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Energy Conversion in Magnetic Circuits

• Lorentz force

• Energy balance

• Energy and coenergy

• Examples:

◦ Acyclic machine

◦ Electromagnet

◦ Reluctance motor
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Linear Motor

• Consider a conductor (e.g. a cop-

per rod) of length L resting on

wires, carrying a current I , in

the presence of a magnetic field

whose flux density is in the direc-

tion shown, normal to the plane of

the conductor.

• Current leads to moving charges in the conductor, which experience an

electromagnetic force, which is transmitted to the conductor itself.

• The conductor thus experiences a force (Lorentz force), given by the vector product

~F = i~ℓ× ~B

• In this example F has magnitude BLI
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Linear Generator

• The system considered in the pre-

vious slide can also be used as a

generator. If the bar moves with

constant speed ~v, then the area

spanned by the coil varies, which

leads to a variation of magnetic flux:

dφ = BdA = BLdx

⇒ dφ
dt = BLdx

dt = BLv

• This is a very simple example of electric machine which can work either as a motor or

as a generator.

• The linear structure is impractical: how can such an uniform ~B be generated?

• That’s why most electrical machines are rotating machines.
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Acyclic Machine

• It is possible though to im-

plement the machine seen

previously using an acyclic

structure

• Lets consider the machine

in the figure

ωr

ℓ

~B
~B

+ −

• The magnetic induction ~B is radial and time-invariant. While rotating, the coil spanned

area changes its relative position with respect to the magnetic induction:

e = −dφ

dt
= Bℓωr = Bℓv

• This machine is characterized by a continuous (low) voltage and extremely high

currents (order of kA).
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Motivation of Coils with High N

• The acyclic machine has not practical applications.

• This is mainly because the coil on the rotor has just one turn ⇒ inefficient!

i

i

i

i

i

i

i ~H~H

H = i/2πr H = Ni/2πr

• The advange of using N turns is an easy way to increase the magnetic field ~H while

keeping relatively small the current of the winding.
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Force in Magnetic Field - I

• The power balance of a coil:

p = vi = ri2 + i
dλ

dt

• Neglecting losses for simplicity, but without loss of generality:

pdt = idλ

• The total energy absorbed when the flux linkage changes from 0 to λ is:

We =

∫

pdt =

∫ λ

0

idλ
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Motivation

• Let’s consider the variation of en-

ergy from (0, 0) to (xe, λe).

• If there are no losses, any path can

be used:

∆We = ∆Wa = ∆Wb1 +∆Wb2

• However, path b1-b2 is much sim-

pler.

a

b1

b2

0

λ

x

λe

xe

• Along b1, λ = 0 and dλ = 0, hence i = 0 and f = 0, hence: ∆Wb1 = 0

• Along b2, x = xe = const., dx = 0, hence:

∆We = ∆Wb2 =

∫ λe

0

i(xe, λ)dλ
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Force in Magnetic Field – II

• In the case of movable parts, the current is a function of λ and the position x:

i = i(λ, x)

• Then also the magnetic field energy Wf depends on λ and x:

Wf = Wf (λ, x)

• The incremental change of magnetic field energy gives:

dWf (λ, x) =
∂Wf

∂λ
dλ+

∂Wf

∂x
dx
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Force in Magnetic Field – III

• On the other hand, neglecting losses, the variation of electric energy has to be equal to

the variation of magnetic energy plus the variation of mechanical energy:

dWe = dWf + fdx = idλ dWf = idλ− fdx

• Hence, we have:

i =
∂Wf

∂λ
|dx=0 f = −∂Wf

∂x
|dλ=0
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Coenergy

• For fixed x, the field energy is the area of the upper side of the λ-i curve:

dWf =
∫ λ

0
idλ

• Alternatively, for fixed x, one can define coenergy as the area of the lower side:

dW ′

f =
∫ i

0
λdi
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Mechanical Force in terms of Coenergy

• Let remember that:

dWe = dWf + dWm = idλ

• Then, by definition of coenergy:

Wf +W ′

f = iλ dWf + dW ′

f = idλ+ λdi

• Subsitituing into the expression of the energy balance:

idλ+ λdi− dW ′

f + dWm = idλ

⇒ dW ′

f = λdi+ dWm = λdi+ fdx

• Which leads to:

f =
∂W ′

f

∂x
|di=0
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Linear Case with Time-invariant Inductance

• Let’s assume the linear case (constant inductance):

λ = Li

• Then, the field energy is:

Wf =

∫ λ

0

idλ =

∫ λ

0

λ

L
dλ =

1

2

λ2

L
=

1

2
Li2

• The coenergy is:

