in the loss of

synchronism of generators 1-9 with respect to generator 10. This is shown in

Figure 4.11.

Figures 4.12, 4.13 and 4.14 depict the power system response to the fault at

bus 26 cleared by tripping the line 26-29, fault at bus 28 cleared by tripping the

line 26-28, and fault at bus 28 cleared by tripping the line 28-29, respectively.

In these three cases, generator 9 loses synchronism with respect to the rest of

the system mainly due to the proximity of generator 9 to the buses and lines

affected by these contingencies.

4.5.1.3 Procedure Iterations

For each of the contingencies listed in Table 4.5, a set of equations (4.51)-

(4.52) and (4.54) is included in the TSC-OPF problem. To properly reproduce

the characteristics of the contingencies (all faults are cleared after 0.08 s),

these equations are included in the TSC-OPF problem for T = [0, 1.98] using

tstep = 0.04 s for the during-fault period and tstep = 0.05 s for the post-fault

period. The transient stability limit for each contingency is initially set to the

corresponding value of δu, as listed in Table 4.5, except for the contingency

at bus 21 (multi-swing case), that is set to δr − Δδ using Δδ = 1 degrees.

These values are updated in each iteration, as explained in Subsection 4.3.2.

Similarly, the reduced admittance matrix Yt
bus is evaluated for the base case

and updated in each iteration.

The procedure requires three iterations to obtain the solution. This solution

corresponds to a stable operating condition with respect to the six contingen-

cies considered. Table 4.6 provides the generator active powers for the base

case together with the redispatching actions obtained as solution. No load

curtailment is needed to stabilize the system. The adjustments correspond to

active power transfers from generators 6 and 9 to generators 3 and 10. These
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Table 4.6: Transient stability case study. New England 39-bus, 10-machine
system: Generator active powers for the base case and redispatching actions.

Generator PA
Gj ΔP up

Gj ΔP down
Gj

# [p.u.] [p.u.] [p.u.]

1 2.9134 0 0

2 5.9783 0 0

3 7.8748 1.3252 0

4 7.3089 0 0

5 5.7801 0 0

6 7.4560 0 1.1063

7 6.4704 0 0

8 6.1246 0 0

9 9.4772 0 0.8795

10 11.2828 0.6011 0

are the most economical redispatching actions over the base case that stabi-

lize the system with respect to the contingencies considered. Figures 4.15-4.20

depict the behavior of the OMIB equivalent and the rotor angle trajectories

after the occurrence of each contingency and the subsequent fault clearing, for

the final iteration of the proposed procedure. From the rotor angle trajec-

tories shown in Figures 4.15-4.20, it follows that, for the operating condition

obtained after redispatching, the power system remains stable if any of the

considered contingencies occurs. All cases exhibit similar stable behavior.

It is noteworthy to mention that the operating condition obtained after

applying the proposed redispatching procedure is stable if any of the initial

set of contingencies (35 contingencies) occurs. This case study illustrates the

ability of the proposed redispatching procedure to tackle multi-contingency

cases.
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4.5.2 Simulation Times

This subsection analyzes the computational requirements of the proposed pro-

cedure for the New England 39-bus, 10-machine system. The starting point

of the procedure is the base-case operating condition obtained from the OPF

problem described in Appendix A. This step takes 0.14 s.

In the contingency filtering procedure, 35 contingencies are analyzed. This

step involves a time-domain simulation of each contingency. If the SIME

method identifies an unstable behavior, the time-domain simulation stops.

If the system remains stable, the time-domain simulation is performed for a

total simulation time of 5 s. Table 4.7 lists the CPU times of the time-domain

simulations for the six unstable contingencies. All the other contingencies are

stable, and their time-domain simulations take an average CPU time of 5.81

s. The contingency analysis requires a total CPU time of 176.49 s. This

computing time can be reduced by applying parallel computation techniques.

Table 4.7: Transient stability case study. New England 39-bus, 10-machine
system: Computational requirements for the time-domain simulation of the
contingency analysis for unstable cases.

Fault Line CPU

at bus tripped [s]

21 16 - 21 4.0398

22 21 - 22 0.9306

25 2 - 25 1.0448

26 26 - 29 0.7075

28 26 - 28 0.6357

28 28 - 29 0.6335

Total 7.9921

Each iteration of the proposed procedure involves solving the TSC-OPF

problem and checking the solution. The TSC-OPF problem includes transient
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stability constraints for six contingencies. Solution checking implies the time-

domain simulation of these six contingencies. Table 4.8 provides the CPU

times per iteration and the total CPU times of these steps. The total CPU

time of the proposed procedure is 120.82 s.

Table 4.8: Transient stability case study. New England 39-bus, 10-machine
system: Computational requirements for the procedure iterations.

Iteration 1 Iteration 2 Iteration 3 Total

CPU [s] CPU [s] CPU [s] CPU [s]

TSC-OPF problem 12.8900 3.1300 3.3900 19.4100

Time-domain simulations 33.0136 33.5337 34.8602 101.4075

Total 45.9036 36.6637 38.2502 120.8175

Solution checking by means of time-domain simulations is the step with

the highest computational burden. Table 4.9 shows the CPU times of the

time-domain simulation of each contingency for each iteration. The computing

times of this step can be reduced by using parallel computation techniques. For

example, if six processors are available, the computation time for the solution

checking is reduced to a CPU time of less than 6 s.

4.5.3 Real-World 1228-Bus, 292-Machine System

A real-world 1228-bus, 1903-branch and 292-machine system is considered in

this subsection to show that the proposed technique can be applied to a real-

world power system. All machines are modeled using a classical model. The

initial power flow solution is assumed to be the result of a market clearing

procedure that does not include transient stability constraints.

Figure 4.21 depicts the generator rotor angle trajectories of the system

following a three-phase-to-ground symmetrical bus fault cleared after 0.2 s.

The time-domain simulation stops at the instant that correspond to the loss

of synchronism. The critical machine group comprises 11 machines that suffer

loss of synchronism. The base-case OMIB equivalent is unstable since the rotor
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Table 4.9: Transient stability case study. New England 39-bus, 10-machine
system: Computational requirements related to the time-domain simulations
of the procedure iterations.

Fault Line Iteration 1 Iteration 2 Iteration 3

at bus tripped CPU [s] CPU [s] CPU [s]

21 21 - 16 5.7456 5.8868 5.8746

22 22 - 21 4.0141 3.9214 5.7940

25 25 - 2 5.9785 6.1502 5.9669

26 26 - 29 5.8770 5.9813 5.8352

28 28 - 26 5.6799 5.7777 5.6874

28 28 - 29 5.7186 5.8163 5.7020

Total 33.0136 33.5337 34.8602

angle δ increases beyond the admissible angle δu = 157.75 degrees, which is

reached at tu = 0.4375 s.

Therefore, a set of equations (4.51)-(4.52) and (4.54) is included in the

TSC-OPF problem for the time interval T = [0, 2] s. The time step used in

this case is Δt = 0.1 s. The whole procedure converges in one iteration, no

multi-swing instability appears in this case. The resulting trajectories of the

generator rotor angles after redispatching are shown in Figure 4.22.

4.5.3.1 Simulation Times

In this case study, the base-case solution is obtained by solving a power flow

of the system. Furthermore, a pre-specified single contingency is considered;

therefore, contingency analysis is not performed. The time-domain simulation

of the considered contingency for the base-case operating condition takes 8.04

s. To stabilize the system, only one iteration of the proposed procedure is

needed. In this single iteration, the CPU time required to solve the TSC-OPF

problem is about 57.62 minutes. If the OPF is solved without transient sta-

bility constraints, the computational time is 4.76 minutes. Thus, the solution
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of the TSC-OPF requires 12.01 times the duration required to solve the OPF

without transient stability constraints. The solution obtained is checked with

a time-domain simulation of 5 s, which confirms the stable behavior of the

system. This time-domain simulation takes 19.31 s. The total CPU time is

thus 57.94 minutes.

In this case study, the highest computational burden corresponds to solving

the TSC-OPF problem mainly due to its large size.

4.6 Summary and Conclusions

This chapter has presented a redispatching procedure to ensure transient sta-

bility. It relies on an OPF model with embedded transient stability constraints.

These constraints include a transient stability limit that is established using

the information provided by the SIME method. The proposed redispatching

procedure ensures transient stability of the system against major disturbances,

e.g., faults and/or line outages, which may cause the system to suffer first-swing

or multi-swing instability phenomena.

In addition to power flow constraints and bounds, the resulting TSC-OPF

model includes discrete time equations that describe the time evolution of all

machines in the system and a stability constraint involving the OMIB equiva-

lent defined by the SIME method. The time-domain integration is solved only

for a limited time interval, which reduces the size of the optimization problem.

The proposed procedure has been illustrated and tested on the WECC 9-

bus, 3-machine system, the New England 39-bus, 10-Machine system, and a

real-world 1228-bus, 292-machine system.

The proposed redispatching procedure outputs the minimum-cost preven-

tive redispatching actions for the base-case solution that restore transient sta-

bility with respect to the considered contingencies. Simulation results confirm

that the proposed procedure can successfully restore transient stability if the

system is affected by both first-swing and multi-swing instability phenomena.

An important characteristic of the proposed procedure is its transient sta-

bility limit. This limit is established through the SIME method, which provides

an objective stability criterion. This fact makes the proposed procedure more



4.6. Summary and Conclusions 145

transparent to market participants than other existing approaches based on

heuristic criteria.

The stability criterion used in the proposed procedure is independent of

the power system model. Therefore, more detailed models can be used, other

devices can be considered (e.g., FACTS devices), and other transient stability

constraints (e.g., limits on bus voltage magnitudes during transients) can be

included in the TSC-OPF problem. However, this can lead to an OPF problem

of intractable size.

