Worked Problems on Energy Conversion

EEEN20090 - Electric Energy Systems

Problem 1

Figure 1 shows an electro-mechanical relay. The current in the coil is 30 mA. The reluctance in the iron core and the fringing flux in the air gap are negligible. Determine:

- a. The force that acts on the mobile part of the magnetic circuit and the self-inductance of the relay for an air gap equal to x = 3.5 mm.
- b. The variation of the stored magnetic energy when the mobile part of the iron core slowly moves from $x_1 = 3.5$ mm to $x_2 = 5$ mm.

Problem 2

The inductances, in H, of the electro-mechanical system shown in Figure 2 are as follows:

$$L_{11} = 5 + 2\cos 2\theta;$$
 $L_{22} = 3 + \cos 2\theta;$ $L_{12} = L_{21} = 10\cos \theta$

The currents in the windings are: $i_1 = 1$ A; $i_2 = 0.5$ A. Determine:

- a. The magnetic energy stored in the system as a function of the angle θ ;
- b. The maximum mechanical torque that the system can develop and the corresponding value of θ .

Finally, explain why the period of $L_{12}(\theta)$ is twice the period of $L_{11}(\theta)$ and $L_{22}(\theta)$, and under which hypoteses the condition $L_{12}(\theta) = L_{21}(\theta)$ is satisfied.

Problem 3

An electro-mechanical system consists of a coil that can move along a direction x. The relationship between the total flux λ and the current i of the coil is:

$$\lambda = x(i+x)$$

The coil has resistance R and is fed through a sinusoidal voltage with rms V and angular speed ω . Determine the average electro-magnetic force developed

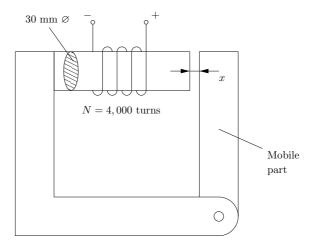


Figure 1

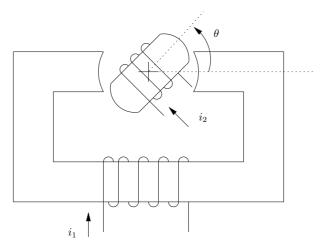


Figure 2

by the system at $x = x_0$ (constant) and in steady-state ac conditions. Assume that the force is null if the current is null.

Note: It is convenient to determine the rms value of the current that flows in the coil as a function of V, ω , R and x_0 .

Problem 4

A magnetic circuit is composed of two coils with currents i_1 and i_2 , respectively. The total fluxes depend on the currents i_1 and i_2 and on the position x according to the following expressions:

$$\lambda_1(i_1, i_2, x) = x^2 i_1^2 + x i_2$$

 $\lambda_2(i_1, i_2, x) = x^2 i_2^2 + x i_1$

Determine:

- a. The magnetic energy $W(i_1, i_2, x)$ of the system.
- b. The coenergy.
- c. The force developed by the magnetic system.
- d. The average force in the following cases:

(a)
$$i_1(t) = i_2(t) = \sqrt{2}I\cos\omega t$$

(b)
$$i_1(t) = \sqrt{2}I\cos\omega t$$
, $i_2(t) = \sqrt{2}I\cos 2\omega t$

Solution of Problem 1

a. Reluctance in the air gap for x = 3.5 mm:

$$\mathcal{R}_1 = \frac{x}{\mu_0 S} = \frac{0.0035}{4 \cdot \pi \cdot 10^{-7} \cdot \pi \cdot 0.015^2} = 3940268 \text{ A-turn/Wb}$$
 (1)

Self-inductance for x = 3.5 mm:

$$L_1 = \frac{N^2}{\mathcal{R}_1} = \frac{4000^2}{3940268} = 4.06 \text{ H}$$
 (2)

Force on the mobile section for x = 3.5 mm:

$$F = \frac{1}{2} \frac{\partial L}{\partial x} i^2 = -\frac{1}{2} \frac{\mu_0 S N^2}{x^2} i^2 = -0.5221 \quad N$$
 (3)

b. Reluctance of the air gap for x = 5 mm:

$$\mathcal{R}_2 = \frac{x}{\mu_0 S} = \frac{0.005}{4 \cdot \pi \cdot 10^{-7} \cdot \pi \cdot 0.015^2} = 5628955 \text{ A-turn/Wb}$$
 (4)

Self-inductance for x = 5 mm:

$$L_2 = \frac{N^2}{\mathcal{R}_2} = \frac{4000^2}{5628955} = 2.84 \text{ H}$$
 (5)