W ′

f =

∫ i

0

λdi =

∫ i

0

Lidi =
1

2
Li2 =

1

2

λ2

L

• Hence, Wf = W ′

f , as it can be deduced straightforwardly from the curve on the λ-i

plane.
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Alternative Expressions

• The inductance can be expressed as:

L = N
φ

i

• Then, taking into account the Hopkinson law (F = Rφ, the inductance can be

rewritten as:

L = N2
φ

Ni
= N2

φ

R =
N2

R = N2P

where P is the permeance, P = 1/R

• So, in the linear case, one has:

Wm = W ′

m =
1

2
Fφ =

1

2
Rφ2 =

1

2

φ2

P =
1

2

F2

R =
1

2
PF2
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Special Case 1: Constant Flux

• The assumption is that the movement of the movable iron core parts is sufficiently fast

to prevent the magnetic flux to vary.

• In this case, the energy absorbed from the feeder is zero:

dWe = idλ = 0 ⇒ 0 = dWf + dWm

• Hence:

dWm = −dWf ⇒ f = −dWf

dx
|dλ=0

i.e., the mechanical work is obtained by varying the stored magnetic energy.

Dublin, 2018 Energy Conversion – 14



Special Case 2: Constant Current

• The assumption is that the movement of the movable iron core parts is sufficiently slow

to prevent the current in the coil to vary.

• In this case, we have:

dWe = idλ = dWf + dWm = idλ+ λdi− dW ′

f + dWm

• Hence:

dWm = dW ′

f ⇒ f =
dW ′

f

dx
|di=0

i.e., the mechanical work is obtained by varying the coenergy of the magnetic circuit.
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Summary

• ENERGY (W ) is useful if we know the function i(x, λ):

W =

∫

λ

i(x, λ)dλ

• COENERGY (W ′) is useful if we know the function λ(x, i):

W ′ =

∫

i

λ(x, i)di
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Expressions of Mechanical Force (or Torque)

• From the differentiation of the energy, we obtain:

dW = idλ− fdx =
∂W

∂λ

∣
∣
∣
∣
x=const.

· dλ+
∂W

∂x

∣
∣
∣
∣
λ=const.

· dx

• From the differentiation of the coenergy, we obtain:

dW ′ = λdi+ fdx =
∂W ′

∂i

∣
∣
∣
∣
x=const.

· di+ ∂W ′

∂x

∣
∣
∣
∣
i=const.

· dx

• Hence, there two expressions of the force (torque):

f = − ∂W

∂x

∣
∣
∣
∣
λ=const.

=
∂W ′

∂x

∣
∣
∣
∣
i=const.
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Example

• An electromechanical system has the following relation between the total magnetic flux

and the current:

λ =
4 · 10−4

x2
· i1/3

• Determine the mechanical force.
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Example - Coenergy-based Solution

• We determine W ′ first and the we calculate f = ∂W ′

∂x .

• Since the function λ(x, i) is given, we have:

W ′ =

∫

λ(x, i)di =

∫
4 · 10−4

x2
· i1/3di

=
3 · 10−4

x2
i4/3

• Then, the force is obtained as:

f =
∂W ′

∂x

∣
∣
∣
∣
i=const.

= −2 · 3 · 10−4

x3
· i4/3 = −6 · 10−4

x3
· i4/3
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Example - Energy-based Solution

• We determine W first and the we calculate f = −∂W
∂x .

• We first compute i(x, λ), then we have:

W =

∫

i(x, λ)dλ =

∫
x6

(4 · 10−4)3
· λ3dλ

=
x6

(4 · 10−4)3
· 1
4
· λ4

• Then, the force is obtained as:

f = − ∂W

∂x

∣
∣
∣
∣
λ=const.

= −6 · x5

(4 · 10−4)3
· 1
4
· λ4 ,

• which, substituting back the original expression of λ(x, i), gives the same solution

obtained with the coenergy approach.
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Electromagnet - I

• Let consider a simple electro-mechanical system: the electromagnet (on the right,

industrial electromagnet lifting scrap iron, 1914).

x

m

v(t)

i(t)

~g

µ

µo

N

• What is the force acting on the armature?

Dublin, 2018 Energy Conversion – 21



Electromagnet – II

• The electrical equation is:

v = Ri+ e

where R is the resistance of the coil and e is the mmf induced by the magnetic circuit:

e =
dφ

dt

and φ is the magnetic flux in the iron core, which depends on the current and on the

position x:

φ = L(x)i =
N2i

RFe +R0(x)
≈ µ0

N2Ai

x

where L is the inductance of the coil, A is the iron core section area and we have

assumed that the reluctance in the iron core is negligible with respect to the one in the

air gap (RFe ≪ R0).