The simulation carried out for the 1228-bus, 292-machine system shows the

applicability of the proposed procedure to real-world large-scale systems. The

solution requires a computation time that is probably unacceptable for real-

time operation requirements. However, it should be noted that the TSC-OPF

problem is solved using a general-purpose solver. The development of an ad

hoc solution algorithm and the use of more powerful computers may reduce

computation times significantly.
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Figure 4.7: Transient stability illustrative example. WECC 9-bus, 3-machine
system: (a) OMIB plot and (b) rotor angle trajectories. First iteration of the
proposed procedure. The system exhibits multi-swing instability.
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Figure 4.8: Transient stability illustrative example. WECC 9-bus, 3-machine
system: (a) OMIB plot and (b) rotor angle trajectories. Second and final
iteration of the proposed procedure. The system is stable.
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Figure 4.9: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories for the base case. Fault
at bus 21 cleared by tripping the line 16-21.
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Figure 4.10: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories for the base case. Fault
at bus 22 cleared by tripping the line 21-22.
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Figure 4.11: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories for the base case. Fault
at bus 25 cleared by tripping the line 2-25.
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Figure 4.12: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories for the base case. Fault
at bus 26 cleared by tripping the line 26-29.
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Figure 4.13: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories for the base case. Fault
at bus 28 cleared by tripping the line 26-28.
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Figure 4.14: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories for the base case. Fault
at bus 28 cleared by tripping the line 28-29.
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Figure 4.15: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories after redispatching.
Fault at bus 21 cleared by tripping the line 16-21.
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Figure 4.16: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories after redispatching.
Fault at bus 22 cleared by tripping the line 21-22.
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Figure 4.17: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories after redispatching.
Fault at bus 25 cleared by tripping the line 2-25.
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Figure 4.18: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories after redispatching.
Fault at bus 26 cleared by tripping the line 26-29.
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Figure 4.19: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories after redispatching.
Fault at bus 28 cleared by tripping the line 26-28.
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Figure 4.20: Transient stability case study. New England 39-bus, 10-machine
system: (a) OMIB plot and (b) rotor angle trajectories after redispatching.
Fault at bus 28 cleared by tripping the line 28-29.
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Figure 4.21: Transient stability case study. Real-world 1228-bus 292-machine
system: Unstable trajectories of generator rotor angles.
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Figure 4.22: Transient stability case study. Real-world 1228-bus 292-machine
system: Stable trajectories of generator rotor angles.





Chapter 5

Summary, Conclusions,

Contributions and Future

Research

This chapter summarizes this dissertation and its main conclusions. Finally,

the most important contributions of this work are stated and future research

directions are suggested.

5.1 Thesis Summary

In this thesis procedures to assist system operators in avoiding problems re-

lated to voltage, small-signal and transient stability in the context of real-time

operation are developed, illustrated and analyzed. The proposed procedures

include security assessment, contingency filtering, and security control proce-

dures. The characteristics of the security assessment and contingency filtering

procedures depend on the instability phenomenon of interest. The contingen-

cies analyzed in the security assessment procedures are those of the N − 1

security criterion. The security control procedures are essentially redispatch-

ing techniques based on OPF problems whose formulation includes constraints

related to the stability phenomena that limit the system operation. The pro-

posed procedures should be applied once a market dispatching solution is avail-

157
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able.

It is assumed that the considered market dispatching solution does not take

into account any estimate of transmission losses. Thus, the market dispatch-

ing solution is first adjusted by solving an OPF problem that minimizes the

cost of generating the system losses. Along with a power balanced operating

condition, the solution of this OPF problem provides the optimal voltage pro-

file and the optimal set points for transmission control devices. This solution,

so-called base-case operating condition, is the starting point of the subsequent

analysis.

The proposed procedures are outlined below.

1. Procedures related to voltage stability:

1.1. Security assessment and contingency filtering procedures. The volt-

age stability of the base-case operating condition is assessed by

computing the loading margin for the post-contingency system con-

figurations. These loading margins are obtained by solving OPF

problems that provide the maximum loading condition of each post-

contingency system configuration. The initial set of contingencies is

filtered by comparing each post-contingency loading margin with a

pre-specified value. This value is fixed by the system operator and

represents the required security margin. If the post-contingency

loading margin is lower than the required security margin, the con-

tingency is included in the security control procedure due to the

risk of voltage instability.

1.2. Security redispatching procedure. The security redispatching pro-

cedure uses an OPF problem whose objective is to minimize the cost

of the adjustments on the base-case operating condition needed to

achieve a secure operation. The constraints for this problem rep-

resent several operating conditions. The basic constraints are re-

lated to the operating condition that results from adjusting the base

case (adjusted operating condition), whereas voltage stability con-

straints are included in the form of stressed operating conditions.

Each stressed operating condition is a post-contingency operating
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condition in which the system load is increased with respect to the

base-case load. This load increase represents the security margin

imposed by the system operator. The contingencies used to define

the stressed conditions are those selected in the contingency filtering

procedure described in item 1.1. The OPF problem also includes

ramping constraints. These are coupling constraints that model the

capacity of different system components to adjust their set points

in a given period of time. Ramping constraints guarantee that the

system is able to reach the considered stressed operating conditions,

thus ensuring the security margin.

These procedures are illustrated using a 6-bus system. Furthermore, the

performance of several control devices in the security control procedure

is analyzed using a 24-bus system.

2. Procedures related to small-signal stability.

2.1. Security assessment and contingency filtering procedures. First,

the maximum loading condition of each post-contingency system

configuration is computed using an OPF problem. For each post-

contingency maximum loading condition, eigenvalue analysis is per-

formed. The system state matrix is evaluated and its eigenvalues are

computed. The initial set of contingencies is filtered by inspecting

the eigenvalues that correspond to each post-contingency maximum

loading condition. If a post-contingency maximum loading condi-

tion presents one or more eigenvalues with positive real part, the

contingency is included in the security control procedure due to the

risk of small-signal instability.

2.2. Security redispatching procedure. The security redispatching pro-

cedure uses an OPF problem with a similar structure to that in

the case of voltage stability, i.e., the OPF includes constraints that

represent both the adjusted operating condition and stressed op-

erating conditions. Ramping constraints are also included. The

stressed operating conditions are post-contingency operating condi-
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tions in which the system load is increased by the security margin

imposed by the system operator. The contingencies used to define

the stressed conditions are those selected in the contingency filtering

procedure described in item 2.1. In addition, each stressed operat-

ing condition includes linear small-signal stability constraints that

are calculated as follows. For each stressed operating condition,

eigenvalue analysis is carried out and critical eigenvalues are iden-

tified. Small-signal stability constraints are formulated based on

the first-order Taylor series expansion of the critical eigenvalue real

part. To this end, first-order sensitivities of the critical eigenvalue

real part with respect to generator powers are used.

The performance of these procedures is tested on the WECC 9-bus, 3-

machine system and the New England 39-bus, 10-machine system.

3. Procedures related to transient stability:

3.1. Security assessment and contingency filtering procedures. From the

base-case operating condition, a time-domain simulation is carried

out for each contingency in the initial set. In this case, the con-

tingency is composed of a fault and the subsequent line tripping.

During time-domain simulations, the SIME method is used to check

transient stability. This method reduces the multi-machine system

to an equivalent one-machine infinite bus system whose transient

stability is assessed using the equal area criterion. The initial set

of contingencies is then reduced to those contingencies that present

transient instability. If the system experiences first-swing instabil-

ity or multi-swing instability, the contingency is included in the

security control procedure due to potential transient instability.

3.2. Security redispatching procedure. The security redispatching pro-

cedure uses an OPF problem that includes constraints that rep-

resent the adjusted operating condition. In the context of dy-

namic analysis, this adjusted operating condition constitutes the

pre-contingency operating condition. Security constraints related



5.2. Conclusions 161

to transient stability are modeled using discrete-time equations that

describe the multi-machine system. For each contingency selected

in the contingency filtering procedure described in item 3.1, a set

of these equations is added along with the equation of the OMIB

equivalent that characterizes the contingency. Transient stability

limits are introduced in the form of bounds on the OMIB equivalent

rotor angle. These bounds, together with the OMIB equivalent, are

established using the information provided by the analysis carried

out in item 3.1.

The performance of these procedures is tested on the WECC 9-bus, 3-

machine system, the New England 39-bus, 10-machine system, and a

real-world 1228-bus, 292-machine system.

5.2 Conclusions

The most relevant conclusions of the work reported in this dissertation are

enumerated below.

1. The security assessment, along with contingency filtering procedures,

identifies harmful contingencies, i.e., the contingencies that should be

taken into account in OPF-based control tools. These are important

tasks in the context of real-time operation because they reduce the size

of OPF problems and, therefore, reduce the time required to solve them.

2. Redispatching is an effective control action to avoid problems related

to voltage, small-signal, and transient instabilities. The proposed pro-

cedures use OPF-based control tools that identify efficacious preventive

redispatching actions at minimum cost.

3. Since more than one contingency can endanger the stability of the sys-

tem, the proposed procedures can address multi-contingency cases.

4. Parallel computation techniques can improve the computational effi-

ciency of the proposed procedures. Security assessment and contingency

filtering methods are candidates for parallel computation.
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5. The applicability of some of the proposed procedures to large-scale power

systems may result in computational intractability, especially in the case

of the OPF problem with transient stability constraints. Thus, it is

necessary to develop more effective algorithms to solve large-scale OPF

problems.

6. Although the proposed OPF problems are non-linear and non-convex

and a global optimum cannot be guaranteed, the resulting solutions are

reasonable.

7. Finally, the proposed procedures are useful tools for system operators

since they ensure the secure operation of current power systems.

5.3 Contributions

The main contributions of this thesis are summarized below:

1. The formulation of an OPF problem that computes the system loading

margin.

2. Criteria for contingency filtering for both voltage stability and small-

signal stability.

3. The formulation of a security-redispatching OPF-based control tool that

explicitly considers voltage stability constraints through a set of stressed

post-contingency operating conditions, including coupling constraints

that represent the capacity of system control devices to adjust their set

points to reach the stressed conditions. This formulation guarantees a

security margin with respect to voltage instability.

4. The formulation of simple yet effective small-signal stability constraints

that can be included in a OPF problem.

5. The formulation of a security-redispatching OPF-based control tool that

includes small-signal stability constraints. This tool guarantees a security

margin with respect to small-signal instability.
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6. The formulation of a security-redispatching OPF-based control tool that

explicitly considers transient stability constraints through a discretized

dynamic model of the power system. Transient stability limits are im-

posed based on the SIME method. This tool can address both first-swing

and multi-swing transient instability phenomena.

7. The publication of four papers in relevant SCI journals. Note that the

third and fourth papers are directly related to this thesis, while the first

and second papers are the result of collateral work.

(a) F. Milano, A. J. Conejo and R. Zárate-Miñano, “General sensitivity

formulas for maximum loading conditions in power systems”, IET

Generation Transmission & Distribution, 1(3):516–526, May 2007.

(b) R. Mı́nguez, F. Milano, R. Zárate-Miñano and A. J. Conejo, “Op-

timal network placement of SVC devices”, IEEE Transactions on

Power Systems, 22(4):1851–1860, November 2007.

(c) R. Zárate-Miñano, A. J. Conejo and F. Milano, “OPF-based se-

curity redispatching including FACTS devices”, IET Generation

Transmission & Distribution, 2(6):821–833, November, 2008.

(d) R. Zárate-Miñano, T. Van Cutsem, F. Milano and A. J. Conejo,

“Securing transient stability using time-domain simulations within

and optimal power flow”, IEEE Transactions on Power Systems,

25(2):243-253, February 2010.

5.4 Future Work

Suggestions for future research are listed below.

1. Application of efficient techniques to reduce the computational burden of

the proposed procedures. These techniques include parallel computation,

powerful methods for eigenvalue analysis, and closed-form sensitivity for-

mulas.
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2. Development of dynamic models for FACTS devices to investigate the

effect of these devices on both the small-signal and transient stability of

a power system.