Magnetic energy for x = 3.5 mm:

$$W_{m_1} = \frac{1}{2}i^2L_1 = 0.5 \cdot 0.030^2 \cdot 4.06 = 0.001827$$
 J (6)

Magnetic energy for x = 5 mm:

$$W_{m_2} = \frac{1}{2}i^2L_2 = 0.5 \cdot 0.030^2 \cdot 2.84 = 0.001279 \quad J \tag{7}$$

Variation of magnetic energy:

$$\Delta W = W_{m_2} - W_{m_1} = -0.000548 \quad J \tag{8}$$

Solution of Problem 2

a. The general expression of the magnetic energy stored in a magnetic circuit with two coils is:

$$W_m = \frac{1}{2}L_{11}i_1^2 + \frac{1}{2}L_{22}i_2^2 + L_{12}i_1i_2 \tag{9}$$

and, substitutingy the values of the currents and the inductances, one has:

$$W_m = \frac{1}{2}(5 + 2\cos\theta)1^2 + \frac{1}{2}(3 + \cos 2\theta) +10(\cos\theta)1 \cdot 0.5$$

$$= 2.5 + \cos 2\theta + 0.375 + 0.125\cos 2\theta + 5\cos\theta$$

$$= 2.875 + 1.125\cos 2\theta + 5\cos\theta$$
(10)

b. The mechanical torque developed for constant current is:

$$T = \frac{\partial W_m}{\partial \theta} = -2.25 \sin 2\theta - 5 \sin \theta \tag{11}$$

The maximum torque satisfies the condition $dT/d\theta = 0$:

$$\frac{dT}{d\theta} = 0 = -4.5\cos 2\theta - 5\cos \theta \tag{12}$$

which leads to the following expression:

$$9\cos^2\theta + 5\cos\theta - 4.5 = 0. (13)$$

Of the two solutions, only one is < 1, i.e., $\cos \theta = 0.4819$. Two angles satisfy such a condition, namely, 1.0679 rad and 5.2152 rad. The torque is maximum for $\theta = 5.2152$ rad, i.e., $T^{\text{max}} = 6.2813$ Nm (see Figure 3).

The self and mutual inductances are periodical functions of the angle θ due to the salient magnetic poles of the stator and rotor. The self-inductances have period 2θ as the positions θ and $\theta + \pi$ lead to the same reluctance of the system. On the other hand, the positions θ and $\theta + \pi$ have same magnitude but opposite signs when computing the mutual-inductance. Finally, $L_{12} = L_{21}$ holds if the leakage of magnetic flux between stator and rotor is assumed to be null.

Solution of Problem 3

We find first the expression of the current that flows in the coil. The electrical equation of the system is:

$$v(t) = \sqrt{2}V\cos\omega t = Ri(t) + \frac{d\lambda}{dt} = Ri(t) + \frac{\partial\lambda}{\partial x}\frac{dx}{dt} + \frac{\partial\lambda}{\partial i}\frac{di}{dt} . \tag{14}$$

Since x is constant, dx/dt=0. Then, rewriting the equation above using phasors:

$$\bar{V} = (R + j\omega x_0)\bar{I} \ . \tag{15}$$

Hence:

$$\bar{I} = \frac{\bar{V}}{R + j\omega x_0} \ . \tag{16}$$

The rms of the current is:

$$I = \frac{V}{\sqrt{R^2 + \omega^2 x_0^2}} \,, \tag{17}$$

and, in time domain:

$$i(t) = \sqrt{2}I\cos(\omega t - \phi) \tag{18}$$

where

$$\phi = \operatorname{atan}\left(\frac{\omega x_0}{R}\right) \tag{19}$$

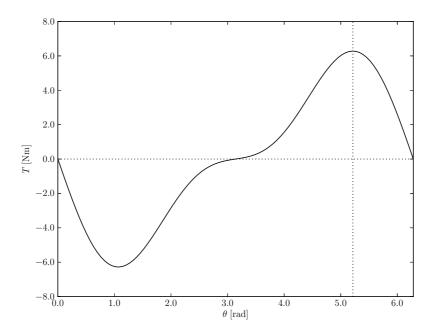


Figure 3

The coenergy W' is:

$$W'(x,i) = \int \lambda di = \int x(i+x)di = \frac{1}{2}xi^2 + x^2i$$
 (20)