Dublin, 2018 Energy Conversion – 22



Electromagnet – III

• The function of the force is not valid for all values of x.

f(x)

x

a

b

• In region a, the force does not become infinite due to the iron core reluctance.

• In region b, the force goes to zero as the magnetic flux field disperses in the air.
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Electromagnet – IV

• The time derivative of the magnetic flux gives:

dφ

dt
= L(x)

di

dt
+

∂L

∂x

dx

dt
i

• The mechanical equation is:

m
d2x

dt2
= f(x) + b

dx

dt
+mg

where b is a viscous friction coefficient, f(x) is the force generated by the magnetic

circuit:

f(x) =
1

2

∂L(x)

∂x
i2 = −1

2

N2

x2
µ0Ai2
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Electromagnet – V

• If the current is ac, we have:

f = −1

2

∂L

∂x
i2(t) = −1

2

∂L

∂x
I2M sin2(ωt)

• Since sin2 α = 0.5(1− cos(2α)), the previous expression can be rewritten as:

f = −1

2

∂L

∂x
I2 +

1

2

∂L

∂x
I2 cos(2ωt)

where I = IM/
√
2 is the rms value of the current.

|f(t)|

t
i(t)
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Electromagnet – VI

• Note that the term that depends on the electrical pulsation ω is filtered by the inertia of

the mobile iron core, i.e., the mobile iron core does not oscillate!

• Observe also that, assuming ac stationary conditions, i.e., no dynamic interactions

between electromagnetic and mechanic dynamics, the electromagnetic force becomes:

f ≈ −1

2

∂L

∂x
I2 = −1

2

AN2

x2
I2 ≈ −1

2

V 2

µ0ω2N2A

• The force is only a function of the voltage rms value, not of the position of the mobile

iron core.
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Electromagnet – VII

• For the particular case of ac voltage, stationary conditions can be described by static

phasors:

I =
V√

R2 +X2

where I and V are the rms values of the current and the voltage, respectively, and X

is the system reactance:

X = ωL(x) = ωµ0

N2A

x

• Assuming R ≪ X :

I ≈ V

X
=

V x

µ0ωN2A
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Reluctance Machine

• Let’s consider the following magnetic circuit:

N
g

r

i(t)

θ

v(t)+
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Steady-State Reluctance Machine

• The reluctance of the two airgaps is:

R =
1

µ0

· 2g

rθℓ

where ℓ is the width of the magnetic core and we have neglected the reluctances of the

fixed and mobile iron cores.

• The resulting torque is:

T =
1

2

∂L

∂θ
i2 =

1

2

µ0rℓ

2g
N2i2

• If the circuit is AC and in steady state:

T ≈ 1

2

µ0rℓ

2g
N2I2 = const.

• The torque is thus constant for a given current.
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Galvanometer

• This electro-magnetic circuit is the base for instruments to measure the current,

voltage and power. For example, the figure below shows a galvanometer.

Dublin, 2018 Energy Conversion – 30



Rotating Reluctance Machine - I

• The inductance of the machine changes as the rotor changes position.

a b

c d

• Position a: Lmax; Position c: Lmin
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Rotating Reluctance Machine - II

• The inductance L varies periodically as a function of the position θ.

a

b

c

d

L

θ
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Rotating Reluctance Machine - III

• It is possible to shape the rotor so that the inductance L varies sinusoidally:

L(θ) =
Lmax + Lmin

2
+

Lmax − Lmin

2
sin(2θ)

a

b

c

d

L

θ
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Rotating Reluctance Machine - IV

• The resulting torque is:

T = −1

2
· i2 · ∂L

∂θ
= −1

2
· i2 · Lmax − Lmin

2
· 2 · cos(2θ)

• If i(t) =
√
2I sin(ωt), then:

T = −1

2
· 2I2 · sin2(ωt) · Lmax − Lmin

2
· 2 · cos(2θ)

= −1

2
· 2I2 · 1

2
(1− cos(ωt)) ·∆L · cos(2θ)

= −1

2
· I2 ·∆L · cos(2θ)

︸ ︷︷ ︸

A

+
1

2
· I2 · cos(ωt) ·∆L · cos(2θ)

︸ ︷︷ ︸

B

where ∆L = Lmax − Lmin.
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Rotating Reluctance Machine - V

• The term A has null average as θ varies.

• The term B has non-null average only if θ = ωmt = ωt.

• In other words, this machine has non-null average torque only if it rotates

synchronously with the electrical ac system.

• If ωm = ω:

T =
1

2
I2∆L cos2(2ωt)
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