3. Investigation of the use of detailed dynamic models and additional sta-

bility constraints in the TSC-OPF problem.

4. Investigation of the impact of non-dispatchable plants on power system

security.

5. Exploring the effect of alternative objective functions in the considered

OPF models.

6. Analysis of alternative OPF formulations (e.g., rectangular coordinates)

to improve the computational performance.

7. Exploration of procedures for security-redispatching cost allocation to

market participants.

8. Analysis of real-world case studies in direct collaboration with an actual

system operator.



Appendix A

Base-Case Operating Condition

This appendix describes the Optimal Power Flow (OPF) problem used through-

out this thesis to obtain the base-case operating condition of the power system.

The goal of this OPF problem is to correct the system power imbalance due to

transmission losses from the solution of a dispatching procedure. The solution

provided by the proposed OPF problem corresponds to the generation power

adjustments required to achieve the system power balance in an economically

optimal manner.

A.1 Introduction

Most electricity markets provide a dispatching solution only based purely on

economics, in which the total generation equals the total demand. This so-

lution does not correspond to a power balanced operating condition due to

transmission losses that should be supplied. As a consequence, one generator

(or a group of generators) should adjust its power output to balance the sys-

tem. In some electricity markets, the dispatching solution includes an estimate

of transmission losses. In this case, the power imbalance corresponds to the

error in the estimation of transmission losses, [52], [68] and [144]. Once the

power balance has been obtained, the resulting operating condition is the so-

called base-case operating condition, which is used as the reference operating

condition for security analysis.
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The procedure traditionally employed to solve the system power imbalance

due to losses is the well-known Power Flow (PF) algorithm. Two different

approaches can be used: the single slack bus and the distributed slack bus. In

the former approach, one generator (the slack) is selected to compensate for

the system power imbalance. The selection of the slack generator is usually

arbitrary, e.g., the generator with the largest capacity or a generator of the

bus with the largest number of connected lines [59]. In the distributed slack

approach, a set of generators contributes to balance the system according to

pre-specified participation factors. These coefficients can be determined based

on a variety of criteria, e.g., machine inertias, governor droop characteristics,

frequency control participation factors, or economic dispatch, [68], [69] and

[144].

Regardless of whether the single or distributed slack bus approach is adopted,

the voltage magnitude at generator buses and the set point of control devices,

such as FACTS devices, must be specified to solve the PF problem. These val-

ues are usually fixed to those provided by the state estimator that correspond

to the operation of the system with a similar demand profile [85].

In this thesis, the base-case operating condition is obtained by solving an

Optimal Power Flow (OPF) problem based on the one proposed in [52]. In

the proposed OPF problem, no assumption is made a priori about whether

the slack bus is single or distributed. Furthermore, voltage magnitudes at

generator buses and the set point of control devices are treated as variables

instead of being fixed at a predefined value. These values are provided by

the solution of the proposed OPF problem. The considered objective function

involves minimizing cost and is explained in Subsection A.2.1 below.

The objective of the proposed OPF problem is to minimize the cost as-

sociated with the system power imbalance. One assumption of the proposed

OPF problem is that the dispatching solution does not take into account any

estimation of transmission losses; thus, minimizing the cost associated with

the system power imbalance directly implies minimizing the cost of generating

the energy dissipated in system losses.
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A.2 Problem Description

This subsection describes the objective function and all constraints used in the

proposed OPF problem to identify the base-case operating condition in detail.

A.2.1 Objective Function

The objective of the proposed OPF problem is to minimize the cost of gener-

ating the system losses. Since the dispatching procedure does not include an

estimate of system losses, losses are equivalent to the additional active power

that the generators have to supply with respect to the power assigned in the

dispatching procedure. Then, the system losses can be expressed as

Ploss =
∑
j∈G

ΔP loss
Gj , (A.1)

where ΔP loss
Gj is the change in the power production of generator j needed to

supply the system losses.

The objective function represents the total cost of the additional active

power that the generators have to supply to match the system losses

z =
∑
j∈G

cjΔP
loss
Gj , (A.2)

where cj is the cost associated with the power production of generator j.

Observe that when all cj equal one, the objective of the OPF problem is

equivalent to minimizing the system losses. In this thesis, the price offered by

generator j to increase its power dispatch for security purposes is used as the

cost in (A.2), that is, cj = cup
Gj .
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A.2.2 Power Flow Equations

The operating condition of the system is established by the active and reactive

power balance at all buses:

PGn − PDn =
∑

m∈Θn

Pnm(·), ∀n ∈ N , (A.3)

QGn −QDn =
∑

m∈Θn

Qnm(·), ∀n ∈ N , (A.4)

where the powers on the left-hand side of each equation are

PGn =
∑
j∈Gn

PGj , ∀n ∈ N , (A.5)

PDn =
∑
i∈Dn

PDi, ∀n ∈ N , (A.6)

QGn =
∑
j∈Gn

QGj , ∀n ∈ N , (A.7)

QDn =
∑
i∈Dn

PDi tan(ψDi), ∀n ∈ N , (A.8)

with

PGj = PM
Gj + ΔP loss

Gj , ∀j ∈ G, (A.9)

PDi = PM
Di, ∀i ∈ D, (A.10)

and

ΔP loss
Gj ≥ 0, ∀j ∈ G. (A.11)

Equation (A.8) implies that constant power factor loads are considered. The

functions on the right-hand side of (A.3) and (A.4) are the power flow equations

and depend on the device connected between buses n and m. Appendix C

describes these equations in detail.

Finally, note that superscript “M”, in (A.9) and (A.10), indicates dispatch-

ing (market) solution.
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A.2.3 Technical Limits

The power production is limited by the capacity of the generators.

Pmin
Gj ≤ PGj ≤ Pmax

Gj , ∀j ∈ G, (A.12)

Qmin
Gj ≤ QGj ≤ Qmax

Gj , ∀j ∈ G. (A.13)

Voltage magnitudes at generator buses should be within operating limits,

V min
n ≤ Vn ≤ V max

n , ∀n ∈ NG. (A.14)

Any control device connected to the system is allowed to vary within its

rating values. The control devices considered in this thesis are the follow-

ing regulating transformers and FACTS devices: the on-Load Tap-Changer

(LTC), the Phase-Shifting (PHS) transformer, the Static Var Compensator

(SVC), and the Thyristor-Controlled Series Compensator (TCSC). Thus, for

LTC transformers:

Tmin
k ≤ Tk ≤ Tmax

k , ∀k = (n,m) ∈ ΩLTC, (A.15)

for PHS transformers:

φmin
k ≤ φk ≤ φmax

k , ∀k = (n,m) ∈ ΩPHS, (A.16)

for TCSC devices:

xmin
TCSC,k ≤ xTCSC,k ≤ xmax

TCSC,k, ∀k = (n,m) ∈ ΩTCSC, (A.17)

and for SVC devices:

bmin
SVC,n ≤ bSVC,n ≤ bmax

SVC,n, ∀n ∈ NSVC. (A.18)

There are two kind of limits in the case of regulating transformers and FACTS

devices: (i) technical operating limits, such as tap ratio and phase limits (A.15)

and (A.16), and (ii) capacity limits, such as the reactance sizes of the TCSC
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devices (A.17) and susceptance sizes of the SVC devices (A.18).

Other technical limits, such as the voltage magnitude limits at load buses

or the current flow limits of the elements of the network are not included to

obtain the base-case solution. These limits are incorporated into the security

redispatching procedures described throughout this thesis.

A.2.4 Other Constraints

The OPF problem includes the following additional constraints:

− π ≤ θn ≤ π, ∀n ∈ N , (A.19)

θref = 0. (A.20)

Equation (A.19) is included to reduce the feasibility region, thereby causing

the OPF problem to converge more rapidly in general.

A.2.5 OPF Formulation

The formulation of the OPF problem is summarized below:

Minimize (A.2)

subject to

1. Power flow equations (A.3)-(A.4).

2. Technical limits (A.12)-(A.18).

3. Other constraints (A.19)-(A.20).



Appendix B

Maximum Loading Condition

Problem

This appendix describes the Optimal Power Flow (OPF) problem used through-

out this thesis to compute the loading margin of a power system working under

a given load condition. From the actual system load, the OPF problem maxi-

mizes the amount of load increase that complies with system limits. Together

with the loading margin, the solution to the proposed OPF problem provides

the value of system variables that define the maximum loading condition.

B.1 Introduction

The loading margin is an index that is widely used in static voltage stability

analysis [118]. For a particular power system operating condition, the loading

margin is defined as the maximum amount of additional load that the system

can provide without exceeding a voltage stability limit. As stated in Chapter

2, voltage stability limits lead to system collapse and correspond to a Saddle-

Node Bifurcation (SNB) or to a critical Limit-Induced Bifurcation (LIB). In

loading margin computations, it is assumed that the load increases slowly

such that the dynamics of the system can restore the equilibrium. Thus, the

system moves smoothly from one equilibrium point to another as the load

increases. This assumption justifies the use of static models in loading margin
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computations.

In this thesis, the definition of loading margin is extended to take into

account technical limits, such as bus voltage limits and transmission line/trans-

former thermal limits. These limits do not directly cause collapse but should be

avoided since they can initiate cascade line tripping phenomena. In addition,

generator ramping limits are taken into account. These ramps represent the

capacity of the generators to increase or decrease its active power output within

a given period of time (Δt). The generator ramping limits model the fact that

the primary frequency control is able to restore the system power balance at a

certain rate when the load increases. Similarly, ramping constraints are used

to model the capacity of some control devices, such as on-load tap-changing

and phase-shifting transformers, to adjust their set points.

Therefore, for a particular operating condition, the loading margin (λ∗)

stands for the maximum additional load that the system can provide while

satisfying all technical limits and avoiding the occurrence of a voltage collapse

within a time interval Δt.

B.2 Maximum Loading Condition Problem

The loading margin λ∗ is determined by solving an OPF problem, the Max-

imum Loading Condition (MLC) problem. This problem is described in the

following.

B.2.1 Objective Function

The objective function used in this problem is as follows:

z = −λ . (B.1)

Variable λ increases the load of the system (see (B.8)); therefore, minimizing

−λ corresponds to finding the maximum loading condition of the power system.

Then, the maximum value of λ is denoted λ∗.
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B.2.2 Power Flow Equations

The maximum loading condition is defined by the active and reactive power

balance at all buses:

PGn − PDn =
∑

m∈Θn

Pnm(·), ∀n ∈ N , (B.2)

QGn −QDn =
∑

m∈Θn

Qnm(·), ∀n ∈ N , (B.3)

where the powers on the left-hand side of each equation are defined as

PGn =
∑
j∈Gn

PGj, ∀n ∈ N , (B.4)

PDn =
∑
i∈Dn

PDi, ∀n ∈ N , (B.5)

QGn =
∑
j∈Gn

QGj , ∀n ∈ N , (B.6)

QDn =
∑
i∈Dn

PDi tan(ψDi), ∀n ∈ N , (B.7)

and

PDi = (1 + λ)PA
Di, ∀i ∈ D. (B.8)

Equation (B.7) implies that constant power factor loads are considered. Su-

perscript “A” in (B.8) indicates base-case operating condition. The functions

on the right-hand side of (B.2) and (B.3) are the power flow equations and de-

pend on the device connected between buses n and m. Appendix C describes

these equations in detail.