The force can be obtained as:

$$f(x_0, i) = \frac{\partial W'}{\partial x} = \frac{1}{2}i^2 + 2x_0i$$

$$= I^2 \cos^2(\omega t - \phi) + 2x_0\sqrt{2}I\cos(\omega t - \phi)$$

$$= \frac{1}{2}I^2(1 - \cos(2\omega t - 2\phi)) + 2x_0\sqrt{2}I\cos(\omega t - \phi)$$
(21)

and, finally, the average of the mechanical force is:

$$f_m = \frac{1}{2}I^2 = \frac{1}{2}\frac{V^2}{R^2 + \omega^2 x_0^2}$$
 (22)

Solution of Problem 4

a. The definition of magnetic energy $W(i_1, i_2, x)$ is:

$$W = \int i_1 d\lambda_1 + \int i_2 d\lambda_2 \tag{23}$$

To be able to integrate (23), one has to substitute $d\lambda_1$ and $d\lambda_2$ for their derivatives with respect to di_1 and di_2

$$d\lambda_1 = \frac{\partial \lambda_1}{\partial i_1} di_1 + \frac{\partial \lambda_1}{\partial i_2} di_2 \tag{24}$$

$$= 2x^2i_1di_1 + xdi_2$$

$$d\lambda_2 = \frac{\partial \lambda_2}{\partial i_1} di_1 + \frac{\partial \lambda_2}{\partial i_2} di_2$$

$$= 2x^2 i_2 di_2 + x di_1.$$
(25)

In the expressions above, the dependency of the fluxes on x has been neglected since the integral (23) for x = 0 and, hence, dx = 0.

Let us compute (23) in two parts: (i) $i_2 = 0$, $di_2 = 0$ and variable i_1 ; and (ii) constant i_1 , $di_1 = 0$ and variable i_2 . Then, we obtain:

$$W = \int i_1 \frac{\partial \lambda_1}{\partial i_1} di_1 + \int \left(i_1 \frac{\partial \lambda_1}{\partial i_2} + i_2 \frac{\partial \lambda_2}{\partial i_2} \right) di_2$$

$$= \int 2x^2 i_1^2 di_1 + \int (xi_1 + 2x^2 i_2^2) di_2$$

$$= \frac{2}{3} x^2 (i_1^3 + i_2^3) + xi_1 i_2$$
(26)

We can obtain the same result through the definition of coenergy W':

$$W = \lambda_1 i_1 + \lambda_2 i_2 - W' \tag{27}$$

Refr to the next section for the determination of the expression of the coenergy.

b. The coenergy can be computed in two ways:

$$W' = \int \lambda_1 di_1 + \int \lambda_2 di_2 \tag{28}$$

$$= \lambda_1 i_1 + \lambda_2 i_2 - W \tag{29}$$

Using (28) and piece-wise integrating as we did for the magnetic energy above, we obtain:

$$W' = \int x^2 i_1^2 di_1 + \int (x^2 i_2^2 + x i_1) di_2$$

$$= \frac{1}{3} x^2 (i_1^3 + i_2^3) + x i_1 i_2$$
(30)

Using (29), we have:

$$W' = x^{2}(i_{1}^{3} + i_{2}^{3}) + 2xi_{1}i_{2} - \frac{2}{3}x^{2}(i_{1}^{3} + i_{2}^{3}) - xi_{1}i_{2}$$

$$= \frac{1}{3}x^{2}(i_{1}^{3} + i_{2}^{3}) + xi_{1}i_{2}$$
(31)

c. The force can be computed directly from the expression of the coenergy:

$$f(x, i_1, i_2) = \frac{\partial W'}{\partial x} \Big|_{i_1, i_2} = \frac{2}{3} x (i_1^3 + i_2^3) + i_1 i_2$$
 (32)

- d. Determination of the mean value of the force:
 - (a) If $i_1(t) = i_2(t) = \sqrt{2}I\cos\omega t$, one has:

$$f(x,t) = \frac{8\sqrt{2}}{3}xI^3\cos^3\omega t + 2I^2\cos^2\omega t$$

$$\Rightarrow f_m(x) = I^2.$$
(33)

Note that the mean value of $\cos^3 \omega t$ is zero and the mean value of $\cos^2 \omega t$ is 0.5.

(b) If $i_1(t) = \sqrt{2}I\cos\omega t$ e $i_2(t) = \sqrt{2}I\cos2\omega t$, one has:

$$f(x,t) = \frac{4\sqrt{2}}{3}xI^3(\cos^3\omega t + \cos^32\omega t) + 2I^2\cos\omega t\cos 2\omega t$$

$$\Rightarrow f_m(x) = 0.$$
(34)