B.2.3 Technical Limits

The power production is limited by the capacity of the generators. Hence, at

the maximum loading condition,

Pmin
Gj ≤ PGj ≤ Pmax

Gj , ∀j ∈ G, (B.9)
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Qmin
Gj ≤ QGj ≤ Qmax

Gj , ∀j ∈ G. (B.10)

Voltages magnitudes throughout the system should be within operating limits,

V min
n ≤ Vn ≤ V max

n , ∀n ∈ N . (B.11)

The current flow through all branches of the network must be below thermal

limits,

Ik(·) ≤ Imax
k , ∀k = (n,m) ∈ Ω, (B.12)

where the functions Ik(·) depend on the device k connected between buses n

and m. The expressions of these functions are defined in Appendix C.

The power production of generators is also limited by ramping constraints

PGj − PA
Gj ≤ Rup

GjΔt, ∀j ∈ G, (B.13)

PA
Gj − PGj ≤ Rdown

Gj Δt, ∀j ∈ G, (B.14)

where superscript “A” indicates base-case operating condition. The time in-

terval Δt is the time period within which generators should be able to adjust

their power productions to reach the maximum loading condition.

If the power system includes control devices, these should be taken into

account in the MLC problem. The control devices considered in this thesis are

two regulating transformers: the on-Load Tap-Changing (LTC) transformer

and the Phase-Shifting (PHS) transformer; and two FACTS devices: the Static

Var Compensator (SVC) and the Thyristor-Controlled Series Compensator

(TCSC). While the response of SVC and TCSC devices may be considered

instantaneous for the considered time period Δt, the response of the LTC and

PHS transformers are conditioned by mechanically driven operations and they

are not instantaneous. As for generators, these physical constraints relate to

ramping limits, i.e.,

Tk − TA
k ≤ Rup

T Δt, ∀k = (n,m) ∈ ΩLTC, (B.15)

TA
k − Tk ≤ Rdown

T Δt, ∀k = (n,m) ∈ ΩLTC, (B.16)
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and

φk − φA
k ≤ Rup

φ Δt, ∀k = (n,m) ∈ ΩPHS, (B.17)

φA
k − φk ≤ Rdown

φ Δt, ∀k = (n,m) ∈ ΩPHS. (B.18)

Finally, any device connected to the system is allowed to vary within design

rating values. Therefore, for LTC transformers:

Tmin
k ≤ Tk ≤ Tmax

k , ∀k = (n,m) ∈ ΩLTC, (B.19)

for PHS transformers:

φmin
k ≤ φk ≤ φmax

k , ∀k = (n,m) ∈ ΩPHS, (B.20)

for TCSC devices:

xmin
TCSC,k ≤ xTCSC,k ≤ xmax

TCSC,k, ∀k = (n,m) ∈ ΩTCSC, (B.21)

and for SVC devices:

bmin
SVC,n ≤ bSVC,n ≤ bmax

SVC,n, ∀n ∈ NSVC. (B.22)

There are two kind of limits in the case of regulating transformers and FACTS

devices: (i) technical operating limits, such as tap ratio limits (B.19) and phase

limits (B.20), and (ii) capacity limits, such as the reactance sizes of the TCSC

devices (B.21) and susceptance sizes of the SVC devices (B.22).

B.2.4 Other Constraints

The proposed MLC problem is completed with the following additional con-

straints:

− π ≤ θn ≤ π, ∀n ∈ N , (B.23)
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θref = 0. (B.24)

Equation (B.23) is included to reduce the feasibility region, thereby causing

the OPF problem to converge more rapidly in general.

B.2.5 MLC-OPF Formulation

The formulation of the MLC problem is summarized below:

Minimize (B.1)

subject to

1. Power flow equations (B.2)-(B.3).

2. Technical limits (B.9)-(B.22).

3. Other constraints (B.23)-(B.24).



Appendix C

Modeling of Components

This appendix describes the models of the power system components used

throughout the thesis.

C.1 Transmission Line Model

Transmission lines are modeled by the well-known equivalent π-circuit shown

in Figure C.1.

Vne
jθn

j
1

2
bpk

rk + jxk

j
1

2
bpk

Vme
jθm

Figure C.1: Transmission line model.
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The series admittance of the line is

Y k =
1

Zk
=

1

rk + jxk
= gk + jbk, (C.1)

and the resulting conductance and susceptance are, respectively,

gk =
rk

r2
k + x2

k

, (C.2)

bk =
−xk

r2
k + x2

k

. (C.3)

The active and reactive power flows from bus n to bus m are, respectively

Pnm(·) =V 2
n gk − VnVm(gk cos(θn − θm)

+ bk sin(θn − θm)), ∀k = (n,m) ∈ ΩL, (C.4)

Qnm(·) = − V 2
n (bk +

1

2
bpk) − VnVm(gk sin(θn − θm)

− bk cos(θn − θm)), ∀k = (n,m) ∈ ΩL, (C.5)

and the current flow through the transmission line from n to m is

Inm(·) =
((

− Vn
1

2
bpk sin θn + Vn(gk cos θn − bksinθn)

− Vm(gk cos θm − bksinθm)
)2

+(
Vn

1

2
bpk cos θn + Vn(gk sin θn + bkcosθn)

− Vm(gk sin θm + bkcosθm)
)2)1/2

,

∀k = (n,m) ∈ ΩL. (C.6)

C.2 Transformer Models

The models of the on-Load Tap-Changing (LTC) and the PHase-Shifting (PHS)

transformers are based on [1]. Figure C.2 depicts a LTC/PHS transformer that

connects buses n and m and regulates the voltage/phase at bus m. This model

is also used for fixed-tap transformers. The nodal transfer admittance for this
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Vne
jθn

rk + jxk

Tke
jφk : 1

Vme
jθm

Figure C.2: On-load tap-changing and phase-shifting transformer model.

model is

(
Inm

Imn

)
= (gk + jbk)

⎛
⎜⎜⎜⎜⎝

1

T 2
k

− 1

Tk
ejφk

− 1

Tk
e−jφk 1

⎞
⎟⎟⎟⎟⎠
(

Vne
jθn

Vme
jθm

)
.

Then, the active and reactive power flows from bus n to busm are, respectively,

Pnm(·) =
1

T 2
k

V 2
n gk −

1

Tk

VnVm(gk cos(θn − θm − φk)

+ bk sin(θn − θm − φk)), (C.7)

Qnm(·) = − 1

T 2
k

V 2
n bk −

1

Tk
VnVm(gk sin(θn − θm − φk)

− bk cos(θn − θm − φk)), (C.8)

where the sub-index k identifies the component in between buses n and m, and

gk and bk have equivalent expressions to those in (C.2) and (C.3), respectively.

The active and reactive power flows from bus m to bus n are, respectively,

Pmn(·) =V 2
mgk −

1

Tk

VmVn(gk cos(θn − θm − φk)

− bk sin(θn − θm − φk)), (C.9)

Qmn(·) = − V 2
mbk +

1

Tk
VmVn(gk sin(θn − θm − φk)

+ bk cos(θn − θm − φk)). (C.10)
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The current flow through a LTC/PHS/fixed-tap transformer from bus n to bus

m is

Inm(·) =
(( 1

T 2
k

Vn(gk cos θn − bk sin θn)

− 1

Tk
Vm(gk(cos θm + φ) − bk sin(θm + φ))

)2
+

( 1

T 2
k

Vn(gk sin θn + bk cos θn)

− 1

Tk

Vm(gk sin(θm + φ) + bk cos(θm + φ))
)2)1/2

, (C.11)

and the current flow through a LTC/PHS/fixed-tap transformer from bus m

to bus n is

Imn(·) =
((
Vm(gk cos θm − bk sin θm)

− 1

Tk

Vn(gk cos(θn − φk) − bk sin(θn − φk))
)2

+(
Vm(gk sin θm + bk cos θm)

− 1

Tk
Vn(gk sin(θn − φk) + bk cos(θn − φk))

)2)1/2

. (C.12)

Equations (C.7)-(C.12) are valid for LTC, PHS and fixed-tap transformers as

follows:

1. LTC transformer: k = (n,m) ∈ ΩLTC, Tk is a variable, and φk = 0.

2. PHS transformer: k = (n,m) ∈ ΩPHS, φk is a variable, and Tk is a

constant.

3. Fixed-tap transformer: k = (n,m) ∈ ΩFT, Tk is a constant, and φk = 0.

C.3 Static Var Compensator Model

The Static Var Compensator (SVC) device is modeled as a variable shunt

susceptance [4], as shown in Figure C.3. Thus, the reactive power injected by
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the SVC at bus n is

QSVC,n = −bSVC,nV
2
n , ∀n ∈ NSVC. (C.13)

Vne
jθn

jbSVC

Figure C.3: Static var compensator model.

C.4 Thyristor-Controlled Series Compensator

Model

The model of the Thyristor-Controlled Series Compensator (TCSC) used in

this thesis is a variable reactance connected in series with a transmission line

[60], as depicted in Figure C.4.

The total impedance is

Zk = rk + j(xk + xTCSC), ∀k = (n,m) ∈ ΩTCSC, (C.14)

and the resulting conductance and susceptance are, respectively,

gk =
rk

r2
k + (xk + xTCSC)2

, ∀k = (n,m) ∈ ΩTCSC, (C.15)

bk =
−(xk + xTCSC)

r2
k + (xk + xTCSC)2

, ∀k = (n,m) ∈ ΩTCSC. (C.16)
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Vne
jθn

j
1

2
bpk

rk + jxk jxTCSC

j
1

2
bpk

Vme
jθm

Figure C.4: Thyristor-controlled series compensator model.

Therefore, the active and reactive power flows through a transmission line

that incorporates a TCSC device are represented, respectively, by equations

(C.4) and (C.5), where parameters gk and bk are defined by (C.15) and (C.16),

respectively. Similarly, the current flow through a transmission line that in-

corporates a TCSC device is represented by equation C.6 including (C.15) and

(C.16).

C.5 Load Models

Loads are represented by two static models, a constant power model and a

constant impedance model. Figure C.5(a) depicts the constant power model.

This model is used in the power flow equations. The constant impedance model

shown in Figure C.5(b) is used in the time-domain simulations performed

throughout the thesis.

C.6 Generator Models

This section describes the generator models used throughout this thesis; one

static model and two dynamic models. The dynamic models are the classical

model and a two-axis model that incorporates an automatic voltage regulator.
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Vne
jθn

PDi + jQDi

(a)

Vne
jθn

Y Di =
PDi

V 2
n

− j
QDi

V 2
n

(b)

Figure C.5: Load models: (a) constant power; (b) constant impedance.

C.6.1 Static Model

Figure C.6 depicts the generator static model. This model is used in the power

flow equations.

Vne
jθn

PGj + jQGj

Figure C.6: Generator constant power model.

C.6.2 Classical Model

In the classical model, the synchronous machine is represented by a constant

electromotive force behind a transient reactance, as shown in Figure C.7. This

model is used in the time-domain simulations of Chapter 4.
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Vne
jθn

E ′
je

jδj

jx′dj

Figure C.7: Generator classical model.

The dynamic equations of this model are as follows:

δ̇j = ωb(ωj − 1), (C.17)

ω̇j =
1

M
(Pmj − Pej), (C.18)

where the electrical power Pej is defined as

Pej =
E ′

jVn sin(δj − θn)

x′dj

, (C.19)

and the reactive power output is

QGj =
E ′

jVn cos(δj − θn) − V 2
n

x′dj

. (C.20)

C.6.3 Two-Axis Model

The two-axis model is shown in Figure C.8 and it is used for the modal analysis

in Chapter 3.

This generator model incorporates an Automatic Voltage Regulator (AVR).

Neglecting the armature resistance raj and the damping coefficient, the dy-

namic equations of the generator are as follows:

δ̇j = ωb(ωj − 1), (C.21)
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Vne
jθn

[E ′
dj + (x′qj − x′dj)Iqj + jE ′

qj ] e
j(δj−π

2
)

jx′dj
raj

Figure C.8: Generator two-axis model

ω̇j =
1

Mj
(Pmj − Pej), (C.22)

Ė ′
qj =

1

T ′
d0j

(
−E ′

qj − (xdj − x′dj)Idj + Vfj

)
, (C.23)

Ė ′
dj =

1

T ′
q0j

(
−E ′

dj + (xqj − x′qj)Iqj

)
, (C.24)

where the electrical power Pej is defined as

Pej = VqjIqj + VdjIdj . (C.25)

Finally, the stator algebraic equations are

0 = Vqj −E ′
qj + x′djIdj , (C.26)

0 = Vdj −E ′
dj − x′qjIqj , (C.27)

with

Vdj = Vn sin(δj − θn), (C.28)

Vqj = Vn cos(δj − θn). (C.29)

Figure C.9 depicts the AVR model. The dynamic equations of this model

are as follows.

V̇mj =
1

Trj

(Vn − Vmj),
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1

Trs + 1

−
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V min
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Vr

+

Kfs

Tfs + 1

−
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1

Tes + Ke
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Figure C.9: Automatic voltage regulator model.

V̇r1j =
1

Taj

(
Kaj(Vrefj − Vmj − Vr2j −

Kfj

Tfj
Vfj) − Vr1j

)
,

Vrj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Vr1j if V min

rj ≤ Vr1j ≤ V max
rj ,

V max
rj if Vr1j > V max

rj ,

V min
rj if Vr1j < V min

rj ,

V̇r2j = − 1

Tfj
(
Kfj

Tfj
Vfj + Vr2j),

V̇fj = − 1

Tej

(
Vfj

(
Kej + Sej(Vfj)

)
− Vrj

)
, (C.30)

where

Sej(Vfj) = Aej e
BejVfj . (C.31)



Appendix D

Data

This appendix contains the data for the power systems used in the simulations

reported throughout this thesis.

D.1 W&W 6-Bus System

This section provides the data for the W&W 6-bus system used in the illus-

trative example of Section 2.4 of Chapter 2. This system is based on the 6-bus

system reported in [133].

D.1.1 Network Data

Figure D.1 depicts the W&W 6-bus system. There is an unique voltage level

of 400 kV. Table D.1 provides the network data and the maximum current

magnitudes for branches of this system. The bus voltage magnitude limits are

V min
n = 0.90 p.u. and V max

n = 1.10 p.u. for all buses.

D.1.2 Technical Limits for Generators

Table D.2 lists the maximum and minimum power output and ramping limits

of the system generators.

187
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Bus 1
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Figure D.1: One-line diagram of the 6-bus system.

D.1.3 Market Solution and Cost Data

Table D.3 shows the generator powers that correspond to the market dispatch-

ing solution for the W&W 6-bus system. Table D.3 also provides the offering

costs for the generators to increase or decrease their power outputs for security

purposes. Table D.4 lists the demand powers that correspond to the market

dispatching solution for the 6-bus system. Constant power factor loads are

assumed. Table D.4 also provides the value of tan(ψDi) and the cost of load

curtailment for each demand. Finally, the penalties for voltage magnitude ad-

justments are cup
Vn = cdown

Vn = $100/p.u.h for all generator buses. The units of

penalty factors are introduced only for compatibility with costs.

D.1.4 Base-Case Operating Condition

Table D.5 shows the base-case operating condition for the W&W 6-bus system.

This base case corresponds to the solution of the OPF problem described in

Appendix A.



D.2. IEEE 24-Bus System 189

Table D.1: Network data and branch current limits for the W&W 6-bus system.

Branch From To rk xk bpk Tk φk Imax
k

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [p.u.]

1 1 2 0.1000 0.2000 0.0400 - - 0.2591

2 1 4 0.0500 0.2000 0.0400 - - 0.9193

3 1 5 0.0800 0.3000 0.0600 - - 0.8478

4 2 3 0.0500 0.2500 0.0600 - - 0.3082

5 2 4 0.0500 0.1000 0.0200 - - 1.3740

6 2 5 0.1000 0.3000 0.0400 - - 0.7114

7 2 6 0.0700 0.2000 0.0500 - - 0.9147

8 3 5 0.1200 0.2600 0.0500 - - 0.6585

9 3 6 0.0200 0.1000 0.0200 - - 1.3973

10 4 5 0.2000 0.4000 0.0800 - - 0.1796

11 5 6 0.1000 0.3000 0.0600 - - 0.2000

Table D.2: Technical limits of the generators for the W&W 6-bus system.

Generator Pmin
Gj Pmax

Gj Qmin
Gj Qmax

Gj Rup
Gj Rdown

Gj

# [p.u.] [p.u.] [p.u.] [p.u.] [p.u./min] [p.u./min]

1 0.1 2.0 -1.5 1.5 0.0333 0.0333

2 0.1 1.8 -1.5 1.5 0.0300 0.0300

3 0.1 1.8 -1.5 1.5 0.0300 0.0300

D.2 IEEE 24-Bus System

This section provides the data of the IEEE 24-bus system used in the case study

of Section 2.5 of Chapter 2. This system is based on the IEEE Reliability Test

System [100].
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Table D.3: The market solution and offering costs for the generators of the
W&W 6-bus system.

Generator Bus PM
Gj cup

Gj cdown
Gj

# # [p.u.] [$/p.u.h] [$/p.u.h]

1 1 0.4575 12.0 12.0

2 2 1.1694 10.0 10.0

3 3 0.9231 11.0 11.0

Table D.4: The market solution, tan(ψDi), and cost of load curtailment for the
demands of the W&W 6-bus system.

Demand Bus PM
Di tan(ψDi) cdown

Di

# # [p.u.] [p.u/p.u] [$/p.u.h]

1 4 0.7000 0.7857 1000

2 5 1.0500 0.6667 1000

3 6 0.8000 0.7500 1000

Table D.5: Base-case operating condition for the W&W 6-bus system.

Bus Gen. Dem. PA
Gn QA

Gn PA
Dn QA

Dn V A
n θAn

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1 - 0.4575 0.3876 0 0 1.1000 -0.0077

2 2 - 1.2441 0.5284 0 0 1.1000 0

3 3 - 0.9231 0.5640 0 0 1.1000 -0.0018

4 - 1 0 0 0.7000 0.5500 1.0466 -0.0368

5 - 2 0 0 1.0500 0.7000 1.0238 -0.0638

6 - 3 0 0 0.8000 0.6000 1.0476 -0.0444

D.2.1 Network Data

Figure D.2 depicts the IEEE 24-bus system. The transmission lines include two

voltage levels, 138 and 230 kV. There are 230/138 kV transformers connected
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to buses 11-9, 11-10, 12-9, 12-10 and 24-3. Tables D.6 and D.7 provide the
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Figure D.2: One-line diagram of the IEEE 24-bus system.

network data and the branch current limits for this system. In addition, a shunt

admittance of −j1 p.u. is connected to bus 6. The bus voltage magnitude

limits are V min
n = 0.95 p.u. and V max

n = 1.05 p.u. for all buses.

Ramping limit values are chosen based on typical response times of LTC

and PHS regulators. Positions and data of regulating transformers and FACTS

devices are as follows.

• The LTC connects buses 11 and 9. The maximum and minimum tap

limits are Tmax
k = 1.05 p.u./p.u. and Tmin

k = 0.95 p.u./p.u., respectively,
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Table D.6: Network data and branch current limits for the IEEE 24-bus sys-
tem.

Branch From To rk xk bpk Tk φk Imax
k

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [p.u.]

1 1 2 0.0026 0.0139 0.4611 - - 1.75

2 1 3 0.0546 0.2112 0.0572 - - 1.75

3 1 5 0.0218 0.0845 0.0229 - - 1.75

4 2 4 0.0328 0.1267 0.0343 - - 1.75

5 2 6 0.0497 0.1920 0.0520 - - 1.75

6 3 9 0.0308 0.1190 0.0322 - - 1.75

7 3 24 0.0023 0.0839 0 1.015 0 4.00

8 4 9 0.0268 0.1037 0.0281 - - 1.75

9 5 10 0.0228 0.0883 0.0239 - - 1.75

10 6 10 0.0139 0.0605 2.4590 - - 1.75

11 7 8 0.0159 0.0614 0.0166 - - 1.75

12 8 9 0.0427 0.1651 0.0447 - - 1.75

13 8 10 0.0427 0.1651 0.0447 - - 1.75

14 9 11 0.0023 0.0839 0 1.030 0 4.00

15 9 12 0.0023 0.0839 0 1.030 0 4.00

16 10 11 0.0023 0.0839 0 1.015 0 4.00

17 10 12 0.0023 0.0839 0 1.015 0 4.00

while the ramp slopes are Rup
Tk

= 0.002 p.u./p.u.min, and Rdown
Tk

= 0.002

p.u./p.u.min.

• The PHS transformer connects buses 11 and 10. The maximum and

minimum phase angle limits are φmax
k = π/12 rad and φmin

k = −π/12

rad, respectively, while the ramp slopes are Rup
φk

= π/600 rad/min, and

Rdown
φk

= π/600 rad/min.

• The SVC is placed at bus 3. The maximum and minimum susceptance

limits are bmax
SVC,n = 0.5 p.u., and bmin

SVC,n = −0.5 p.u., respectively.
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Table D.7: Network data and branch current limits for the IEEE 24-bus system
(continuation).

Branch From To rk xk bpk Tk φk Imax
k

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [p.u.]

18 11 13 0.0060 0.0480 0.1000 - - 1.75

19 11 14 0.0054 0.0418 0.0879 - - 5.00

20 12 13 0.0060 0.0480 0.1000 - - 5.00

21 12 23 0.0124 0.0966 0.2030 - - 5.00

22 13 23 0.0111 0.0865 0.1818 - - 5.00

23 14 16 0.0050 0.0589 0.0818 - - 5.00

24 15 16 0.0022 0.0173 0.0364 - - 5.00

25 15 21 0.0063 0.0490 0.1030 - - 5.00

26 15 21 0.0063 0.0490 0.1030 - - 5.00

27 15 24 0.0067 0.0519 0.1091 - - 5.00

28 16 17 0.0030 0.0259 0.0545 - - 5.00

29 16 19 0.0030 0.0231 0.0485 - - 5.00

30 17 18 0.0018 0.0144 0.0303 - - 5.00

31 17 22 0.0135 0.1053 0.2212 - - 5.00

32 18 21 0.0033 0.0269 0.0545 - - 5.00

33 18 21 0.0033 0.0269 0.0545 - - 5.00

34 19 20 0.0051 0.0396 0.0833 - - 5.00

35 19 20 0.0051 0.0396 0.0833 - - 5.00

36 20 23 0.0028 0.0216 0.0455 - - 5.00

37 20 23 0.0028 0.0216 0.0455 - - 5.00

38 21 22 0.0087 0.0678 0.1424 - - 5.00

• The TCSC is placed on the transmission line 11-13. The reactance max-

imum and minimum limits are xmax
TCSC,k = 0.01 p.u., and xmin

TCSC,k = −0.01

p.u., respectively.
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D.2.2 Technical Limits for Generators

Tables D.8 and D.9 list the maximum and minimum power outputs, and specify

ramping limits for the system generators.

Table D.8: Technical limits for the generators of the IEEE 24-bus system.

Gen. Pmin
Gj Pmax

Gj Qmin
Gj Qmax

Gj Rup
Gj Rdown

Gj

# [p.u.] [p.u.] [p.u.] [p.u.] [p.u./min] [p.u./min]

1 0.1000 0.20 0 0.10 0.03 0.03

2 0.1000 0.20 0 0.10 0.03 0.03

3 0.1520 0.76 -0.25 0.30 0.02 0.02

4 0.1520 0.76 -0.25 0.30 0.02 0.02

5 0.1000 0.20 0 0.10 0.03 0.03

6 0.1000 0.20 0 0.10 0.03 0.03

7 0.1520 0.76 -0.25 0.30 0.02 0.02

8 0.1520 0.76 -0.25 0.30 0.02 0.02

9 0.2500 1.00 0 0.60 0.07 0.07

10 0.2500 1.00 0 0.60 0.07 0.07

11 0.2500 1.00 0 0.60 0.07 0.07

12 0.6253 1.97 0 0.80 0.03 0.03

13 0.6253 1.97 0 0.80 0.03 0.03

14 0.6253 1.97 0 0.80 0.03 0.03

15 0 0 -0.50 2.00 0 0

16 0.0240 0.12 0 0.06 0.01 0.01

17 0.0240 0.12 0 0.06 0.01 0.01

D.2.3 Market Solution and Cost Data

Table D.10 shows the generator powers that correspond to the market dis-

patching solution for the IEEE 24-bus system. Table D.10 also provides the

offering costs of the generators to increase or decrease their power outputs for

security purposes. Table D.11 shows the demand powers that correspond to



D.2. IEEE 24-Bus System 195

Table D.9: Technical limits for the generators of the IEEE 24-bus system
(continuation).

Gen. Pmin
Gj Pmax

Gj Qmin
Gj Qmax

Gj Rup
Gj Rdown

Gj

# [p.u.] [p.u.] [p.u.] [p.u.] [p.u./min] [p.u./min]

18 0.0240 0.12 0 0.06 0.01 0.01

19 0.0240 0.12 0 0.06 0.01 0.01

20 0.0240 0.12 0 0.06 0.01 0.01

21 0.5425 1.55 -0.50 0.80 0.03 0.03

22 0.5425 1.55 -0.50 0.80 0.03 0.03

23 1.0000 4.00 -0.50 2.00 0.20 0.20

24 1.0000 4.00 -0.50 2.00 0.20 0.20

25 0 0.50 -0.10 0.16 10.00 10.00

26 0 0.50 -0.10 0.16 10.00 10.00

27 0 0.50 -0.10 0.16 10.00 10.00

28 0 0.50 -0.10 0.16 10.00 10.00

29 0 0.50 -0.10 0.16 10.00 10.00

30 0 0.50 -0.10 0.16 10.00 10.00

31 0.5425 1.55 -0.50 0.80 0.03 0.03

32 0.5425 1.55 -0.50 0.80 0.03 0.03

33 1.4000 3.50 -0.25 1.50 0.04 0.04

the market dispatching solution for the 24-bus system. Constant power factor

loads are assumed. Table D.11 also provides the value of tan(ψDi) and the

cost of load curtailment for each demand. Finally, the penalties for voltage

magnitude adjustments at generator buses (cup
Vn, c

down
Vn ) and the penalties for

set point adjustments of control devices (cup
LTCn, cdown

LTCn, cup
PHSk, c

down
PHSk, c

up
SVCn,

cdown
SVCn, cup

TCSCk, c
down
TCSCk) are all set to $100/p.u.h The units of penalty factors

are introduced only for compatibility with costs.
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Table D.10: The market solution and offering costs for the generators of the
IEEE 24-bus system.

Gen. Bus PM
Gj cup

Gj cdown
Gj Gen. Bus PM

Gj cup
Gj cdown

Gj

# # [p.u.] [$/p.u.h] [$/p.u.h] # # [p.u.] [$/p.u.h] [$/p.u.h]

1 1 0.1000 26.01 24.01 18 15 0.1200 22.02 21.02

2 1 0.1000 26.00 24.00 19 15 0.1200 22.01 21.01

3 1 0.7600 12.01 10.01 20 15 0.1200 22.00 21.00

4 1 0.7600 12.00 10.00 21 15 1.5500 11.00 9.00

5 2 0.1000 26.01 24.01 22 16 1.5500 11.00 9.00

6 2 0.1000 26.00 24.00 23 18 4.0000 7.00 5.00

7 2 0.7600 12.01 10.01 24 21 4.0000 7.00 5.00

8 2 0.7600 12.00 10.00 25 22 0.5000 3.00 1.00

9 7 0.8000 19.00 17.00 26 22 0.5000 3.01 1.01

10 7 0.8000 19.01 17.01 27 22 0.5000 3.02 1.02

11 7 0.8000 19.02 17.02 28 22 0.5000 3.03 1.03

12 13 0.4543 20.00 18.00 29 22 0.5000 3.04 1.04

13 13 0.4543 20.01 18.01 30 22 0.5000 3.05 1.05

14 13 0.4543 20.02 18.02 31 23 1.5500 11.00 9.00

15 14 0 0 0 32 23 1.5500 11.01 9.01

16 15 0.1200 22.04 21.04 33 23 3.5000 11.02 9.02

17 15 0.1200 22.03 21.03

D.2.4 Base-Case Operating Condition

Table D.12 shows the base-case operating condition for the IEEE 24-bus sys-

tem. This base case corresponds to the solution of the OPF problem described

in Appendix A. Regulating transformers and FACTS devices are not con-

sidered. Note that if control devices are considered, the base-case operating

condition differs from the one provided in Table D.12.
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Table D.11: The market solution, tan(ψDi), and cost of load curtailment for
the demands of the IEEE 24-bus system.

Dem. Bus PM
Di tan(ψDi) cdown

Di Dem. Bus PM
Di tan(ψDi) cdown

Di

# # [p.u.] [p.u./p.u.] [$/p.u.h] # # [p.u.] [p.u./p.u.] [$/p.u.h]

1 1 1.0800 0.2037 2200 10 10 1.9500 0.2051 2300

2 2 0.9700 0.2062 2200 11 13 2.6500 0.2038 2200

3 3 1.8000 0.2056 2200 12 14 1.9400 0.2010 2200

4 4 0.7400 0.2027 2300 13 15 3.1700 0.2019 2100

5 5 0.7100 0.1972 2300 14 16 1.0000 0.2000 2100

6 6 1.3600 0.2059 2300 15 18 3.3300 0.2042 2100

7 7 1.2500 0.2000 2400 16 19 1.8100 0.2044 2200

8 8 1.7100 0.2047 2400 17 20 1.2800 0.2031 2100

9 9 1.7500 0.2057 2300

D.3 WECC 9-Bus 3-Machine System

This section provides the data of the WECC 9-bus 3-machine system used

in the illustrative example of Section 3.4 of Chapter 3 and in the illustrative

example of Section 4.4 of Chapter 4. This system is based on the one reported

in [114]. The difference with respect to the data provided in [114] is that the

load has been increased by 20%.

D.3.1 Network Data

Figure D.3 depicts the WECC 9-bus, 3-machine system. The transmission

lines include four voltage levels, 13.8, 16.5, 18 and 230 kV. A 16.5/230 kV

transformer connects buses 1-4, a 18/230 kV transformer connects buses 2-

7, and a 13.8/230 kV transformer connects buses 3-9. Table D.13 lists the

network data for this system. Observe that current limits are not considered.

The bus voltage magnitude limits are V min
n = 0.90 p.u. and V max

n = 1.10 p.u.

for the generator buses, whereas V min
n = 0.80 p.u. and V max

n = 1.20 p.u. for

the remaining buses.
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Table D.12: Base-case operating condition for the IEEE 24-bus system.

Bus Gen. Dem. PA
Gn QA

Gn PA
Dn QA

Dn V A
n θAn

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1-4 1 1.7200 0.0500 1.0800 0.2200 1.0021 -0.1260

2 5-8 2 1.7200 0.0500 0.9700 0.2000 1.0025 -0.1279

3 - 3 0 0 1.8000 0.3700 0.9688 -0.0935

4 - 4 0 0 0.7400 0.1500 0.9762 -0.1739

5 - 5 0 0 0.7100 0.1400 0.9931 -0.1788

6 - 6 0 0 1.3600 0.2800 0.9909 -0.2252

7 9-11 7 2.4000 0.6000 1.2500 0.2500 1.0219 -0.1388

8 - 8 0 0 1.7100 0.3500 0.9845 -0.2033

9 - 9 0 0 1.7500 0.3600 0.9894 -0.1360

10 - 10 0 0 1.9500 0.4000 1.0118 -0.1737

11 - - 0 0 0 0 0.9978 -0.0500

12 - - 0 0 0 0 0.9855 -0.0276

13 12-14 11 1.8759 0 2.6500 0.5400 0.9907 0

14 15 12 0 2.0000 1.9400 0.3900 1.0377 0.0056

15 16-21 13 2.1500 0.0004 3.1700 0.6400 1.0098 0.2201

16 22 14 1.5500 0.8000 1.0000 0.2000 1.0246 0.2005

17 - - 0 0 0 0 1.0331 0.2802

18 23 15 4.0000 1.4368 3.3300 0.6800 1.0373 0.3051

19 - 16 0 0 1.8100 0.3700 1.0276 0.1703

20 - 17 0 0 1.2800 0.2600 1.0401 0.1776

21 24 - 4.0000 -0.5000 0 0 1.0297 0.3213

22 25-30 - 3.0000 0.0712 0 0 1.0500 0.4184

23 31-33 - 6.6000 1.7776 0 0 1.0500 0.1941

24 - - 0 0 0 0 0.9717 0.1057

D.3.2 Technical Limits for Generators

Table D.14 provides the maximum and minimum power output, and the ramp-

ing limits of the system generators.
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Figure D.3: One-line diagram of the WECC 9-bus, 3-machine system.

Table D.13: Network data for the WECC 9-bus, 3-machine system.

Branch From To rk xk bpk Tk φk Imax
k

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [p.u.]

1 6 4 0.0170 0.0920 0.1580 - - -

2 5 4 0.0100 0.0850 0.1760 - - -

3 7 5 0.0320 0.1610 0.3060 - - -

4 9 6 0.0390 0.1700 0.3580 - - -

5 7 8 0.0085 0.0720 0.1490 - - -

6 9 8 0.0119 0.1008 0.2090 - - -

7 1 4 0 0.0576 0 1 0 -

8 2 7 0 0.0625 0 1 0 -

9 3 9 0 0.0586 0 1 0 -

D.3.3 Machine Data

Table D.15 shows the dynamic data of the machines for the WECC 9-bus,

3-machine system.

D.3.4 Automatic Voltage Regulator Data

Table D.16 lists the data for the excitation control system of the machines for

the WECC 9-bus, 3-machine system.
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Table D.14: Technical limits for the generators of the WECC 9-bus, 3-machine
system.

Gen. Pmin
Gj Pmax

Gj Qmin
Gj Qmax

Gj Rup
Gj Rdown

Gj

# [p.u.] [p.u.] [p.u.] [p.u.] [p.u./min] [p.u./min]

1 0 2.4 -1.5 1.5 0.0720 0.0720

2 0 1.8 -1.5 1.5 0.0540 0.0540

3 0 1.2 -1.5 1.5 0.0360 0.0360

Table D.15: Machine data for the WECC 9-bus, 3-machine system.

Gen. Mj xdj x′dj xqj x′qj T ′
d0j T ′

q0j

# [s] [p.u.] [p.u.] [p.u.] [p.u.] [s] [s]

1 47.28 0.1460 0.0608 0.0969 0.0969 8.960 0.310

2 12.80 0.8958 0.1198 0.8645 0.1969 6.000 0.535

3 6.02 1.3125 0.1813 1.2578 0.2500 5.890 0.600

Table D.16: Automatic voltage regulator data for the WECC 9-bus, 3-machine
system.

Gen. V max
rj V min

rj Kaj Taj Kfj Tfj Kej Tej Trj Aej Bej

# [p.u.] [p.u.] - [s] - [s] - [s] [s] - -

1 5 -5 20 0.2 0.063 0.35 1 0.314 0.001 0.0039 1.555

2 5 -5 20 0.2 0.063 0.35 1 0.314 0.001 0.0039 1.555

3 5 -5 20 0.2 0.063 0.35 1 0.314 0.001 0.0039 1.555

D.3.5 Market Solution and Cost Data

Table D.17 shows the generator powers that correspond to the market dispatch-

ing solution for the WECC 9-bus, 3-machine system. Table D.17 also provides

the offering costs of the generators to increase or decrease their power outputs

for security purposes. Table D.18 shows the demand powers that correspond

to the market dispatching solution for the WECC 9-bus, 3-machine system.
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Table D.17: The market solution and offering cost for the generators of the
WECC 9-bus, 3-machine system.

Generator Bus PM
Gj cup

Gj cdown
Gj

# # [p.u.] [$/p.u.h] [$/p.u.h]

1 1 1.2633 2.0 2.0

2 2 1.3212 1.5 1.5

3 3 1.1955 1.8 1.8

Constant power factor loads are assumed. Table D.18 also provides the value

of tan(ψDi) and the cost of load curtailment for each demand. Finally, the

Table D.18: The market solution, tan(ψDi), and cost of load curtailment for
the demands of the WECC 9-bus, 3-machine system.

Demand Bus PM
Di tan(ψDi) cdown

Di

# # [p.u.] [p.u/p.u] [$/p.u.h]

1 5 1.5000 0.4000 1000

2 6 1.0800 0.3333 1000

3 8 1.2000 0.3500 1000

penalties for voltage magnitude adjustments at generator buses (cup
Vn, cdown

Vn )

are all set to $100/p.u.h The units of penalty factors are introduced only for

compatibility with costs.

D.3.6 Base-Case Operating Condition

Table D.19 lists the base-case operating condition for the WECC 9-bus, 3-

machine system. This base case corresponds to the solution of the OPF prob-

lem described in Appendix A.
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Table D.19: Base-case operating condition for the WECC 9-bus, 3-machine
system.

Bus Gen. Dem. PA
Gj QA

Gj PA
Di QA

Di V A
n θAn

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 1 - 1.2633 0.2510 0 0 1.1000 0

2 2 - 1.3642 0.0856 0 0 1.1000 0.0514

3 3 - 1.1955 -0.0592 0 0 1.1000 0.0476

4 - - 0 0 0 0 1.0889 -0.0608

5 - 1 0 0 1.5000 0.6000 1.0595 -0.1164

6 - 2 0 0 1.0800 0.3600 1.0767 -0.0970

7 - - 0 0 0 0 1.0979 -0.0193

8 - 3 0 0 1.2000 0.4200 1.0863 -0.0567

9 - - 0 0 0 0 1.1050 -0.0101

D.4 New England 39-Bus 10-Machine System

This section provides the data for the New England 39-bus 10-machine system

used in the case study of Subsection 3.5.1 of Chapter 3 and in the case study

of Subsection 4.5.1 of Chapter 4. This system is based on the one described in

[104]. The difference with respect to the data provided in [104] for this system

is that the load has been increased by 15%.

D.4.1 Network Data

Figure D.4 depicts the New England 39-bus, 10-machine system. Tables D.20

and D.21 provide the network data. Observe that current limits are not consid-

ered. The bus voltage magnitude limits are V min
n = 0.95 p.u. and V max

n = 1.05

p.u. for the generator buses, whereas V min
n = 0.90 p.u. and V max

n = 1.10 p.u.

for the rest of the buses.
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Figure D.4: One-line diagram of the New England 39-bus, 10-machine system.

D.4.2 Technical Limits for Generators

Table D.22 lists the maximum and minimum power outputs, and ramping

limits of the system generators.

D.4.3 Machine Data

Table D.23 provides the dynamic data of the machines for the New England

39-bus, 10-machine system.
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Table D.20: Network data for the New England 39-bus, 10-machine system.

Branch From To rk xk bpk Tk φk Imax
k

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [p.u.]

1 1 2 0.0035 0.0411 0.6987 - - -

2 1 39 0.0010 0.0250 0.7500 - - -

3 2 3 0.0013 0.0151 0.2572 - - -

4 25 2 0.0070 0.0086 0.1460 - - -

5 3 4 0.0013 0.0213 0.2214 - - -

6 3 18 0.0011 0.0133 0.2138 - - -

7 4 5 0.0008 0.0128 0.1342 - - -

8 4 14 0.0008 0.0129 0.1382 - - -

9 5 6 0.0002 0.0026 0.0434 - - -

10 5 8 0.0008 0.0112 0.1476 - - -

11 6 7 0.0006 0.0092 0.1130 - - -

12 6 11 0.0007 0.0082 0.1389 - - -

13 7 8 0.0004 0.0046 0.0780 - - -

14 8 9 0.0023 0.0363 0.3804 - - -

15 9 39 0.0010 0.0250 1.2000 - - -

16 10 11 0.0004 0.0043 0.0729 - - -

17 10 13 0.0004 0.0043 0.0729 - - -

18 13 14 0.0009 0.0101 0.1723 - - -

19 14 15 0.0018 0.0217 0.3660 - - -

20 15 16 0.0009 0.0094 0.1710 - - -

21 16 17 0.0007 0.0089 0.1342 - - -

22 21 16 0.0008 0.0135 0.2548 - - -

23 16 24 0.0003 0.0059 0.0680 - - -

D.4.4 Automatic Voltage Regulator Data

Table D.24 shows the data for the excitation control system of the machines

for the New England 39-bus, 10-machine system.
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Table D.21: Network data for the New England 39-bus, 10-machine system
(continuation).

Branch From To rk xk bpk Tk φk Imax
k

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [p.u.]

24 17 18 0.0007 0.0082 0.1319 - - -

25 17 27 0.0013 0.0173 0.3216 - - -

26 21 22 0.0008 0.0140 0.2565 - - -

27 22 23 0.0006 0.0096 0.1846 - - -

28 23 24 0.0022 0.0350 0.3610 - - -

29 25 26 0.0032 0.0323 0.5130 - - -

30 26 27 0.0014 0.0147 0.2396 - - -

31 28 26 0.0043 0.0474 0.7802 - - -

32 26 29 0.0057 0.0625 1.0290 - - -

33 28 29 0.0014 0.0151 0.2490 - - -

34 12 11 0.0016 0.0435 0 1.006 0 -

35 12 13 0.0016 0.0435 0 1.006 0 -

36 16 19 0.0016 0.0195 0.3040 - - -

37 6 31 0 0.0250 0 1.070 0 -

38 10 32 0 0.0200 0 1.070 0 -

39 19 33 0.0007 0.0142 0 1.070 0 -

40 20 34 0.0009 0.0180 0 1.009 0 -

41 22 35 0 0.0143 0 1.025 0 -

42 23 36 0.0005 0.0272 0 1 0 -

43 25 37 0.0006 0.0232 0 1.025 0 -

44 2 30 0 0.0181 0 1.025 0 -

45 29 38 0.0008 0.0156 0 1.025 0 -

46 19 20 0.0007 0.0138 0 1.060 0 -

D.4.5 Market Solution and Cost Data

Table D.25 lists the generator powers that correspond to the market dispatch-

ing solution for the New England 39-bus, 10-machine system. Table D.25 also
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Table D.22: Technical limits for the generators of the New England 39-bus,
10-machine system.

Gen. Pmin
Gj Pmax

Gj Qmin
Gj Qmax

Gj Rup
Gj Rdown

Gj

# [p.u.] [p.u.] [p.u.] [p.u.] [p.u./min] [p.u./min]

1 0 4.0250 -2.4945 2.4945 0.0671 0.0671

2 0 7.4750 -4.6326 4.6326 0.1246 0.1246

3 0 9.2000 -5.7016 5.7016 0.1533 0.1533

4 0 8.6250 -5.3453 5.3453 0.1437 0.1437

5 0 7.4750 -4.6326 4.6326 0.1246 0.1246

6 0 8.6250 -5.3453 5.3453 0.1437 0.1437

7 0 8.6250 -5.3453 5.3453 0.1437 0.1437

8 0 8.0500 -4.9889 4.9889 0.1342 0.1342

9 0 10.3500 -6.4144 6.4144 0.1725 0.1725

10 0 13.8000 -8.5525 8.5525 0.2300 0.2300

provides the offering costs of the generators to increase or decrease their power

outputs for security purposes. Table D.26 shows the demand powers that

correspond to the market dispatching solution for the New England 39-bus,

10-machine system. Constant power factor loads are assumed. Table D.26 also

provides the value of tan(ψDi) and the cost of load curtailment for each de-

mand. Finally, the penalties for voltage magnitude adjustments at generator

buses (cup
Vn, c

down
Vn ) are all set to $100/p.u.h. The units of penalty factors are

introduced only for compatibility with costs.

D.4.6 Base-Case Operating Condition

Tables D.27 and D.28 list the base-case operating condition for the New Eng-

land 39-bus, 10-machine system. This base case corresponds to the solution of

the OPF problem described in Appendix A.
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Table D.23: Machine data for the New England 39-bus, 10-machine system.

Gen. Mj xdj x′dj xqj x′qj T ′
d0j T ′

q0j

# [s] [p.u.] [p.u.] [p.u.] [p.u.] [s] [s]

1 84.0 0.1000 0.0310 0.0690 0.0080 10.20 0.10

2 60.6 0.2950 0.0697 0.2820 0.1700 6.56 1.50

3 71.6 0.2495 0.0531 0.2370 0.0876 5.70 1.50

4 57.2 0.2620 0.0436 0.2580 0.1660 5.69 1.50

5 52.0 0.6700 0.1320 0.6200 0.1660 5.40 0.44

6 69.6 0.2540 0.0500 0.2410 0.0814 7.30 0.40

7 52.8 0.2950 0.0490 0.2920 0.1860 5.66 1.50

8 48.6 0.2900 0.0570 0.2800 0.0911 6.70 0.41

9 69.0 0.2106 0.0570 0.2050 0.0587 4.79 1.96

10 1000.0 0.0200 0.0060 0.0190 0.0080 7.00 0.70

Table D.24: Automatic voltage regulator data for the New England 39-bus,
10-machine system.

Gen. V max
rj V min

rj Kaj Taj Kfj Tfj Kej Tej Trj Aej Bej

# [p.u.] [p.u.] - [s] - [s] - [s] [s] - -

1 1.0 -1.0 5.0 0.06 0.0400 1.0000 -0.0485 0.250 0.001 0.0023 0.9971

2 1.0 -1.0 6.2 0.05 0.0570 0.5000 -0.6330 0.405 0.001 0.2784 0.2842

3 1.0 -1.0 5.0 0.06 0.0800 1.0000 -0.0198 0.500 0.001 0.0073 1.2314

4 1.0 -1.0 5.0 0.06 0.0800 1.0000 -0.0525 0.500 0.001 0.0013 1.4303

5 10.0 -10.0 40.0 0.02 0.0300 1.0000 1.0000 0.785 0.001 0 1.9596

6 1.0 -1.0 5.0 0.02 0.0754 1.2460 -0.0419 0.471 0.001 0.0011 1.1430

7 6.5 -6.5 40.0 0.02 0.0300 1.0000 1.0000 0.730 0.001 0.1947 0.3574

8 1.0 -1.0 5.0 0.02 0.0854 1.2600 -0.0470 0.528 0.001 0.0012 1.2833

9 10.5 -10.5 40.0 0.02 0.0300 1.0000 1.0000 1.400 0.001 0.2406 0.2224

D.5 IEEE 145-Bus 50-Machine System

This section provides the technical limits, offering costs and penalty factors

for the IEEE 145-bus, 50-machine system used in the case study of Subsection

3.5.2 of Chapter 3. The IEEE 145-bus, 50-machine system was originally



208 D. Data

Table D.25: The market solution and offering cost for the generators of the
New England 39-bus, 10-machine system.

Gen. Bus PM
Gj cup

Gj cdown
Gj

# # [p.u.] [$/p.u.h] [$/p.u.h]

1 30 2.9134 6.9 6.9

2 31 5.9783 3.7 3.7

3 32 7.3250 2.8 2.8

4 33 7.3089 4.7 4.7

5 34 5.7801 2.8 2.8

6 35 7.4560 3.7 3.7

7 36 6.4704 4.8 4.8

8 37 6.1246 3.6 3.6

9 38 9.4772 3.7 3.7

10 39 11.2828 3.9 3.9

reported in [101]. The data used in this thesis correspond to the slightly

modified version of this system, which can be found in the software package

Power System Toolbox (PST) [29].

It is assumed that the generator and load powers provided in [29] corre-

spond to the solution of a market clearing procedure. Thus, from this market

solution, the base-case operating condition is obtained by solving the OPF

problem described in Appendix A.

Technical limits, offering costs and penalty factors for the IEEE 145-bus,

50-machine system are as follows. Bus voltage magnitude limits are V max
n = 1.1

p.u. and V min
n = 0.9 p.u. for all generator buses, and V max

n = 1.2 p.u. and

V min
n = 0.8 p.u. for the remaining buses. Pmin

Gj = 0 is used for all genera-

tors, whereas Pmax
Gj is set to the value that results from increasing a 10% the

active power output of each generator. Ramping limits are Rup
Gj = Rdown

Gj =

(Pmax
Gj − Pmin

Gj )/60 p.u./min. Generator reactive power limits are provided in

[101]. With regard to the offering costs and penalty factors, cup
Gj = cdown

Gj =

$10/p.u.h for all generators, cdown
Di = $1000/p.u.h for all loads, and cup

Vn =
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Table D.26: Market solution, tan(ψDi), and cost of load curtailment for the
demands of the New England 39-bus, 10-machine system.

Dem. Bus PM
Di tan(ψDi) cdown

Di Dem. Bus PM
Di tan(ψDi) cdown

Di

# # [p.u.] [p.u./p.u.] [$/p.u.h] # # [p.u.] [p.u./p.u.] [$/p.u.h]

1 3 3.7030 0.0075 1000 11 23 2.8462 0.3418 1000

2 4 5.7500 0.3680 1000 12 24 3.5489 -0.2988 1000

3 7 2.6887 0.3593 1000 13 25 2.5760 0.2107 1000

4 9 6.0030 0.3372 1000 14 26 1.5985 0.1223 1000

5 12 0.0862 11.7333 1000 15 27 3.2315 0.2687 1000

6 15 3.6800 0.4781 1000 16 28 2.3690 0.1340 1000

7 16 3.7835 0.0982 1000 17 29 3.2603 0.0949 1000

8 18 1.8170 0.1899 1000 18 31 0.1058 0.5000 1000

9 20 7.2220 0.1640 1000 19 39 12.6960 0.2264 1000

10 21 3.1510 0.4197 1000

cdown
Vn = $100/p.u.h for all generator buses, are used. The units of penalty

factors are introduced only for compatibility with costs.
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Table D.27: Base-case operating condition for the New England 39-bus, 10-
machine system.

Bus Gen. Dem. PA
Gj QA

Gj PA
Di QA

Di V A
n θAn

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

1 - - 0 0 0 0 1.0637 -0.1572

2 - - 0 0 0 0 1.0598 -0.1018

3 - 1 0 0 3.7030 0.0276 1.0482 -0.1567

4 - 2 0 0 5.7500 2.1160 1.0345 -0.1744

5 - - 0 0 0 0 1.0442 -0.1556

6 - - 0 0 0 0 1.0489 -0.1431

7 - 3 0 0 2.6887 0.9660 1.0346 -0.1841

8 - 4 0 0 6.0030 2.0240 1.0324 -0.1935

9 - - 0 0 0 0 1.0552 -0.1922

10 - - 0 0 0 0 1.0618 -0.0941

11 - - 0 0 0 0 1.0559 -0.1107

12 - 5 0 0 0.0862 1.0120 1.0405 -0.1098

13 - - 0 0 0 0 1.0554 -0.1069

14 - - 0 0 0 0 1.0449 -0.1370

15 - 6 0 0 3.6800 1.7595 1.0362 -0.1395

16 - 7 0 0 3.7835 0.3714 1.0494 -0.1099

17 - - 0 0 0 0 1.0504 -0.1320

18 - 8 0 0 1.8170 0.3450 1.0479 -0.1497

19 - - 0 0 0 0 1.0878 -0.0134

20 - 9 0 0 7.2220 1.1845 1.0265 -0.0328
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Table D.28: Base-case operating condition for the New England 39-bus, 10-
machine system (continuation).

Bus Gen. Dem. PA
Gj QA

Gj PA
Di QA

Di V A
n θAn

# # # [p.u.] [p.u.] [p.u.] [p.u.] [p.u.] [rad.]

21 - 10 0 0 3.1510 1.3225 1.0397 -0.0622

22 - - 0 0 0 0 1.0514 0.0269

23 - 11 0 0 2.8462 0.9729 1.0436 0.0232

24 - 12 0 0 3.5489 -1.0603 1.0524 -0.1074

25 - 13 0 0 2.5760 0.5428 1.0722 -0.0773

26 - 14 0 0 1.5985 0.1955 1.0672 -0.0997

27 - 15 0 0 3.2315 0.8682 1.0526 -0.1370

28 - 16 0 0 2.3690 0.3174 1.0670 -0.0330

29 - 17 0 0 3.2603 0.3093 1.0685 0.0199

30 1 - 2.9134 0.6096 0 0 1.0433 -0.0529

31 2 18 5.9783 3.4014 0.1058 0.0529 1.0500 0

32 3 - 7.8748 3.6284 0 0 1.0500 0.0576

33 4 - 7.3089 2.4490 0 0 1.0500 0.0823

34 5 - 5.7801 1.8918 0 0 1.0500 0.0632

35 6 - 7.4560 2.1510 0 0 1.0500 0.1260

36 7 - 6.4704 0.6494 0 0 1.0500 0.1842

37 8 - 6.1246 0.4172 0 0 1.0500 0.0522

38 9 - 9.4772 0.6580 0 0 1.0500 0.1549

39 10 19 11.2828 1.0864 12.6960 2.8750 1.0500 -0.1902
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